The classic phase problem

- We measure |F(k)|, the modulus
- $\rho(\mathbf{r}) = \int \exp(2\pi i \mathbf{k} \cdot \mathbf{r}) |F(\mathbf{k})| \exp(i\phi(\mathbf{k})) d\mathbf{k}$
- Phase information, $\phi(k)$ is lost
- Does this matter?

Phase of Apple + Amplitude of Orange = ?

FT⁻¹ { $A_o \exp(-i \phi_a)$ } \longrightarrow Apple

Phase is more important than amplitude

The importance of phase information

Suzy

Correct Modulus Random Phases

Correct Phase Random Modulus

Role of error in phases (degrees)

We would like to find the phases exactly, but we don't have to

We only need approximately correct phases We can tolerate modulus errors

Direct Methods vs. Indirect Methods

Indirect Methods: "Trial and Error"

Direct Methods:

Using available information to find solutions

More: 1970's Mathematics

- C -- Some constraints (e.g. atomicity, probabilities of triplets)
- F -- Some function (e.g. a FOM)
- Minimize, e.g. Lagrangian

 $I = F + \lambda \ C$

1990's Mathematics

- We have constraints (e.g. atomicity, amplitudes)
 - Treat as sets
- We are looking for the solution as intersection of several constraint sets

Acta Cryst A55, 601 (1999)

The \$64,000 question

- A set is convex if any point between two members is also a member
 - If all the sets are convex, problem has <u>one</u> solution
 - If they are not, there <u>may</u> be more than one local minimum
- Amplitude measurements
 do not form a convex set
- But...there still <u>may</u> only be one solution.
- Unsolved mathematical problem

Multiple non-convex constraints

Consider the two sets "N" and "U"

Overall Convex

Overall Non-Convex

Crystallographic methodology

Overall Non-Convex

Overall Unique

Addition of additional convex constraints tends to give a unique solution

Structure Completion: add additional constraints as the phases become known

Over-relaxed Projections

- Iterate between projections
- Overshoot (deliberately)
- Converges faster
- Sometimes better solutions

Where do constraints come from

- Physical nature of experiment
 - Limited beam or object size
- Physical nature of scattering
 - Atomic scattering
- Statistics & Probability
 - Minimum Information/Bias = Maximum Entropy

Types of Constraints

- Convex highly convergent
 - Multiple convex constraints are unique
- Non-convex weakly convergent
 - Multiple non-convex constraints may not be unique

3D-Support Constraint

- Displacements decay as
 (α+z)exp(-qz) into bulk¹
- Consider only non-bulk spots
- Real space constraint
 - $\rho(z)=0$ away from surface
- Convex constraint

¹Biharmonic expansion of strain field, Surface Science <u>294</u>, 324 (1993)

Why we don't need all the data

- The constraints, e.g. support & atomistic, generate both amplitude & phase estimates.
- The amplitudes and phases of the unmeasured points must also be consistent with the constraints.
- Hence it is often (not always) possible to recover to a good approximation the "missing cone" values

Other Constraints

Convex	Non-Convex
Positivity (weak)	Presence of Atoms
Atoms at given positions	Bond Lengths
Least bias (MaxEnt)	Interference
	$ A(k) = B(k) + Known(k) ^2$
Intensities & errors $\equiv \chi^2$	Anti-bumping
Statistics (e.g. Σ_2)	Bond angles
Support for gradient	
Symmetry	

Multiply-Connected Feasible Set $\{S_1: | \mathcal{F} \{x\} = |X_e|\}$ Three shaded regions common to both sets, 3 $\|T(x)-x\|$ unique solutions

Convex Set for unmeasured |U(h,k,l)|

- Phase of U(h,k,l) can be estimated from other reflections
- Set of U(h,k,l) with a given phase is convex
- Hence |U(h,k,l)| is well specified and can be (approximately) recovered
- Remember, phase is more important than amplitude

Support Constraint

- Displacements decay as (α+z)exp(-qz) into bulk¹
- Real space constraint
 - $\rho(z) = \rho(z)w(z) w(z) = 1, -L < z < L$
- Convex constraint
- Has well documented properties

PRB <u>60</u>, 2771 (1999)

¹Biharmonic expansion of strain field, SS <u>294</u>, 324 (1993)

Unmeasured Reflections

Recovery of Unmeasured Reflections

Addition Information

- Physical nature of scattering
 - Atomic scattering
- Statistics & Probability
 - Minimum Information/Bias = Maximum Entropy
- These can be converted to mathematical constraints

There are certain relationships which range from exact to probably correct.

