The classic phase problem

■ We measure $|\mathrm{F}(\mathrm{k})|$, the modulus

- $\rho(\mathrm{r})=\int \exp (2 \pi \mathrm{ik} . \mathrm{r})|\mathrm{F}(\mathrm{k})| \exp (\mathrm{i} \phi(\mathrm{k})) \mathrm{dk}$
- Phase information, $\phi(\mathrm{k})$ is lost
- Does this matter?

Phase: Apples \& Oranges

Phase of Apple + Amplitude of Orange = ?

Phase of Apple = Apple

$\mathrm{FT}^{-1}\left\{\mathrm{~A}_{\mathrm{o}} \underline{\exp \left(-\mathrm{i} \phi_{\mathrm{a}}\right)}\right\} \xrightarrow{\mathrm{en}}$ Apple
Phase is more important than amplitude

The importance of phase information

Correct Modulus

Suzy
Correct Phase
Random Modulus

Role of error in phases (degrees)

We would like to find the phases exactly, but we don't have to

Phase and Modulus Errors
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">10°</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">20°</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">30°</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">40°</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 10° | 20° | 30° | 40° |
| :--- | :--- | :--- | :--- | :--- |</table-markdown></div>

Phase
Error

Modulus
Error

Modulus
Correct

Phase
Correct

We only need approximately correct phases We can tolerate modulus errors

Direct Methods vs.

 Indirect MethodsIndirect Methods:
"Trial and Error"

Direct Methods:
Using available information to find solutions

Crystallographic Direct Methods Structure Triangle

Direct Methods Map or Image

Trial
Structure

Ideal World

Structure Completion Structure (non-trivial)

More: 1970’s Mathematics

- C -- Some constraints (e.g. atomicity, probabilities of triplets)
- F -- Some function (e.g. a FOM)
- Minimize, e.g. Lagrangian

$$
\mathrm{I}=\mathrm{F}+\lambda \mathrm{C}
$$

1990’s Mathematics

■ We have constraints
(e.g. atomicity,
amplitudes)

- Treat as sets

■ We are looking for the solution as intersection of several constraint sets

Acta Cryst A55, 601 (1999)

The $\$ 64,000$ question

■ A set is convex if any point between two members is also a member

- If all the sets are convex, problem has one solution
- If they are not, there may be more than one local minimum
- Amplitude measurements do not form a convex set
- But...there still may only be one solution.
■ Unsolved mathematical problem

Multiple non-convex constraints

Consider the two sets " N " and "U"

Overall Convex
Overall Non-Convex

Crystallographic methodology

Overall Unique

Overall Non-Convex

Addition of additional convex constraints tends to give a unique solution

Structure Completion: add additional constraints as the phases become known

Orthogonal Projections

Successive Projections

■ Iterate between projections

- Other variants possible (see Combettes, Advances in Imaging and Electron Physics 95, 155-270, 1996)

Over-relaxed Projections

■ Iterate between projections
■ Overshoot (deliberately)

- Converges faster

■ Sometimes better solutions

Where do constraints come from

- Physical nature of experiment
- Limited beam or object size

■ Physical nature of scattering

- Atomic scattering
- Statistics \& Probability
- Minimum Information/Bias = Maximum Entropy

Types of Constraints

■ Convex - highly convergent

- Multiple convex constraints are unique

■ Non-convex - weakly convergent

- Multiple non-convex constraints may not be unique

3D-Support Constraint

■ Displacements decay as $(\alpha+z) \exp (-q z)$ into bulk ${ }^{1}$

- Consider only non-bulk spots
- Real space constraint
- $\rho(z)=0$ away from surface

■ Convex constraint

${ }^{1}$ Biharmonic expansion of strain field, Surface Science 294, 324 (1993)

Why we don't need all the data

■ The constraints, e.g. support \& atomistic, generate both amplitude \& phase estimates.

- The amplitudes and phases of the unmeasured points must also be consistent with the constraints.
■ Hence it is often (not always) possible to recover to a good approximation the "missing cone" values

Other Constraints

Convex

 Non-Convex| Positivity (weak) | Presence of Atoms |
| :--- | :--- |
| Atoms at given positions | Bond Lengths |
| Least bias (MaxEnt) | Interference
 $\mathrm{A}(\mathrm{k})=\mid \mathrm{B}(\mathrm{k})+$ Known $\left.(\mathrm{k})\right\|^{2}$ |
| Intensities \& errors $\equiv \chi^{2}$ | Anti-bumping |
| Statistics (e.g. Σ_{2}) | Bond angles |
| Support for gradient | |
| Symmetry | |

Atomistic Constraints

 (convex if position is known)

Multiply-Connected Feasible Set

Three shaded
regions common
to both sets, 3
unique solutions
$\Delta \phi=$ phase error
$\left\lvert\, \frac{\Sigma|\mathrm{U}(\mathrm{k})|\{1-\cos (\Delta \phi)\}}{\Sigma|\mathrm{U}(\mathrm{k})|}\right.$

