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SHORT NOTE 

SELF-CONSISTENT SOLUTION OF THE REFLECTION DIFFRACTION PROBLEM 

L.D. MARKS and Y. MA 

Maierrals Research Center, Northwestern University, Evanston, Illinois 60208, USA 

Received 2 June 1989 

A general method of solving the reflection diffraction problem for high-energy electrons (and, in principle, also for X-rays) 

is described. The method exploits the multislice method of calculating electron diffraction in transmission through a crystal as 

an unconditionally convergent method of solving SchrGdinger’s equation for reflection electron diffraction. The method is 

self-consistent in that it necessarily converges with an internal consistency test. Examples are given for the use of the method 

to calculate RHEED patterns from the gold (110) 2 X 1 reconstruction and oxygen adsorbed on gold. 

1. Introduction 

Reflection high energy electron diffraction 
(RHEED) has a long history [l], but full exploita- 
tion of all the information available has not been 
possible due to the lack of good methods of 
calculating the diffraction patterns. Due to recent 
interest in reflection electron microscopy [2-41 
and use of RHEED as an in-situ monitor of 
processes such as molecular beam epitaxy [5,6], 
theoretical efforts to understand RHEED have 
increased recently. For instance, Peng, Wang, 
Cowley and co-workers [7,8] have developed a 
method based upon the multislice method with an 
incident top-hat wave, Maksym and Beeby [9] a 
scattering approach with the slice parallel to the 
crystal surface, and Zhao et al. [lo] a method 
using an invariant-embedding R-matrix scheme. 
In previous work [11,12], we have been using 
another approach which was based upon the Bloch 
wave method. In the process of this work and 
during efforts to combine the Bloch wave and 
multislice methods [13] an important theoretical 
result became apparent: the multislice approach 
to electron diffraction when used for reflection 
problems is, mathematically, identical to a Picard 
iteration [14] solution of Schrddinger’s equation 
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for the high-energy electrons. The multislice for- 
mulation due to Cowley and Moodie is given by: 

where P, and P, denote the phase grating and 
propagator respectively and * denotes the con- 
volution. When the crystal potential varies slowly 
in z axis on the range (to, z), (1) can be ap- 
proximated as: 

$(4? z> = [$G Z).P,(% z-z,,] 

* p,(q, z - ZIJ). (2) 

The solution of (2) can be solved by the Picard 
iteration method. Since Picard iterations are un- 
conditionally convergent, we therefore have, in 
principle, a general and simple method of solving 
for RHEED diffraction patterns; when a multi- 
slice RHEED calculation converges (as a function 
of thickness) the solution obtained is the true 
solution, ignoring any edge effects from the multi- 
slice numerical procedure. 

In this note we present numerical results using 
this approach with the output of a Bloch wave 
program as the initial trial solution. These results 
demonstrate that this approach can be used to 
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calculate RHEED from reconstructed surfaces and 
surfaces with adsorbates without problems, which 
promises to open up interpretation of RHEED 
patterns. A more detailed presentation of these 
results is in preparation. 

2. Numerical method 

Our initial trial wave was calculated by using a 
Bloch wave approach as discussed elsewhere 
[11.12]; we do not have to use this trial wave but 
clearly the better the initial guess, the faster will 
be the convergence. Tests of the convergence of 
the solution for perfect surfaces have been pre- 
sented elsewhere [13]; here we will only consider 
surfaces with reconstructions or adsorbates. This 
trial solution was then fed into a multislice pro- 
gram using, for the multislice, the potential of the 
modified surface. The output as a function of 
thickness was then analyzed to test the conver- 
gence of the method; in principle, this could be 
written into the program although we have not 
attempted this to date. All the results are for gold 
along [OlO] for a (001) surface and are for 100 keV 
electrons. The calculations were performed on an 
Apollo 3500 workstation (which uses a Motorola 
68030 chip), and each took about 6 h of CPU. 

3. Results 

Fig. 1 shows calculated RHEED patterns, as a 
function of thickness for 5 nm increments, and fig. 

Fig. 2. Calculated y-modulated RHEED pattern for a thick- 
ness of 607.2 A, i.e. the last pattern in fig. 1, all for the 2 x 1 

(001) reconstructed surface where, for simplicity, the surface 

relaxation is ignored. 

Fig. 3. Calculated y-modulated RHEED pattern where a 2 x 1 

monolayer of oxygen is adsorbed on the surface. at the thick- 
nest of 607.2 A. 

2 shows the _y-modulated RHEED pattern at the 
thickness of 607.2 A, i.e. the last pattern in fig. 1, 
all for the 2 X 1 (001) reconstructed surface where, 
for simplicity, we have ignored any surface relaxa- 
tions. It is apparent from both that by a thickness 
of about 60 nm the solutions have converged. 

As a second example, fig. 3 shows the calcu- 
lated y-modulated RHEED pattern where a 2 X 1 
monolayer of oxygen is adsorbed on the surface, 
which can be compared to the results in fig. 2 
where there is a 2 x 1 monolayer of gold recon- 
struction. Whereas the effect is weak, it is ap- 
parent that the chemisorption can be detected. 

4. Discussion 

We have shown here that it is now realistic to 
calculate RHEED patterns from reconstructed or 
other surfaces using a method which is intrin- 
sically self-consistent. There are some technical 
problems, and it would be wrong to ignore these 
although they are not intractable. Edge effects can 
lead to problems for thicknesses beyond about 60 
nm in the multislice approach, and if the solution 
has not converged by this thickness, the approach 
will not work. The seriousness of the effects is also 
related to the incidence angle and the size of 
beam. However, since the method only requires a 
trial solution, there is no reason why one cannot 
patch together the wave in the vacuum and over- 
come these edge problems. To date we have been 
able to avoid these problems by manipulating the 
cell size for the calculation. and this may be the 



easiest method to employ. The most important 
result is that we now can calculate RHEED using 
programs which are close to “turn-key”. 
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