
The classic phase problem

We measure |F(k)|, the modulus
ρ(r)=∫exp(2πik.r)|F(k)|exp(iφ(k))dk
Phase information, φ(k) is lost
Does this matter?



Phase: Apples & Oranges

FT  Aa exp(-i φa)

FT Ao exp(-i φo)

Ao exp(-i φa) IFT
+

{ Oranle ?
Appge ?

Phase of Apple + Amplitude of Orange = ?



Phase of Apple = Apple

FT-1 {Ao exp(-i φa) } Apple

Phase is more important than amplitude



The importance of phase information

Correct Modulus 
Random Phases

Correct Phase 
Random Modulus

Suzy



Role of error in phases (degrees)
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We would like to find the phases exactly, but we don’t have to



Phase and Modulus Errors
0              10° 20° 30° 40°
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R   0             26%        52%         78%        104%

We only need approximately correct phases 
We can tolerate modulus errors
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Direct Methods vs. 
Indirect Methods

Indirect Methods:
“Trial and Error”

Direct Methods:
Using available information
to find solutions



Crystallographic Direct Methods 
Structure Triangle
Data

True
Structure

Ideal World

Trial
Structure

Direct Methods 
Map or Image

Structure Completion       
(non-trivial)



More: 1970’s Mathematics

C -- Some constraints (e.g. atomicity, 
probabilities of triplets)
F -- Some function (e.g. a FOM)
Minimize, e.g. Lagrangian

I = F + λ C



1990’s Mathematics

We have constraints 
(e.g. atomicity, 
amplitudes)
– Treat as sets

We are looking for the 
solution as intersection 
of several constraint 
sets

Amplitudes

Atoms

Positivity

Acta Cryst A55, 601 (1999)



The $64,000 question

A set is convex if any point between two members 
is also a member
– If all the sets are convex, problem has one solution
– If they are not, there may be more than one local 

minimum
Amplitude measurements 
do not form a convex set 
But…there still may only 
be one solution. 
Unsolved mathematical problem

•
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C
••

|F(k)|=const

B

×



Multiple non-convex constraints

Overall Convex Overall Non-Convex

Consider the two sets “N” and “U”



Crystallographic methodology

Overall Non-Convex

Overall Unique

Addition of additional 
convex constraints 
tends to give a unique 
solution

Structure Completion: 
add additional 
constraints as the 
phases become known



Im

Re0,0

Orthogonal Projections

Im

Re0,0

Estimate

New Value

Modulus Only Part of U(k) known

Project: 
closest point 
in set

|U(k)| |U(k)|

Known



Successive Projections

Iterate between 
projections
Other variants 
possible (see 
Combettes,
Advances in 
Imaging and 
Electron Physics
95, 155-270, 1996)

Set of |Uobs(k)|exp(iφ(k))

Set of U(k) that satisfy
some constraints

Set of all U(k)

Start



Over-relaxed Projections

Iterate between 
projections
Overshoot 
(deliberately)
Converges faster
Sometimes better 
solutions 

Set of |Uobs(k)|exp(iφ(k))

Set of U(k) that satisfies
atomistic constraints

Set of all U(k)

Start



Where do constraints come from

Physical nature of experiment
– Limited beam or object size

Physical nature of scattering
– Atomic scattering

Statistics & Probability
– Minimum Information/Bias = Maximum 

Entropy



Types of Constraints

Convex – highly convergent
– Multiple convex constraints are unique

Non-convex – weakly convergent
– Multiple non-convex constraints may not be 

unique



3D-Support Constraint

Displacements decay as 
(α+z)exp(-qz) into bulk1

Consider only non-bulk spots
Real space constraint
– ρ(z)=0 away from surface

Convex constraint

ρ(z)=0

ρ(z)≠0

ρ(z)=0

1Biharmonic expansion of strain field, Surface Science 294, 
324 (1993)



