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K8 Two beam theory 
 
 We will start from the Schroedinger equation for the electron travelling 
through the solid, 
 
  2r) + (82me/h2)[ E + V(r) ]r) =0      K8.1 
 
We know that in electron diffraction the scattering angles of the electron are in 
general small.  It is therefore reasonable to factorize out the wavevector of the 
incident wave (taken along the z-axis as before) and write 
 
  r) =  r)exp(ikz)         K8.2 
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We now have a wavefunction r) which will be slowly varying as it goes 
through the crystal.  Substituting this form into equation K4.1 we obtain (using e 
for the electron charge and dropping the negative sign) 
 
  {-4k2r) +4ikdr)/dz + d2r)/dz2 + r

2r) 
 
 + (82me/h2)[ E + V(r) ]r)}exp(ikz) = 0      K8.3 
 
where 
 
   r

2r) = d2r)/dx2 + d2r)/dy2        K8.4 
 
Remembering that 
 
    (82me/h2)E = k2           K8.5 
 
and neglecting the term d2r)/dz2 on the basis that k is fairly large, to obtain the 
equation 
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   dr)/dz = - {(i/4k)r

2 + (ime/h2k)V(r)}r)      K8.6 
 
 Equation K8.6 is mathematically the same as the equations that are solved in 
the Kinematical theory, and as yet we have made only one small justifiable 
approximation (neglecting the second derivative term in z).   Before we proceed 
any further, it is informative to consider the physical sense of equation K4.6.  The 
wavefunction r), really the wave with the swiftly varying z dependence 
stripped away, changes as it moves with z through the specimen; in effect the 
electron travels down through the specimen.  How the electron changes depends 
upon two different terms. The first one, (i/k)r

2 is rather like a diffusion term.  
The spirit of this term is therefore to spread the wavefunction in the x,y plane as it 
travels.  The second term contains all the scattering of the wave by the specimen 
potential.  Comparing the magnitude of the two, with a typical estimate of eV(r) 
of 20 eV,  
 
 (ime/h2k)V(r)/(1/k) = 82meV(r)/h2 ~ Å-2    K8.7 
 



 

 
 
 4

Therefore unless the wave is changing very fast in the x,y plane, which only 
occurs when we have to consider large scattering vectors, the second term is 
substantially larger than the first, and this effect will become more important at 
higher voltages as the mass increases.  This is a very important point.  Because 
of relativistic effects at relatively high energies, the scattering by the potential 
becomes stronger relative to the transverse "diffusion" of the electrons.  A 
simple mistake that is often made (by the uninitiated) is that at high energies the 
interaction of the electron is weak, so simple models can be used – due to 
relativistic effects this is not in fact the case. 
 
 If we ignore the first term, we are in effect ignoring sideways spreading of 
the information in the electron, in effect the column approximation. Let us now 
write  
 
 r) =  gz)exp(2i[g.r -sz(g)z])        K8.8 
 
Then  



 

 
 
 5

   dr)/dz = dgz)/dz+i[42g2/4k-2szgz]gz)}exp(2i[g.r -sz(g)z]) 
        g            K8.9 
 
  =   (ime/h2k)V(r)  gz)exp(2i[g.r -sz(g)z])    K8.10 
                                                g 
 
The term inside the square brackets “[ ]” is small to zero; neglecting it is 
equivalent to invoking a column approximation. Using: 
 
 V(r) =  exp(2iq.r) V(q)          K8.11 
                   q 
 
(it is a sum, so it does not matter if we use g or q) and 
 
 g = 1/{ (me/h2k) V(g) }          K8.12 
 
Then 
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  dgz)/dz exp(2i[g.r -sz(g)z] =  (i/q) gz)exp(2i[{g+q}.r -sz(g)z]) 
  g                g q       K8.13 
 
We next note that the left-hand side contains an exponential with “g.r” while the 
right contains “{g-q}.r”.  This equation must be true for all (x,y), which means 
that these two must be the same for each individual term.  We can do this by 
replacing “g” by “g-q” on the right,  i.e.: 
 
 dgz)/dz  exp(2i[g.r -sz(g)z]) =  (i/q) g-qz)exp(2i[g.r -sz(g-q)z] 
       g                                                        gq      K8.14 
 
and now eliminating exp(2ig.r) from both sides 
 
   dgz)/dz    =   (i/q) g-qz) exp(2i { sz(g-q)-sz(g)} z)   K8.15 
              q 
 
These are what Williams and Carter call the “Howie-Whelan” equations.  To 
understand them, note that the left-hand side is the change in the (complex) 
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amplitude of a given diffracted beam as a function of depth, the second term 
being a phase change.  It is easy to check that this second phase term ensures that 
the Ewald sphere curvature effect is taken into account.  On the right of this 
equation we have scattering from g-qz) into gz) as a function of depth, with a 
Ewald sphere curvature term.  Taking the simple case where we assume that g-

qz) is very small unless g=q (Kinematical model) we have: 
 
   dgz)/dz    =   (i/g) 0z) exp(-2i sz(g) z)     K8.16 
 
This will reduce down to Kinematical theory, albeit in a slightly different form 
since equation K8.8 used a slightly different definition than that which was used 
in section K3.  If instead we assume that there are only two beams (reciprocal 
lattice values) that are strong and of interest to us, we can add a second equation 
to K8.16, namely 
 
   d0z)/dz     =   (i/-g) gz) exp(-2isz(-g)} z)     K8.17 
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K9 Two Beam Solutions 
 
