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Silicates, glasses, and oxides are widely used in everyday

applications such as surfaces of cell phones and tablets as well

as in nanostructured form for therapeutics, catalysts, and

composites. Modeling of the inorganic–organic interfaces at

the 1–100 nm scale has recently become more viable as

suitable force fields and molecular models including details of

oxide surface chemistry and pH dependent ionization have

been introduced. Here we describe computational models for

glasses, silica, and common oxides for simulations at high

temperatures and at room temperature, including necessary

chemical specificity to analyze surfaces and organic interfaces.

The bulk structure of glasses, surface chemistry and type of

molecular interactions governing adsorption, as well as the

feasible accuracy is illustrated by examples. Applications and

opportunities of simulation methods are discussed.
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Introduction
Oxides, silicates and glasses have been studied for cen-

turies and are widely used in everyday applications such

as glass surfaces for windows and displays, surfaces of cell

phones and tablets as well as in nanostructured form for

therapeutics, catalysts, and composites [1–5]. The inter-

action with conventional polymers, biomacromolecules

such as peptides and DNA, is critical to design mechani-

cally resistant coatings, tags for molecular recognition,

and systems for drug delivery. Therefore, recent applica-

tions include nanostructures for polymer composites,

drug delivery vehicle, catalyst supports, sensors, and other

functional materials [6–8,9�,10–20]. Measurements of

surface areas with the Brunauer–Emmett–Teller (BET)

method, thermal gravimetric analysis (TGA), surface
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adsorption of gases and liquids, spectroscopy, as well as

of ionization of silanol surface groups have been carried

out by numerous research teams [21�,22–38]. Glasses are

typically produced from oxide melts of various composi-

tion, often the Stober method based on hydrolysis of

liquid precursors is applied to synthesize nanostructured

and microstructured silica [23]. Recent studies also ex-

plored the use of biomimetic synthesis approaches of

various oxides using soluble precursors in combination

with amines and peptide-based ligands [7,12,39–44].

Such nucleation and growth approaches enable control

over average particle size, as well as over the surface

chemistry and surface acidity (Figure 1) [9�,45–47,48�].
Experimental data show that silica surfaces, as a repre-

sentative example, exhibit wide variation in the area

density of silanol groups depending on synthesis and

thermal processing. Most glasses display about 4.7 SiOH

groups per nm2 [33]. Of these silanol groups, a major

fraction ionizes to siloxide groups (e.g. SiO� � � � Na+) at

pH values above �3, depending on surface chemistry,

pH, and ionic strength (Figure 1) [49�]. Further insight

into bulk and surface properties has also been obtained

from imaging techniques such as transmission electron

microscopy (TEM) and scanning electron microscopy

(SEM), X-ray and neutron diffraction, infrared (IR) and

nuclear magnetic resonance (NMR) spectroscopy, X-ray

photoelectron spectroscopy (XPS), as well as by extended

X-ray absorption fine structure (EXAFS) measurements

which yield elemental coordination numbers.

Molecular models for silicates and glasses
Computer simulation studies of silica and glasses

emerged in the 1980s, starting with work by Garofalini

et al. and Catlow et al. [50–53,54�,55–61]. The focus of the

first models was primarily on understanding bulk proper-

ties of silica and glasses. Since then, simulations of bulk

silica and glasses have been reported with several newer

potentials [11,49�,62�,63–77,78�]. Among them, the wide-

ly used BKS potential is a nonbonded potential suitable

for the simulation of bulk and mechanical properties up to

several 1000 K [54�]. The Pedone potential is an exten-

sion of this potential and suitable for silica glasses of

variable composition that contain sodium and aluminum

besides silicon dioxide (Figure 2) [71,79�]. The INTER-

FACE potential is a bonded potential that reproduces

surface properties and allows the simulation of interfaces

with water, biomolecules, and polymers (Figure 3)

[49�,80�].
www.sciencedirect.com
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Figure 1
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Surface structure of silica glasses and nanoparticles. (a) Range of the area density of silanol groups and metal siloxide groups per square

nanometer (shown for sodium siloxide). (b–e) TEM and SEM images of amorphous silica nanoparticles of different size from Stöber-type synthesis.

