STEM

Conventional TEM

STEM

Northwestern University - Materials Science

Reciprocity

Coherent Source

Comparison

TEM

- Condensor Aperture
- Objective aperture
 after sample
- No analogue
- Selected Area Aperture

STEM

- Detector
- Objective aperture
 before sample
- Virtual objective aperture (condensor)
- No analogue

STEM v TEM

- STEM = TEM, but with the optics reversed (if you ignore inelastic scattering)
- BF, DF, HREM can be done in a STEM almost the same as a TEM
- However:
 - The imaging is serial as against parallel, so in general has more noise and lower signals
 - Scan coils and electronics involved, which leads to noise
 - Some types of imaging can be done easier in a STEM than a TEM (they have all been done in both)
 - STEM needs a small source (demagnified further)

Environmental Sensitivity

D. A. Muller JEM **50**, 219 (2001) P. M. Voyles, 5/3/12

More detectors are available!

Spectroscopy

Atomic Resolution EDS

128x128, **175f**, T4, 0.2ms RT: **9m33s**, DT: 3.71% Count rate: 1119.57cps

Atom by atom spectroscopy

Materials Science and Engineering and Scientific User Facilities Divisions

Zhou, W., Lee, J., Nanda, J., Pantelides, S. T., Pennycook, S. J., & Idrobo, J.-C. (2012). Atomically localized plasmon enhancement in monolayer graphene. *Nature nanotechnology*, *7*(3), 161–165.

Secondary Electrons

Secondary electrons (SE)

- Generated from the collision between the incoming electrons and the loosely bonded outer electrons
- Low energy electrons (~10-50 eV)
- Only SE generated close to surface escape (topographic information is obtained)
- Number of SE is greater than the number of incoming electrons
- We differentiate between SE1 and SE2

SE1

- The secondary electrons that are generated by the incoming electron beam as they enter the surface
- High resolution signal with a resolution which is only limited by the electron beam diameter

SE2

- The secondary electrons that are generated by the backscattered electrons that have returned to the surface after several inelastic scattering events
- SE2 come from a surface area that is bigger than the spot from the incoming electrons → resolution is poorer than for SE1 exclusively

HAADF v ADF

$\psi(\mathbf{R},z) - 1 \approx \sum_{i,j} C_i \Phi_i (\mathbf{R} - \mathbf{R}_j) (\exp(-i\pi\varepsilon_n z) - 1)$

light atoms

heavy atoms

light atoms

heavy atoms

Curtesy D. Van Dyck

The closer the electron comes to the nucleus, the higher the probability of high-angle scattering (elastic or inelastic)

1s states dominate the high-angle scattering, incoherent when averaged over detector

Partitioning Signal in Scattering Space

Scattering from one atom is proportional to scattering factor $f_e(q)$.

BF CTEM involves mostly lowangle scattering: Cu & Si cross. HADF-STEM involves high-angle scattering only.

Z-contrast

- Scattering scales as ~Z^{1.7} for common scattering angles
- Images are somewhat readily interpretable
- Images contain some chemical information
- Many problems with this simple picture (good enough for Govt work)

Electron Microscopy (Plenum, 1998).

Caveat

- Consider via Fermi's Golden Rule
 Signal = ρ(r)|<f|V|i>|²
- "Z-contrast" only corresponds to the |<f|V|i>|² contribution (HOLZ, phonons)
- But $\rho(r)$ comes from dynamical diffraction
- True Z-contrast occurs iff $\rho(r)$ has a simple form, which it does in special cases

Comparison between High-Angle and Low-Angle Annular Dark-Field Image

Cross-sectional sample through InGaAs quantum dots and associated quantum well grown on GaAs and capped with GaAs. Dots are arrowed.

Low-angle annular dark field showing strain contast

wing High-angle annular dark field showing mostly Z contrast ASU Winter School 2013

Contrast Reversals in Thick Samples at 200kV

ADF-STEM (ϕ_c >45 mr)

ADF-STEM (ϕ_c >75 mr)

•No more diffraction contrast

•Signal in W plug not monotonic, could be mistaken for voids

•Effect reduced by increasing the collector angle

Strain Contrast at Si/SiO₂ Interfaces

(JEOL 2010F, 200 kV, C_s=1mm)

ADF Inner angle: 50 mrad 25 mrad a-Si SiO₂ c-Si

Strain Fields cause dechanneling (and scattering to small angles) Z. Yu, D. A. Muller, and J. Silcox, *J. Appl. Phys.* **95**, 3362 (2004).

Not so High-Quality GZO

- Low-angle grain boundaries
- Inversion domain boundaries
- Interface and surface strain
- GZO brighter than GaN?

Changing Collection Angle

Change CL / HAADF inner angle at constant convergence angle of 24.5 mrad.

Outer angle 5× inner angle.

Paul Voyles, UWM

Collection Angle

Paul Voyles, UWM

Strain Contrast vs. Sample Thickness

Contrast at a c-Si/-aSi is strongly depends on sample thickness

100 kV, 45 mrad ADF inner angle

Strain Contrast effects at the interface: for 130 Å thick sample, ~0%; for 340 Å thick sample, 15%. Z. Yu, D. A. Muller, and J. Silcox, *J. Appl. Phys.* **95**, 3362 (2004).

