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A number of different detectors can be
incorporated into the chamber
surrounding the specimen.
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Incident
Auger electron beam

Backscattered
electrons
electrons
(SEM)
X-rays
Secondary
electrons
Light
Absorbed electrons
(TEM: negative staining)
Elastically Elastically
scattered Unscattered scattered
electrons (TEM)  electrons electrons (TEM)

Interaction of electron with specimen



Detectors

Backscattered electron
detector:
(Solid-State Detector)

Secondary electron detector:
(Everhart-Thornley)

Image: Anders W. B. Skilbred, UiO




Detector for secondary electrons

The most common scintillator is consisting of Y2SiO5 doped with cerium —
luminescent material which changes electrons into photons — at
photocathode change of phonons into electrons — these are multiplied then
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The $64,000 Question

« Do we need to consider coherence?
* Formation of probe in SEM is coherent

* Image/Contrast Mechanisms
— At low resolution many are incoherent, depend only
upon |y(r)[*=p(r)
— These images are “simple”, interpretation similar to
light images
— At high resolution (~1nm) coherence cannot be
neglected

— Hence in most cases (lower resolution) SEM is
simple.



Where does the signals come from?

pnimary X-ray excilation

incident
electron

-"-'h‘. Bremssiraniung lcontinuum radiation)

cathodolumiNesSCence excilaion

» Diameter of the interaction
volume is larger than the
electron spot

—> resolution is poorer than the
size of the electron spot

D, : Image: Department of Geology and
Geophysics, Louisiana State University




Secondary electrons (SE)

Generated from the collision
between the incoming electrons
and the loosely bonded outer
electrons

Low energy electrons (~10-50 eV)

Only SE generated close to
surface escape (topographic
information is obtained)

Number of SE is greater than the
number of incoming electrons

We differentiate between SE1 and |
SE2




SE1

* The secondary electrons that are
generated by the incoming electron beam
as they enter the surface

* High resolution signal with a resolution
which is only limited by the electron beam
diameter -




SE2

 The secondary electrons that are generated by the
backscattered electrons that have returned to the surface
after several inelastic scattering events

« SE2 come from a surface area that is bigger than the spot
from the incoming electrons = resolution is poorer than for
SE1 exclusively

SE2

Incoming electrons

©
&

Sample surface




Factors that affect SE emission
1. Work function of the surface

2. Beam energy and beam current

« Electron yield goes through a maximum at low acc.
voltage, then decreases with increasing acc. voltage

Secondary
electron yield

Incident electron energy / kV



Factors that affect SE2 emission

3. Atomic number (Z)

« More SE2 are created
with increasing Z

« The Z-dependence is
more pronounced at
lower beam energies

4. The local curvature of the
surface (the most
important factor) s

escape

Image: Smith College Northampton, Massachusetts o




Backscattered electrons (BSE) R

A fraction of the incident —
electrons is retarded by 9
the electro-magnetic field
of the nucleus and if the
scattering angle is greater
than 180 ° the electron can

escape from the surface




BSE2

* Most BSE are of BSE2 type

BSE2
Incoming electrons

T Sample surface

© 9




BSE as a function of atomic number

« For phases containing more than one element, it is the average
atomic number that determines the backscatter coefficient n
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Factors that affect BSE emission

* Direction of the irritated surface

— more electrons will hit the BSE detector when
the surface is aligned towards the BSE
detector

* Average atomic number

* When you want to study differences in
atomic numbers the sample should be as
levelled as possible (sample preparation is
an issue!)



BSE vs SE2

Images: Greg Meeker, USGS



Tungsten SEM images



High Resolution Meant High kV

In Older SEMs




Higher kV can mean large beam penetration & loss
of surface detail




It can also mean thermal beam damage to
sensitive samples




And for wet, fragile samples results were often
disastrous or sample prep was very difficult
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Coated or Uncoated
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Low kV BSE of Polymer coating

25->1.5 kV series
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Tungsten LV (low vacuum) SEM images



Spun Polymer Uncoated
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Polyurethane Foam Uncoated (20 kV-2>3 kV @ 20Pa)




FEG SEM images



Carbon Nanotubes

MWCNT Uncoated

Uncoated

SEI H0KY 200,000 100nm YWD 4.0mm




SY-141C

JEOL SEI 0.8kY X400,000 10nm WD 2.0mm

Mesoporous Silica

Low voltage imaging

0.8kV X550,000 10nm WD 2.0mm



Ultra low kV ngh Resolutlon

Uncoated PMMA

JSM-7T401F 02kV | X100,000 100nm_ WD 1.6mm
\_




Back-scatter imaging- channeling contrast
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Al-Zn eutectic in galvanized coating Thin film on glass
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JEQL 7000F COMPO  5.0kv X18 000 WD92mm Tum COMPO  5.0kv  X20,000 WD 10.1mm Tum

3 K g

JEOL 7000F COMPO  7.0kV X4,50 Omm



Back-scatter imaging — compositional contrast

COMPO 2.0kV  X25,000 Tpm WD 7.3mm JEM-TA01F COMPO 13.0kY X300,000 am WD B9mm

Metal-ceramic composite 4-6 nm gold immunolabels



Also, SE detector in TEM (Hitachi, JEOL...)

SE

Incident Beam
— STEM Probe

Thin Sample

Scattered Beam

Integrating
Detectors
(BF/ABF/
ADF-STEM)

Segmented/

_ Pixelated
Detectors

(DPC-STEM)

Angew. Chem. Int. Ed., Volume: 59, Issue: 4, Pages: 1384-1396, First published: 13 May 2019, DOI: (10.1002/anie.201902993)



Rods in KTaO,

Bright Field TEM







Any STEM, just add a SE

detector (Hitachi, JEOL...)
I O T

Pt/graphite core/shell

Pb on Carbon substrate

SE |ge Cs corrector

SE detector

metal cover 777
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Imaging surface U atoms

LETTERS

FLUBLISHED OMLINE: 20 SEFTEMBER 2009 | DOE 101038/ MMATZS32

Imaging single atoms using secondary electrons
with an aberration-corrected electron microscope

Y. Zhu'*, H. InadaZ, K. Nakamura? and J. Wall!

Aberration correction has embarked on a new frontier in
electron microscopy by overcoming the limitations of conven-
tional round lenses, providing sub-angstrom-sized probes'™.
Hewever, improvement of spatial reselution using aberration
correction so far has been limited to the use of transmitted
electrons both in scanning and stationary mode, with an im-
provement of 20-40% (refs 3-8). In contrast, advances in the
spatial resolution of scanning electron microscopes (SEMs),
which are by far the most widely used instrument for sur-
face imaging at the micrometre-nanometre scale”, have been

news & views

NIMNG ELECT

Second best no more

Secr 1 fing in el 7 mic utic with transmission

David C. loy

S

R AT T

Nature Materials, 8, 808 - 812 (2009)




Surface Layers Matter (complicated)

a Thickness of amorphous : 28 nm b Thickness of amorphous - 8 nm ¢ Thickness of amorphous : 3 nm

Figure 3. SE images taken with HD-2700 at 200 kV along the Si[011] zone axis with the
corresponding FFT of a Si samples prepared by a FIB beam at accelerating voltages of (a) 40
kV . (b) 10kV and (c) 2 kV.



Summary

 Signals:
— Secondary electrons (SE): mainly
topography
* Low energy electrons, high resolution -
« Surface signal dependent on curvature
— Backscattered electrons (BSE): mainly
chemistry
» High energy electrons
* “Bulk” signal dependent on atomic number

— Resolution
« Can be atomic (~0.2nm), a bit complex
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