Silica nanoparticles of size 28 nm are less dense and poorly defined in comparison to spherical larger particles of 82, 210, and 500 nm size (from

Ref. [48�]). (f) Effect of pH and particle size on surface ionization (from Refs. [48�,49�]). Large nanoparticles contain Q2/Q3 surface environments

( Si(OH/ONa)2/BSi(OH/ONa) groups), medium sized and smaller nanoparticles contain mostly Q3 environments (BSi(OH/ONa) groups). The total

amount of SiO�Na+ groups per nm2 is shown at an ionic strength of 0.1–0.3 mol dm�3 (see original data in Refs. [9,21,24,30,38]).
From a fundamental perspective, the interatomic poten-

tials ought to mimic chemical bonding, dipolar interac-

tions, and van-der-Waals interactions that determine

cohesion, surface forces, and interfacial forces. Thereby,

the balance of covalent versus ionic bonding is essential

and described by atomic charges within the framework of

interatomic potentials [62�]. Multiple evidence has shown

that the Si charge in tetrahedral oxygen coordination is

+1.1e (�0.1e), that is, the Si–O bond is about 70%

covalent and 30% ionic. Nevertheless, widely scattered

atomic charges in the range of +0.5e to +4e for Si in

tetrahedral oxygen coordination are still common in cur-

rent force fields [11,54�,55,69,71,75,81–83]. Significantly

deviant atomic charges lead up to 500% deviations in

computed interfacial properties and compromise struc-

tural stability in the models as well [49�,80�]. When purely

nonbonded potentials are employed, for example, BKS

and Pedone, covalent contributions to bonding are

neglected and compensated for by higher charges, such

as +2.4e for Si, to maintain cohesion and avoid structural

collapse. Appropriately matched Lennard–Jones or other

compensating repulsive energy terms offset the excess
www.sciencedirect.com 
Coulomb cohesion. The advantage of the nonbonded

potentials is that bulk properties such as structures and

mechanical properties can be well reproduced, and dy-

namic reassignment of bonds, especially at high tempera-

tures, can be conveniently followed in molecular

simulations as terms for covalent bonding are not includ-

ed and thus do not require reassignments.

When surface and interfacial properties become of inter-

est, however, chemically realistic bonded potentials such

as in the INTERFACE force field need to be employed

[49�,78�]. The INTERFACE force field, including the

INTERFACE-CHARMM and INTERFACE-PCFF

implementations, includes the full range of surface chem-

istry of silica, pH dependent changes in silanol ionization,

and full mobility of all atoms. The appropriate area

density of SiOH groups and SiO� � � � Na+ can be imple-

mented in models according to the surface chemistry and

pH known from experiment. Binding of peptides and

polymers can be studied in aqueous solution at the 1–
100 nm scale including details of pH, ionic concentra-

tions, surface coverage, and sequence of biopolymers in
Current Opinion in Chemical Engineering 2016, 11:34–41
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Figure 2
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Structure of bulk glasses from molecular simulation. (a) Snapshot of a bioactive glass of the composition 46.2 SiO2 � 24.3 Na2O � 16.9 CaO �
2.6 P2O5 � 10 CaF2. Gray sticks represent the Si–O framework, green spheres represent Na, cyan spheres represent Ca, blue spheres represent F,

and violet tetrahedra represent the PO4 units (reproduced with permission from Ref. [79�]). (b) Snapshot of the structure of sodium trisilicate

(3 SiO2 � 1 Na2O) at 2100 K at a density of 2.2 g/cm3. The Si–O network is drawn by yellow (Si) and red (O) spheres that are connected to each

other by covalent bonds shown as sticks between Si and O spheres. The blue spheres that are in the vicinity of each other represent the Na

atoms, which align in channels that percolate trough the Si–O structure (reproduced with permission from Ref. [86]).