Examples: Low Resolution

oxidized Co nanoparticle

Co / AlO_x / Co tunnel junction

M. J. Plisch et al. APL 79, 391 (2001).

Bi-Implanted Si

- A shows low-res BF
 - Can't really see implant
 - Can see damage
- B is Z-contrast image
 - Bi lights up like a Christmas Tree
 - The damage layer is not so visible.
 - No phase contrast

Examples borrowed from Williams & Carter

Figure 22.14. (A) Low-resolution TEM BF image showing a row of defects in Bi-implanted Si. In (B), obtained under Z-contrast conditions, the defects associated with the implant are invisible but the specimen is bright in the region implanted with Bi.

Examples: High Resolution

As δ -doped layer in Si

D. A. Muller PRL 83, 3234 (1999)

Grain boundary in MgO Y. Yan PRL **81**, 3675 (1998)

Individual Sb atoms and defect nanoclusters in Si P. M. Voyles, Nature **416**, 826 (2002)

SiO₂ on Ge on Si

- Amorphous region is visible in hi-res
- Oxide is dark, Ge is light, Si in between - can see lattice

HAADF-STEM High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy

Huiping Xu, Ray Twesten

A representative STEM-HAADF image (HB 501, 100kv, inner angle: 96mgrad) of sample $Au_{13}(PPh_3)_4(SC12)_4$

Examples

Growth of Er clusters in SiC on annealing.

Examples

SrTiO₃ / LaTiO₃ multilayers

40

 $I = \beta Z^n$

Pb₂Fe₂O₅- HAADF

$$Z_{O} = 8$$
$$Z_{Fe} = 26$$
$$Z_{Pb} = 82$$

Abakumov et al. *Angewandte Chemie (2006)*

ABF

Scanning Transmission Electron Microscope (STEM)

ABF detector can detect lighter ele

Direct imaging of Hydrogen in Nb:

GaAs [110] substrate, $SrTiO_3$ [100] buffer layer, BaTiO_3[100] film

- Enlarged and averaged HAADF image shows As-SrO atomic registry
- No double layer As from c-(4x4) observed
- Visible oxygen vacancies in 1st layer SrO
- Visible displacement of O columns in STO buffer layer

4D STEM

Current Bleeding-Edge

It will cut you if you get it wrong

A 4D-STEM Experiment Involves Data Collection in Two Real and Two Reciprocal Space Dimensions

Sample: irradiated Gd₂Ti₂O₇ Savitzky, B.H.; Ophus, C.; *et al.*, *arXiv preprint arXiv:2003.09523* **2020.**

CBED at every point

	<× ×				
Î	• • • • • •	• • •	•••• •••	•••• •••	•••• •••
	• • •	• • •	• • • • •	• • •	•••
Y	• • •	• • • • •	• • • • •	• • • • •	• • •
	• • •	• • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • •	• • • • •
ļ	• • • • •	• • •	• • • • •	• • •	••••

4D-STEM Can Be Applied to a Variety of Techniques

Ophus, C., Microsc. Microanal. 2019.

Differential Phase Contrast

www.jeol.co.jp Shibata, N.; Findlay, S. D.; Kohno, Y.; Sawada, H.; Kondo, Y.; Ikuhara, Y. *Nature Physics* **2012**, *8*, 611–615.

Look at differences – yields fields & derivatives (kind-off)

Differential Phase Contrast

ARTICLE

Received 11 Jan 2017 | Accepted 14 Apr 2017 | Published 30 May 2017

DOI: 10.1038/ncomms15631

OPEN

Electric field imaging of single atoms

Naoya Shibata¹, Takehito Seki¹, Gabriel Sánchez-Santolino¹, Scott D. Findlay², Yuji Kohno³, Takao Matsumoto¹, Ryo Ishikawa¹ & Yuichi Ikuhara^{1,4}

The Phase Problem

- We have an exit wave from the sample
 □ψ(r) wave in real space = a(r)exp(-iφ(r))
 □Ψ(u) = ∫exp(-2πiu.r)ψ(r)dr = A(u)exp(-iφ(u))
- Observables
 - $-I(r) = \langle |\psi(r)|^2 \rangle = \langle a(r)^2 \rangle$ Real Space Image $-I(u) = \langle |\Psi(u)|^2 \rangle = \langle A(u)^2 \rangle$ Diffraction Pattern
- Note: "<>" is average over incoherent aberrations and other statistical terms

Phase: Apples & Oranges

Phase of Apple + Amplitude of Orange = ?

Phase of Apple = Apple

FT⁻¹ {A_o $exp(-i \phi_a)$ } \longrightarrow Apple

Phase is more important than amplitude

Ptychography

Analysis of 4D dataset

Kim, Y. S. *et al.* Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films. *Appl. Phys. Lett.* **94**, 1–4 (2009).

Ptychography

Jiang, Y., Chen, Z., Han, Y. *et al.* Electron ptychography of 2D materials to deep sub-ångström resolution. *Nature* **559**, 343–349 (2018) doi:10.1038/s41586-018-0298-5

What's Next? Automation of Data Acquisition and Processing

Unsupervised data clustering

Gallagher-Jones, M.; Rodriguez, J. A.; et al., Comm. Biol. 2019.

Artificial neural network

Yuan, R.; Zuo, J.-M.; et al., Ultramicroscopy 2021.

Deep learning of interface structures

Oxley, M. P.; Kalinin, S. V.; et al., Mach. Learn.: Sci. Technol. 2020.

Li, X.; Kalinin, S. V.; et al., Npj Comput. Mater. 2019.

Summary: STEM

- Similar signals to TEM, often easier to obtain some types
- Parallel collection of different signals, but serial detection
- Easier for EELS/EDS mapping and similar
- Annular dark-field is not as simple as often thought, serious misinterpretations exist in the current literature
- Still under development