3D Calibration Test ($\ln 4 \times 1$ Model)

Typical results

Convex Set for unmeasured

■ Phase of $\mathrm{U}(\mathrm{h}, \mathrm{k}, \mathrm{l})$ can be estimated from other reflections

- Set of $\mathrm{U}(\mathrm{h}, \mathrm{k}, \mathrm{l})$ with a given phase is convex

■ Hence |U(h,k,l)| is well specified and can be (approximately) recovered

- Remember, phase is more important than amplitude

Support Constraint

- Displacements decay as $(\alpha+\mathrm{z}) \exp (-\mathrm{qz})$ into bulk ${ }^{1}$
- Real space constraint

$$
-\rho(z)=\rho(z) w(z) \quad w(z)=1,-L<z<L
$$

$$
=0 \text {, otherwise }
$$

PRB 60, 2771 (1999)
${ }^{1}$ Biharmonic expansion of strain field, SS 294, 324 (1993)

Unmeasured Reflections

Recovery of Unmeasured Reflections

Addition Information

- Physical nature of scattering
- Atomic scattering
- Statistics \& Probability
- Minimum Information/Bias = Maximum Entropy

■ These can be converted to mathematical constraints

Basic Idea

■ There are certain relationships which range from exact to probably correct.

- Simple case, Unitary Sayre Equation, 1 type

$$
F(k)=\sum_{l} f(k) \exp \left(2 \pi i k . r_{l}\right)
$$

- Divide by N, \#atoms \& f(k), atomic scattering factors

$$
\begin{aligned}
& U(k)=1 / N \sum_{l} \exp \left(2 \pi i k \cdot r_{l}\right) ; u(r)=1 / N \sum_{l} \delta\left(r-r_{l}\right) \\
& u(r)=N u(r)^{2}
\end{aligned}
$$

Real/Reciprocal Space

$$
\begin{aligned}
& \mathrm{U}(\mathrm{~h}) \approx \sum_{\mathrm{k}} \mathrm{U}(\mathrm{k}) \mathrm{U}(\mathrm{~h}-\mathrm{k}) \\
& \mathrm{U}(\mathrm{r}) \approx \mathrm{U}(\mathrm{r})^{2}
\end{aligned}
$$

Reinforces strong (atom-like) features

Tangent Formula

- If $\mathrm{U}(\mathrm{r})=\mathrm{U}(\mathrm{r})^{2}=\mathrm{U}^{\prime}(\mathrm{r})$
- Important part is the phase

■ $\mathrm{U}(\mathrm{u})=|\mathrm{U}(\mathrm{u})| \exp (\mathrm{i} \theta)$; we know $|\mathrm{U}(\mathrm{u})|$ but not θ

■ $\exp (\mathrm{i} \theta)=\exp \left(\mathrm{i} \theta^{\prime}\right) ; \operatorname{Tan}(\theta)=\operatorname{Tan}\left(\theta^{\prime}\right)$

- Replace old θ by new one

Tangent Formula - \square-a

1. Initial $\rho(\mathrm{r})$
2. Project onto "Real Space Constraint" $\rho^{2}(r)$
3. FFT
4. Project amplitudes onto Observed
5. FFT

Algorithm Overview (Gerschberg-Saxton)

Cochran Distribution $\left(\Sigma_{2}\right)$: I

- Definition: $U(k)=(1 / N) \sum_{m} \exp \left(2 \pi i k \cdot r_{m}\right)$
- Consider the product
$N U(k-h) U(h)=(1 / N) \sum_{m} \exp \left(2 \pi i k . r_{m}\right) \sum_{l} \exp \left(2 \pi i h .\left(r_{m}-r_{l}\right)\right)$
■ If the atoms are randomly distributed,

$$
\left\langle\sum \exp \left(2 \pi i h .\left(r_{m}-r_{l}\right)\right)\right\rangle=1
$$

(exponential terms average to zero if $m \neq l$)

$$
N\langle U(k-h) U(h)\rangle=(1 / N) \sum_{m} \exp \left(2 \pi i k . r_{m}\right)=U(k)
$$

Cochran Distribution: II

■ Consider next

$$
\begin{aligned}
& |N U(k-h) U(h)-U(k)|^{2} \\
& =|U(k)|^{2}+N^{2}|U(k-h) U(h)|^{2} \\
& -2 N|U(k) U(k-h) U(h)| \cos (\phi(k)-\phi(k-h)-\phi(h)) \\
& \text { Known }
\end{aligned}
$$