Figure 3

1 nmSi O
Na+ H

Q3, 50% Na+ (pH ~9)

Q3, 0% Na+ (pH ~3) Q3, 18% Na+ (pH ~7)

Q2/Q 3, 20% Na+

x

y

1 nm

N

C

Si O Na C
N S Cl

(e)

(b)(a)

(c) (d)

H

HH

Current Opinion in Chemical Engineering

Surface models of silica glasses in top view (a–d) and the structure of aqueous biological interfaces from molecular simulation (e). The model

surfaces represent different common surface chemistries and pH values. (a–c) Regular Q3 silica surfaces with 4.7 SiO(H, Na) groups per nm2 and

different amount of SiO�Na+ groups represent surfaces of typical glasses and silica nanoparticles (<200 nm size) at pH values of �3, �7, and �9. (d)

A regular Q2/Q3 silica surface with 6.5 SiO(H, Na) groups per nm2 and 20% ionization represents somewhat larger silica nanoparticles (>200 nm) at

pH 7. A higher area density of both SiOH and of SiO�Na+ groups then results in stronger adsorption of peptides (reproduced with permission from

Ref. [78]). (e) Snapshot of a silica-binding peptide (K(+)SLSRHDHIHHH(�)) adsorbed on a regular Q3 silica surface in aqueous solution in all-atomic

detail at pH �9 in side view. The location of N and C termini is highlighted. The peptide is mainly bound to the surface by Lys, Arg, Ser, and

sometimes His residues. Larger and smaller grooves on the Q3 silica surfaces are notable (reproduced with permission from Ref. [9]).
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correspondence with experimental data (Figure 3). A

limitation of the bonded potentials such as INTERFACE

is the difficulty to break bonds so that simulations of

phase transitions in silicate melts at high temperatures is

not easily possible [49�].

The study of both bulk and surface properties can thus

benefit from a synergistic combination of nonbonded-

only potentials and fully bonded potentials. The non-

bonded-only potentials can generate morphologies for

various temperatures and compositions that can serve

as an input for chemically accurate bonded potential with

realistic atomic charges and atom types to evaluate atomic

positions and surface properties. The BKS, Pedone, and

INTERFACE potential also use comparatively few pa-

rameters, allowing understanding of every parameter

through a chemical rationale and enable modifications.

Alternatives to simulate bond breaking are Morse poten-

tials and specific reactive potentials like ReaxFF [84,85].

Morse potentials are a straightforward alternative to sim-

ulate bond breaking with few parameters and can be

combined with established harmonic potentials for organ-

ic compounds [85]. Reactive potentials such as ReaxFF

involve parameterizations with numerous empirical terms

and adjustable parameters, posing more challenges to

interpret results and improve the potential if necessary

[84].

Bulk properties of glasses
Nonbonded potentials like BKS and Pedone made sig-

nificant contributions to understanding structure and

dynamics of glasses (Figure 2). The structure of a com-

plex silica glass containing sodium, calcium, and phos-

phate is shown in Figure 2a [79�]. The distribution of ions

in this material appears generally random. The composi-

tion including some Ca and P oxide was shown to support

the formation of collagen and hydroxyapatite when

implanted in the human body, and therefore the term

‘bioactive’ glass was coined. Structural details obtained

from the nonbonded potential somewhat depart from real

data obtained by spectroscopy (Si–O bonds were artifi-

cially added for visualization purposes). Simulations of

the structure of a sodium trisilicate melt at 2100 K

revealed the formation of sodium channels in the amor-

phous structure (Figure 2b) [86�]. The sodium trisilicate

stoichiometry of 3 SiO2 � 1 Na2O leads to a disrupted

framework of covalent bonds in silica with ionic contri-

butions from sodium. The presence of sodium oxide

within silica essentially breaks down the covalent net-

work of silica (SiO2) with coordination numbers of 4 and

2 into fragmented cross-linked rings. Thereby, every unit

of Na2O leads to the dissociation of a BSi–O–SiB bond into

two sodium siloxide fragments BSi–O� � � � Na+/Na+ � � �
�O–SiB. The remaining sodium ions then organize into

locally regular coordination patterns around the siloxide

groups and give the appearance of channels. Further
www.sciencedirect.com 
information from simulation of bulk glasses also includes

pair distribution functions and structure factors that can

be compared to experimental measurements [79�,86�,87].

