Precession Diffraction: The Philospher's Stone of Electron Crystallography?

General *ab-initio* structure determination (nanoparticles, precipitates...) without growing large single crystals

Thinking big

- Without severe dynamical effects, inversion is trivial – very thin samples
- Fundamental problem: dynamical diffraction in general case; no *ab-initio* inversion *currently* exists without too much prior knowledge to be more than a demonstration experiment.

It Can Work: Si(111)-(3x1)/Ag Structure

FIG. 4. Simulated STM images for the honeycomb chainchannel model of Li: 3×1 for (a) filled states and (b) empty states. Black circles indicate the projected positions of Si and Li atoms in the surface layer.

Below: MCM-22 [0001] Projected potential map from electron diffraction intensities and phases from symbolic addition*

It can work: bulk

Depends on small thickness (for MCM-22 typical is 100-300 Å). Structure must project well to work in 2D.

* Nicolopoulos et al, J. Am. Chem. Soc. 117 (1995)

It can fail

Left, Direct Methods solution from fs98, non-precessed

Below, comparison with structure.

Reasons for failure:

- Mordenite does not project well
- Crystal morphology typically 100 nm or more along [001]
- Problems from dynamical effects confirmed with modeled (multislice) data for >300 Å thickness.

Experimental Problems

- Local strain/tilting leads to kinematically forbidden/dynamically allowed spots – well known *coherent* dynamical diffraction effect
- Sometimes thickness is not controlled results are not very reproducible.
- Often samples are not on zone axis (reduces apparent symmetry)

Theoretical Problems

- Dynamical electron diffraction is "exact", but in general not analytic; hard to extract trends from numerical calculations!
- Hard to extract from calculations conditions for direct methods to work (beyond 1s model)
- Calculations can be slow

Alternative – Electron Precession (1993)

Double conical beam-rocking system for measurement of integrated electron diffraction intensities

R. Vincent, P.A. Midgley

H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK (Received 26 July 1993; in final form 4 October 1993)

Advantages:

- 1. PRECESSION -> MANY MORE REFLECTIONS INTERCEPTED BY EWALD SPHERE -> LARGE DATA SET
- 2. DIFFRACTED INTENSITIES DETERMINED BY INTEGRATING THROUGH BRAGG CONDITION → NO BRANCH STRUCTURE ... Ig → |Ug|² (NOT PARTIAL S.F.)
- 3. REDUCES NON-SYSTEMATIC DYNAMICAL EFFECTS
- 4. FOCUSSED PROBE -> HIGH SPATIAL RESOLUTION (~0-1, um)

Precession Camera to date

- 1992: Vincent-Midgley
- 1997: Gjonnes
- 2000: NU1 (C.S.Own, undergrad thesis)
- 2002: Gemmini, NU2 (UOP)
- 2003: Castel
- 2004: NU3 (UOP),Spinning Star (Exxon)
- 2005: NU4 (NU & UIUC), SS (5)

Precession Cameras

Precession System

US patent application: *"A hollow-cone electron diffraction system".*

Application serial number 60/531,641, Dec 2004.

Generation II hardware

Electron Precession: A Guide for Implementation, C.S. Own, L.D. Marks, and Wharton Sinkler, Reviews of Scientific Instrumentation, 76, 33703 (2005)

SPINNING STAR: UNIVERSAL INTERFASE FOR PRECESSION ELECTRON DIFFRACTION FOR ANY TEM (120-200-300 KV)

• Can be easily retrofitable to any TEM 100- 300 KV

- precession is possible for any beam size 300 50 nm
- Precession is possible for a parallel or convergent beam
- precession eliminates false spots to ED pattern that belong to dynamical contributions
- precession angle can vary continuously (0°-3°) to observe true crystallographic symmetry variation

• Software ELD for easy quantification of ED intensities and automatic symmetry (point, space group) research

• Easily interfaced to electron diffractometer for automatic 3D structure determination