Our task is to solve the two equations  
 
   dgz)/dz    =   (i/g) 0z) exp(-2i sz(g) z)     K9.1 
 
   d0z)/dz     =   (i/-g) gz) exp(-2isz(-g)} z)     K9.2 
 
Writing K9.2 as 
 
 exp(-2iszz)do(z)/dz =   (i/g)g(z)        K9.3 
 
and then differentiating with respect to z (and dropping the “g” for the excitation 
error) we obtain 
 
 exp(-2iszz){ d2o(z)/dz2 - 2iszdo(z)/dz } 
 
  =  (i/g)dg(z)/dz          K9.4 
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Substituting for g from equation K9.1 we obtain 
 
 d2o(z)/dz2 - 2iszdo(z)/dz +(/g)2o(z) = 0     K9.5 
 
This is a fairly simple differential equation which has a general solution of the 
form 
 
 o(z) = exp(2iz)          K9.6 
 
where 
 
 42 - 4sz + (1/g)2 = 0         K9.7 
 
which has roots for  of 
 
  =  ( sz   [sz

2+1/g
2] )/2         K9.8 

   =  ( sz  seff )/2           K9.9 
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where we are introducing the effective excitation error seff here which plays the 
same role in two-beam theory as the excitation error in Kinematical theory. 
 
Our general solution for o(z) is therefore 
 
 o(z) = Co

+exp(iz(sz+seff)) + Co
-exp(iz(sz-seff))    K9.10 

 
where Co

+ and Co
- are constants which we have to determine from our boundary 

conditions, i.e. the incoming electron wave.  If we substitute back with our 
solutions we obtain a very similar equation for the diffracted beam, i.e. 
 
 g(z) =(2g)(sz+seff)Co

+exp(-iz(sz-seff)) 
 
    (2g)(sz-seff)Co

-exp(-iz(sz+seff))      K9.11 
 
To complete our solution, we need to determine our C constants.  To do this we 
use the fact that on the entrance surface of the crystal the wave within the 
crystal must match the incident wave on the entrance surface, i.e. 
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 o(0) = 1 = Co

+ + Co
-          K9.12 

 
so that the incident wave has a value of 1 on the entrance surface z=0, and 
forcing the diffracted beam to have no amplitude on the incident surface we 
obtain: 
 
 g(0) = 0 = (2g){ (sz+seff)Co

+ + (sz-seff)Co
- }     K9.13 

 
substituting in for Co

- we have 
 
 Co

+ {(sz+seff) - (sz-seff) } = - (sz-seff)       K9.14 
 
which reduces to 
 
 Co

+ = (1 - sz/seff)/2          K9.15 
 
 Co

- = (1 + sz/seff)/2          K9.16 
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Using these specific values, we obtain for the wave amplitudes 
 
 o(z) = (1 - sz/seff)/2exp(iz(sz+seff))  
 
   + (1 + sz/seff)/2exp(iz(sz-seff))       K9.17 
 
which simplifies to: 
 
 o(z) =exp(izsz){cos(seffz) - (isz/seff)sin(seffz)}    K9.18 
 
and for the diffracted beam: 
 
 g(z) = (iexp(-iszz)/gseff)sin(seffz)      K9.19 
 
The intensity of the diffracted beam is therefore 
 
 |g(z)|2 = (1/g)2 {sin(seffz)/seff}2       K9.20 
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with |o(z)|2 = 1 - |g(z)|2          K9.21 
 
 The result that we have is qualitatively very similar to that of the 
Kinematical theory, with an effective excitation error replacing the true 
excitation error.  As before, the intensity oscillates as a function of the crystal 
thickness, but whereas this did not occur for the exact Bragg condition in 
Kinematical Theory it now always occurs.  In addition we see that the intensity 
of the incident beam is complimentary to that of the diffracted beam, what we 
invoked as an ad hoc correction in our earlier analysis. 
. 



 

 
 
 14

Bloch Waves 
 
Going back to the original equation 
 

  2r) + (82me/h2)[ E + V(r) ]r) =0      K8.1 
 
You can also solve this using a Bloch wave 
 
 b(k,r) = Co exp(2iz)[ exp(2ik.r) 2g exp(2i[k+g].r)] 
 
At the 2-beam condition 
 
 sz=0,  = 1/2g 
 
 b(k,r) = Co exp(2iz)[ exp(2ik.r) exp(2i[k+g].r)] 
 
 