Surface properties and selective adsorption of
biopolymers on glasses and oxides
Surface properties of glasses and silica depend on the

surface chemistry and solution conditions such as pH

(Figure 1) [21�,22–38]. The predominantly covalent na-

ture of bonding is then essential to conceive realistic

models, and suitable models for silica take into account

the area density of silanol groups and of siloxide groups, as

well as potential surface porosity (Figure 3). The design

of customized surface models as a function of particle

origin, thermal processing, and pH is described in detail

in Ref. [49�]. The selective adsorption of biomolecules,

drugs, and polymers strongly depends on such conditions

and can be quantitatively predicted with justified

assumptions of the surface chemistry and solution con-

ditions [78�]. The sequence similarity of attracted pep-

tides to the same glass surface at different pH, or for

different silica particle size is often rather low (<20%),

which illustrates the high impact of different surface

chemistry [9�,78�]. The amino acid sequence has a similar

impact on adsorption given the same surface chemistry

and pH, and specific binding energies as well as adsorbed

conformations have been explained using molecular

simulations. The mechanism of adsorption includes ion

pairing, hydrogen bonds, conformation effects, as well as

hydrophobic interactions [9�,78�]. The underlying reason

for major differences in adhesion observed in experiment,

when pH values or surface chemistry change, are shifts in

the mechanism of adsorption among the categories of ion

pairing, hydrogen bonds, conformation effects, and hy-

drophobic interactions. At high surface ionization (high

pH), ion pairing is dominant and adsorption mainly occurs

through cationic groups such as ammonium groups at the

N terminus or in lysine residues, as well as through

guanidinium residues in arginine (Figure 3e). The rest

of the peptide is often not in direct contact with the

surface as the hydration shells of ions on the ionic surfaces

keep other residues away. At lower degree of ionization,

hydrogen bonding and hydrophobic interactions gain

importance, and several functional groups can be found

in proximity to the surface. Near the point of zero charge,

when the surface is fully terminated by silanol groups,

hydrophobic interactions are dominant; then the residues

are adsorbed to the surface to avoid disruptions of the

network of hydrogen bonds in the aqueous phase [47,78�].
Conformation effects are also critical, especially for longer

peptides and for proteins. The stiffness of the backbone

and specific residue–surface interactions have an impact

on the binding energies.

Similar concepts also apply to other oxide surfaces.

Thermodynamically consistent force field parameters

and a chemically realistic implementation of the surface
Current Opinion in Chemical Engineering 2016, 11:34–41
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Figure 4
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Common oxide surfaces and the pH dependent surface chemistry. (a) Calcium carbonate. (b) Calcium trisilicate and initial hydration. (c)

Hydroxyapatite. (d) Titania. The changes in protonation state are related to pK values of the underlying acids (see text).
chemistry are necessary for accurate model predictions.

The force field parameters need to include chemically

justified atomic charges, reproduce the crystal structure of

a model solid including flexibility of all atoms, and at least

one surface property such as cleavage energy, hydration

energy, or surface tension in agreement with experiment.

Usually, with validation of one surface property, as it

relates to the energy of the classical Hamiltonian, other

surface and interfacial properties will be about equally

reliable, and secondary validation often shows that ther-

mal and mechanical properties (i.e. the first and second

derivatives of the energy) are also in good agreement with

experiment [80�]. The second major condition for mean-

ingful predictions of adsorption is the implementation of
Current Opinion in Chemical Engineering 2016, 11:34–41 
key aspects of surface chemistry (Figure 4). For example,

carbonates are often found as a biomineral, tricalcium

silicate is the major component in Portland cement,

hydroxyapatite occurs in bone and teeth, and titania

surfaces are used in optical materials. Major aspects of

surface properties are determined by the relevant pK
values of the present acids and bases (Figure 4). Even

though experimental data and fundamental chemical

knowledge have been available for decades, the inclusion

of realistic surface chemistry as a function of pH in

computational models is surprisingly recent [80�]. Calci-

um carbonate has been the subject of numerous experi-

mental and theoretical studies on biomineral formation

and simple acid-base theory indicates hydrogen carbonate
www.sciencedirect.com
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Figure 5
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Examples of polymer and peptide adsorption on silicate and phosphate surfaces. (a) Tobermorite 14 Å in contact with water and a polyacrylate

ester (16-mer) with two polyethylene oxide side chains (6-mer) at pH �12, used as a superplasticizer in Portland cement. (b) Adsorption of peptide

SVSVGGK on a hydroxyapatite (020) prismatic plane at pH �5. The peptide was identified by phage display and the S1 and V2 residues are

predominantly bound to this facet.
termination above pH values of 6, related to the pK values

of carbonic acid (H2CO3, pKa1 = 3.6 for H2CO3 only/6.3

including CO2(aq), pKa2 = 10.32) (Figure 4a) [88].