NanoMEGAS Advanced Tools for electron diffraction

Some Practical Issues

Projector Spiral Distortions (60 mRad tilt)

Bi-polar push-pull circuit (H9000)

C1

Demonstrate Probe wandering 50nm probe @ α ~25mRad (NU2)

- Each image from montage is from a different tilt
- The location in real space deviates by ~10-15nm in the slightly misaligned condition
- Meticulous alignment suppresses the deviation but cannot remove it
- Smallest probe (NU3) ~ 20nm

Qualitative Comparison: (Ga,In)₂SnO₄ (a known structure)

Kinematical (reference)

Precession pattern (experiment) $\phi = 24$ mrad

(Ga,In)₂SnO₄ precession data: Direct methods solution (EDM)

a	(Real S	Space)		ୢୖୄ୕ୄୄ	© ©				.	,	• • •	•
	•		•	D D	. 6				•••	•••	•	• • •
				c	~ @ @		0		• •	•• • •	• • •	•• • • •
				Ć) • •	0	©	0	•••		• • •	• • • •
-			•	0	。 🔘	$)$ \odot		о с	Gallium/ Indium	•	• •	••••
٠				Į.	0	0	0 ©	• • •	Tin	° •• *	•••	° • • •
		1.00		.	00	- 0	\circ Q	_ ~ _		•• •	•	•• • •

	ΔR (Å)				
Sn1	0.00E+00				
Sn2	0.00E+00				
Sn3	6.55E-03				
In/Ga1	5.17E-02				
In/Ga2	2.37E-03				
Ga1	6.85E-02				
Ga2	1.22E-01				

Displacement (R_{neutron} – R_{precession}):

∆R_{mean} < 4*10⁻² Å

(Sinkler, et al. J. Solid State Chem, 1998). (Own, Sinkler, & Marks, submitted.)

Mordenite, kind-of solves

From modeled kinematical data

8th ranked solution, from raw precession data

APPLICATION : FIND TRUE CRYSTAL SYMMETRY

Courtesy M.Gemmi Univ of Milano

NanoMEGAS Advanced Tools for electron diffraction

X

APPLICATION : PERFECT CRYSTAL ORIENTATION

Crystals –specially minerals -usually grow in platelet or fiber shape and results dificult to orient perfectly in a particular zone axis; in this example olivine crystals are perfectly oriented after precession is on.

APPLICATION : PERFECT CRYSTAL ORIENTATION

Precession is not sensible to small variation of thickness and (or) misorientation; in this example NdAl₃(BO₃)₄ crystal alhough is far from zone axis orientation, after precession is on show similar pattern to a nearby zone axis oriented crystal.

PRECESSION OFF

PRECESSION ON

Precession on akermanite

[001]

Ca₂MgSi₂O₇ Tetragonal a= 0.7835 nm C= 0.501 nm

Courtesy M.Gemmi Univ of Milano

AUTOMATIC DETERMINATION OF CRYSTAL SYMMETRY

SiC 4H hexagonal P6₃mc

In this application example by varying precession angle symmetry of FOLZ becomes more and more visible ;

it is then straightforward space and point group symmetry determination of crystal (without use of convergent beam)

Courtesy JP Mornirolli Univ of Lille France

Test Case: Andalusite

- Natural Mineral
 - Al_2SiO_5
 - Orthorhombic (Pnnm)
 - a=7.7942
 - b=7.8985
 - c=5.559
 - 32 atoms/unit cell
- Sample Prep
 - Crush
 - Disperse on holey carbon film
 - Random Orientation

Kinematical Simulation [110]

•Computed using WebEMAPS

•Note: lots of weak reflections

•p2mm Symmetry

•Diameter →Intensity

Initial Measurement with 8100

- Exhibited a very strong (001) spot(s), kinematically weak
- Check CCD calibration
 - Computed: 36 µm/pix
 - S.Y. Li: 6.8 µm/pix
- Go to UOP and do some precession

•DPs measured with EDM (p2mm) and plotted in Semper

•Precession angle rather low (24 mrad)

•What is the effect of increasing the angle?