Why we don’t need all the data

The constraints, e.g. support & atomistic, 
generate both amplitude & phase estimates.
The amplitudes and phases of the 
unmeasured points must also be consistent 
with the constraints.
Hence it is often (not always) possible to 
recover to a good approximation the 
“missing cone” values



Other Constraints

Positivity (weak) Presence of Atoms
Atoms at given positions Bond Lengths
Least bias (MaxEnt) Interference

A(k)=| B(k)+Known(k)|2

Intensities & errors ≡ χ2 Anti-bumping
Statistics (e.g. Σ2) Bond angles
Support for gradient
Symmetry

Convex Non-Convex



Atomistic Constraints

ρ(r) known 
(convex if position 
is known)

Bonding –
another atom

Bumping 
ρ(r)=0



||T(x)-x||

{S1: | F {x}|=|Xe|}

β

Multiply-Connected Feasible Set

Three shaded 
regions common 
to both sets, 3 
unique solutions



Typical results
3D Calibration Test (In 4x1 Model)
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Δφ = phase error
Σ|U(k)|{1-cos(Δφ)}

Σ|U(k)|



Convex Set for unmeasured 
|U(h,k,l)|

Phase of U(h,k,l) can be estimated from other 
reflections
Set of U(h,k,l) with a given phase is convex
Hence |U(h,k,l)| is well 
specified and can be 
(approximately) recovered
Remember, phase is more 
important than amplitude

φ

•

•

•
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Β
C



Support Constraint

Displacements decay as (α+z)exp(-qz) into bulk1

Real space constraint
– ρ(z)=ρ(z)w(z) w(z)=1, -L<z<L

=0, otherwise
Convex constraint
Has well documented properties

PRB 60, 2771 (1999)

ρ(z)=0

ρ(z)≠0

ρ(z)=0

1Biharmonic expansion of strain field, SS 294, 324 (1993)



Unmeasured Reflections
Recovery of Unmeasured Reflections
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Addition Information

Physical nature of scattering
– Atomic scattering

Statistics & Probability
– Minimum Information/Bias = Maximum 

Entropy
These can be converted to mathematical 
constraints



Basic Idea

There are certain relationships which range from 
exact to probably correct.
Simple case, Unitary Sayre Equation, 1 type

Divide by N, #atoms & f(k), atomic scattering 
factors

Constraint
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Real/Reciprocal Space

-2 1

U(r)

-

18
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U(r)2

U( ) U( )U( )h k h k
k

≈ −∑

U(r) ≈ U(r)2

Reinforces strong (atom-like) features



Tangent Formula

If U(r) = U(r)2 = U'( r)
Important part is the phase
U(u) = |U(u)|exp(iθ); we know |U(u)| but 
not θ
exp(iθ) = exp(iθ'); Tan(θ) = Tan(θ')
Replace old θ by new one



Tangent Formula

1. Initial ρ(r)
2. Project onto “Real Space Constraint” ρ2(r)
3. FFT
4. Project amplitudes onto Observed
5. FFT



Algorithm Overview (Gerschberg-Saxton)

Feasible Solution

Fourier Transform

Inverse
Fourier Transform

Impose Fourier 
space

constraints (S2)

Impose real space
constraints (S1)

Observed Intensities
& assigned phases
(Global Search)

Recovery 
Criterion

YES

NO

Moduli 
Bounds 
Statistics 
…….

Atoms 
Bias 
Support
Bounds
…..