Computational and even many experimental studies to-

date still assume the exclusive presence of CO3
2� surface

termination [19,89–91], which is a severe (and likely

unintended) neglect of the impact by HCO3
� termination

on nucleation, ligand recognition, and crystal growth of

various calcium carbonate phases. Significant work

remains to be undertaken to truly understand and control

the underlying mechanisms. Models for silica and silicate

surfaces were recently introduced and correlate with

changes in protonation state near the pK values of the

underlying acids such as silicic acid (H4SiO4, pKa1 = 9.84,

pKa2 = 13.2 at 25 8C) (Figure 4b) [9�,49�,77,88]. Apatite

surface models as a function of pH are also very recent

(Figure 4c) [92,93]. The underlying pK values for phos-

phoric acid dictate the kind of phosphate species and Ca2+

area density found in the surface layers, further supported

by spectroscopic data on H2PO4
�/HPO4

� termination

(H3PO4, pKa1 = 2.15, pKa2 = 7.20, pKa3 = 12.32 at 25 8C)

[94,95]. Several prior simulation studies of hydroxyapatite

interfaces with water and biomolecules assumed phos-

phate termination that corresponds to pH >15 [96–102].

These conditions correspond to immediate cell death.

Physiological pH values of 5–6 such as found in bone are

more appropriate and remain to be studied in detail.

Surface protonation of titania is governed by a point of

zero charge near pH 5.5 (Figure 4d) [103�].

The examples show that experimental data for proton-

ation/deprotonation equilibria of oxide surfaces are well

known for many minerals and can be implemented in
www.sciencedirect.com 
models for simulations. Even if not available, chemical

analogies to similar compounds can provide guidance.

The inclusion of details of surface chemistry is essential

for predictive simulations of binding of polymers, drugs,

and guidance in nanomaterial design by simulation

(Figure 5). It has been shown that binding constants of

polymers and drugs vary over many orders of magnitude

upon changes in surface chemistry and are semi-quanti-

tatively predictable by molecular simulation using real-

istic models [78�,93]. Examples of ligand binding have

also been reported on metal nanostructures, including

mechanisms of facet recognition, crystal growth, shape

control, and reactivity in catalysis [104–111]. Simulations

can significantly advance the understanding of experi-

mental observations and guide in materials testing, as it

remains challenging to monitor surface species directly by

imaging techniques. Unprecedented understanding of

oxide interfaces in predictive molecular specificity and

atomic resolution at the 1–100 nm scale is becoming

accessible using more predictive force fields and surface

models.

Conclusions and perspectives
The capabilities of current nonbonded potentials to pre-

dict structural properties of glasses and silicates have

been explained, as well as the capabilities of chemically

realistic bonded potentials to predict surface properties

and specific binding of biomolecules. The computational

exploration of specific binding of peptides and drugs to

oxide surfaces, the simulation of composite materials such

as polymer/glass systems, collagen/apatite composites,

bone, cement materials, as well as mineralization mecha-

nisms of common oxide nanostructures has become fea-
Current Opinion in Chemical Engineering 2016, 11:34–41
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sible. Recent developments of chemically realistic sur-

face models that take into account experimental knowl-

edge of surface chemistry and pH dependent acid-base

equilibria remove a large barrier toward the predictive

study of nucleation, growth, and dissolution at the nano-

meter scale. Opportunities include the development of

accurate potentials for a broader range of important

inorganic compounds as well as of reactive potentials

for common chemical processes. The creation of a graph-

ical user interface to envelope expanding surface model

databases and force fields, as well as to automate the

generation of simulation input for inorganic–organic sys-

tems can benefit a broader user community and ease

modeling of many materials interfaces that remain un-

known to date.
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