Comparison of Kinematical vs. Precession Simulations

Kinematical

BeihDadamical

Problem(?) with precession simulation: Weak thickness dependance of the result...sample thickness not well known (300A used)

Numbers

Electron Direct Methods Potential Maps [110]

Problems and Questions

- Previous studies:
 - R-factors ~ 0.3-0.4[†]

†(J. Gjonnes, et al., Acta Cryst A, 1998.K. Gjonnes, et al., Acta Cryst A, 1998.M. Gemmi, et al., Acta Cryst A, 2003.)

- Precession was not well-understood
 - Can one just use intensities?
 - Correction terms ?
 - Are they correct?
 - Is geometry-only (Lorentz correction) valid?
 - Our early experiments (2000) gave mixed results too
- Why didn't it work?
- How can we make it work?

Multislice simulation parameters

- "Conventional" multislice (NUMIS code)
- Integrate over different incident directions 100-1000 tilts
- $\phi = \text{cone semi-angle}$
 - 0 50 mrad typical
- t =thickness
 - ~20 50 nm typical
 - Explore: 4 150 nm
- g = reflection vector
 - $|g| = 0.25 1 \text{ Å}^{-1}$ are structuredefining

Global error metric: R₁

- Broad clear global minimum atom positions fixed
- R-factor = 11.8% (experiment matches simulated known structure)
 - Compared to >30% from previous precession studies
- Accurate thickness determination:
 - Average *t* ~ 41nm (very thick crystal for studying this material)

Quantitative Benchmark: Multislice Simulation

(Own, Sinkler, & Marks, in preparation.)

Dynamical twobeams corrections

For polycrystal it is necessary to integrate on various angles of incidence beam:

$$\int_{-\infty}^{\infty} \frac{\sin^2 [A(1+w^2)^{1/2}]}{1+w^2} dw = \pi A \int_{0}^{A} J_0(2x) dx$$

The Blackman curve (Blackman [1939]) for the ratio of dynamical to kinematical intensities for a ring pattern as a function of $A = \sigma H \Phi_h$. The experimental points are those obtained by Horstmann and Meyer [1965], from measurements on ring patterns from aluminum films at various voltages. The short horizontal lines indicate values calculated using the Bethe potentials, equation (12). (After Horstmann and Meyer [1965].)

t > 50 nm: needs correction How to use PED intensities

Treat like powder diffraction

*An a

 Apply Lorentz-type dynamical correction factor to get true intensity:[†]

Lorentz-only correction: Geometry information is insufficient

Need structure factors to apply the correction!

Sinc function altered by ξ_g

$$s_{eff} = \sqrt{s^2 + \frac{1}{\xi_g^2}}$$

- A function of structure factor F_g
 - Some F_g must be known to use!

$$\xi_g = \frac{\pi V_c \cos \theta_B}{\lambda F_g}$$

Approximate model: quasisystematic row

Dynamical corrections by Bethe potentials

Two-beam scattering with accounting for weak reflexions. «Bethe potentials» - modified potentials in many beam theory: $U_{0,h} = v_h - \sum_g [v_g v_{h-g}/(\kappa^2 - k_g^2)];$ $v_g/(\kappa^2 - k_g^2) << 1; v_{h-g}/(\kappa^2 - k_g^2) << 1$

When the Bragg conditions for one reflection is satisfied, the other reflections of "systematic set" always have the same "excitation errors"

Curtesy A. Avilov

Summary

- Perhaps the Philosophers Stone...
 - Easy to implement (semi-commercial)
 - Much better than other electron diffraction techniques in most cases
 - Much, much easier to interpret
 - Amenable to direct methods analysis
- Not the end of the story....