Basic Idea

- Simple case, Unitary Sayre Equation, 1 type $F(k) = \sum_{l} f(k) \exp(2\pi i k. r_l)$
- Divide by N, #atoms & f(k), atomic scattering factors

$$U(k) = 1/N \sum_{l} \exp(2\pi i k.r_{l}); u(r) = 1/N \sum_{l} \delta(r - r_{l})$$
$$u(r) = Nu(r)^{2}$$
Constraint

Reinforces strong (atom-like) features

Tangent Formula

- If $U(r) = U(r)^2 = U'(r)$
- Important part is the phase
- $U(u) = |U(u)|exp(i\theta)$; we know |U(u)| but not θ
- $\square \exp(i\theta) = \exp(i\theta'); Tan(\theta) = Tan(\theta')$
- Replace old θ by new one

Tangent Formula

- 1. Initial $\rho(r)$
- 2. Project onto "Real Space Constraint" $\rho^2(r)$
- 3. FFT
- 4. Project amplitudes onto Observed
- 5. FFT

• Definition: $U(k) = (\frac{1}{N}) \sum \exp(2\pi i k \cdot r_m)$ Consider the product $NU(k-h)U(h) = (\frac{1}{N})\sum \exp(2\pi i k.r_m)\sum \exp(2\pi i h.(r_m - r_l))$ ■ If the atoms are randomly distributed, $\langle \sum \exp(2\pi i h.(r_m - r_l)) \rangle = 1$ (exponential 'terms average to zero if $m \neq l$)

Cochran Distribution (Σ_2): I

$$N\langle U(k-h)U(h)\rangle = (\frac{1}{N})\sum_{m} \exp(2\pi i k.r_{m}) = U(k)$$

Cochran Distribution: III

- We have a distribution of values. The Central Limit theorem: all distributions tend towards Gaussian. Hence a probability:
- $\blacksquare P(U(\mathbf{k}) NU(\mathbf{k}-\mathbf{h})U(\mathbf{h}))$
 - ~ $\operatorname{Cexp}(-|\mathbf{U}(\mathbf{k}) \mathbf{NU}(\mathbf{k}-\mathbf{h})\mathbf{U}(\mathbf{h})|^2)$
 - $\sim Cexp(2|U(\textbf{k})U(\textbf{k-h})U(\textbf{h})|cos[\phi(\textbf{k})-\phi(\textbf{k-h})-\phi(\textbf{h})])$

Note: this is more statistics than the presence of atoms

For reflections **h-k**, **k** and **h**: $\phi(\mathbf{h}) \approx \phi(\mathbf{k}) + \phi(\mathbf{h}-\mathbf{k})$

 Σ_2 Triplet

W. Cochran (1955). Acta. Cryst. 8 473-8.

- = known structure amplitude and phase
- = known structure amplitude and <u>unknown</u> phase

Example: Si(111) $\sqrt{3x\sqrt{3}}$ Au

Only one strong reflection

- $3\phi \sim 360n$ degrees
- φ=0,120 or 240
- $\phi = 0$ has only 1 atom
- 120 or 240

This is probability, not an exact "answer"

Caveat: Not Physics

All one can say is that the "correct" answer will be among those that are found

Implementation

- 1. Guess phases for some reflections
- 2. Generate from these phases for others and improved phases for initial set
- 3. Test consistency of predicted amplitudes and phases
- 4. Iterate, so long as consistency is improving

Note: permuting phases has lower dimensions than permuting atom positions

Origin Definition c2mm

 $|Sum a_i b_i|^2 < Sum |a_i|^2 Sum |b_i|^2$ $a_i = 1/sqrt(N)cos(2\pi kr_i)$; $b_i = 1/sqrt(N)$ Sum $a_i b_i = U(k)$ Sum 1/N = 1 for N atoms Sum $|a_i|^2 = 1/N$ Sum $\cos(2\pi kr_i)^2$ $= 1/2N \text{ Sum } (1 + \cos(2\pi [2k]r_i))$ $= \frac{1}{2} + U(2k)$ Hence $U^{2}(k) < \frac{1}{2} + U(2k)/2$ If U(k) is large – can set U(2k)

Inequalities

- Phase relationships involving 4 terms for weak reflections
 - Positive and Negative
 - Rarely useful with TEM

Restoration and Extension

Support Constraint

- Displacements decay as (α+z)exp(-qz) into bulk¹
- Real space constraint
 - $\rho(z) = \rho(z)w(z) w(z) = 1, -L < z < L$
- Convex constraint
- Has well documented properties

PRB <u>60</u>, 2771 (1999)

¹Biharmonic expansion of strain field, SS <u>294</u>, 324 (1993)

Phase Recovery for a Small Particle

Convex Support Constraint

Phase Recovery for a Small Particle

True real space exit wave for small particle model

Reconstructed exit wave after 3000 iterations

Electron Nanoprobe formation

The Algorithm

The flow chart of hybrid input and output algorithm for iterative phase retrieval (after Millane and Stroud, 1997).

Convergence and the Missing Central Beam

Diffractive Imaging and Phase Retrieval

J.M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L.A. Nagahara, Science, 300, 1419 (2003)

Single Particle Diffraction

J. Tao, See Zuo et al, Microscopy Research Techniques, 2004