Cochran Distribution (Σ2): I

Definition: 
Consider the product

If the atoms are randomly distributed,

(exponential terms average to zero if m ≠ l)
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Cochran Distribution: II

Consider next
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Average is zero

Known

Known                  Average must be 2nπ



Cochran Distribution: III

We have a distribution of values. The 
Central Limit theorem: all distributions tend 
towards Gaussian. Hence a probability:
P(U(k) - NU(k-h)U(h)) 
~ Cexp(-|U(k) - NU(k-h)U(h)|2)
~ Cexp(2|U(k)U(k-h)U(h)|cos[φ(k)- φ(k-h)- φ(h)])



Form of Distribution
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Σ2 Triplet

For reflections h-k, k and 
h:
φ(h) ≈ φ(k) + φ(h-k)

W. Cochran (1955). Acta. Cryst. 8 473-8.

1

h-k

k h

= known structure amplitude and phase
= known structure amplitude and unknown phase



Example: Si(111) √3x√3 Au

3φ ~ 360n degrees
φ=0,120 or 240
φ=0 has only 1 atom
120 or 240

φ

φ

φ

Only one strong reflection

(220)

(1,0)



Caveat: Not Physics

This is probability, not an 
exact “answer”

All one can say is that the 
“correct” answer will be 
among those that are 
found



Infinite Number of Possible 
Arrangements of 

Atoms

Finite

R, χ2, structure and 
chemical criteria

Direct Methods

How is it implemented?



Implementation

1. Guess phases for some reflections
2. Generate from these phases for others and 

improved phases for initial set
3. Test consistency of predicted amplitudes and 

phases
4. Iterate, so long as consistency is improving

Note: permuting phases has lower dimensions than 
permuting atom positions



Origin Definition c2mm

1 2

3 4



Origin Definition c2mm

1 2

3 4

(11) Βeam Defined



Origin Definition p2mm

1 2

3 4

(11) & (10) Βeam Defined



Inequalities

|Sum aibi|2 < Sum |ai|2 Sum |bi|2
ai = 1/sqrt(N)cos(2πkri) ; bi = 1/sqrt(N)
Sum aibi = U(k)
Sum 1/N = 1 for N atoms
Sum |ai|2 = 1/N Sum cos(2πkri)2

= 1/2N Sum (1+cos(2π[2k]ri) ) 
= ½ + U(2k)

Hence U2(k) < ½ +U(2k)/2
If U(k) is large – can set U(2k)



Quartets

Phase relationships involving 4 terms for 
weak reflections
– Positive and Negative
– Rarely useful with TEM



Restoration and Extension

0.3nm Image

+DP

0.05nm Image



Support Constraint

Displacements decay as (α+z)exp(-qz) into bulk1

Real space constraint
– ρ(z)=ρ(z)w(z) w(z)=1, -L<z<L

=0, otherwise
Convex constraint
Has well documented properties

PRB 60, 2771 (1999)

ρ(z)=0

ρ(z)≠0

ρ(z)=0

1Biharmonic expansion of strain field, SS 294, 324 (1993)



Phase Recovery for a Small Particle

True diffraction pattern 
for small particle model
(Non-Convex Constraint)

++ == ??
Convex Support
Constraint

|ϕ(x,y)|=1

|ϕ(x,y)|=?



Phase Recovery for a Small Particle

Reconstructed exit wave after 3000 
iterations

True real space exit wave for small 
particle model



Electron Nanoprobe formation
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Condenser Lens III

Back Focal Plane

10 μm aperture -> 50 nm beam
M = 1/200



Coherence length > 15 nm
Convergence angle <0.2 mrad



The flow chart of hybrid input and output algorithm for iterative phase retrieval (after 
Millane and Stroud, 1997).

Calculate real-space 
constrained image Cn

Apply Equation 

Calculate amplitudes 
and phases; replace 
with experimental 
amplitudes 

Inverse Fourier 
Transform

Forward Fourier 
Transform
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• Missing central beam 
from IP saturation
• Use low mag. TEM 
image 
• Reconstruction start 
with the whole pattern
• Finish with as recorded 
diffraction pattern



Diffractive Imaging and Phase Retrieval

J.M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L.A. Nagahara, Science, 300, 1419 (2003)



Single Particle Diffraction

J. Tao, See Zuo et al, Microscopy Research Techniques, 2004

I. Robinson
Synchrotron

L~5 nm

• Atomic resolution
• Strong interaction of electrons
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