Cochran Distribution: III

- We have a distribution of values. The Central Limit theorem: all distributions tend towards Gaussian. Hence a probability:
- $\mathrm{P}(\mathrm{U}(\mathbf{k})-\mathrm{NU}(\mathbf{k}-\mathbf{h}) \mathrm{U}(\mathbf{h}))$
$\sim \operatorname{Cexp}\left(-|\mathrm{U}(\mathbf{k})-\mathrm{NU}(\mathbf{k}-\mathbf{h}) \mathrm{U}(\mathbf{h})|^{2}\right)$
$\sim \operatorname{Cexp}(2|U(\mathbf{k}) U(\mathbf{k}-\mathbf{h}) \mathrm{U}(\mathbf{h})| \cos [\phi(\mathbf{k})-\phi(\mathbf{k}-\mathbf{h})-\phi(\mathbf{h})])$

Form of Distribution

Note: this is more statistics than the presence of atoms

Σ_{2} Triplet

For reflections $\mathbf{h}-\mathbf{k}, \mathbf{k}$ and h:
$\phi(\mathbf{h}) \approx \phi(\mathbf{k})+\phi(\mathbf{h}-\mathbf{k})$
W. Cochran (1955). Acta. Cryst. 8 473-8.

- = known structure amplitude and phase
- = known structure amplitude and unknown phase

Example: $\operatorname{Si}(111) \sqrt{ } 3 x \sqrt{ } 3 \mathrm{Au}$

Only one strong reflection

Caveat: Not Physics

This is probability, not an exact "answer"

All one can say is that the "correct" answer will be among those that are found

How is it implemented?

Infinite Number of Possible

 Arrangements of Atoms
Direct Methods

Finite
R, χ^{2}, structure and chemical criteria

Implementation

1. Guess phases for some reflections
2. Generate from these phases for others and improved phases for initial set
3. Test consistency of predicted amplitudes and phases
4. Iterate, so long as consistency is improving

Note: permuting phases has lower dimensions than permuting atom positions

Origin Definition c2mm

Inequalities

$\left|\operatorname{Sum} \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}\right|^{2}<\operatorname{Sum}\left|\mathrm{a}_{\mathrm{i}}\right|^{2} \operatorname{Sum}\left|\mathrm{~b}_{\mathrm{i}}\right|^{2}$
$a_{i}=1 / \operatorname{sqrt}(N) \cos \left(2 \pi k r_{i}\right) ; b_{i}=1 / s q r t(N)$
Sum $\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}=\mathrm{U}(\mathrm{k})$
Sum $1 / \mathrm{N}=1$ for N atoms
Sum $\left|\mathrm{a}_{\mathrm{i}}\right|^{2}=1 / \mathrm{N}$ Sum $\cos \left(2 \pi \mathrm{kr}_{\mathrm{i}}\right)^{2}$

$$
\begin{aligned}
& =1 / 2 \mathrm{~N} \operatorname{Sum}\left(1+\cos \left(2 \pi[2 \mathrm{k}] \mathrm{r}_{\mathrm{i}}\right)\right) \\
& =1 / 2+\mathrm{U}(2 \mathrm{k})
\end{aligned}
$$

Hence $U^{2}(k)<1 / 2+U(2 k) / 2$
If $U(k)$ is large - can set $U(2 k)$

Quartets

■ Phase relationships involving 4 terms for weak reflections

- Positive and Negative
- Rarely useful with TEM

Restoration and Extension

Support Constraint

- Displacements decay as $(\alpha+\mathrm{z}) \exp (-\mathrm{qz})$ into bulk ${ }^{1}$
- Real space constraint

$$
-\rho(z)=\rho(z) w(z) \quad w(z)=1,-L<z<L
$$

$$
=0 \text {, otherwise }
$$

PRB 60, 2771 (1999)
${ }^{1}$ Biharmonic expansion of strain field, SS 294, 324 (1993)

Phase Recovery for a Small Particle ■■ -

True diffraction pattern for small particle model (Non-Convex Constraint)

Convex Support
Constraint

Phase Recovery for a Small Particle

True real space exit wave for small particle model

Reconstructed exit wave after 3000 iterations

Electron Nanoprobe formation

Back Focal Plane
$10 \mu \mathrm{~m}$ aperture -> 50 nm beam $M=1 / 200$

The Algorithm

The flow chart of hybrid input and output algorithm for iterative phase retrieval (after Millane and Stroud, 1997).

Convergence and the Missing Central Beam

$R=\frac{\sum| | F^{E x p}|-| F^{\mathrm{R}} \|}{\sum\left|F^{E x p}\right|} 100 \%$

- Missing central beam from IP saturation
- Use low mag. TEM image
- Reconstruction start with the whole pattern
- Finish with as recorded diffraction pattern

Diffractive Imaging and Phase Retrieval

(left) A single double wall nanotube is illuminated with a narrow beam of electrons. (right) The diffraction pattern of the twbe

J.M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L.A. Nagahara, Science, 300, 1419 (2003)

Single Particle Diffraction

J. Tao, See Zuo et al, Microscopy Research Techniques, 2004

