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The dynamical diffraction explanation of spot splitting in reflection electron microscopy (REM) and reflection high energy 
electron diffraction (RHEED) is described within a Bloch wave formalism. The positions of the spots match exactly those 
measured experimentally and described previously using kinematical theory. Numerically calculated results for misoriented 
GaAs (001) and Pt(lll) surfaces are presented. 

1. Introduction 

The important  role of surface steps in areas 
such as chemisorption [1,2] and crystal growth by 
techniques such as molecular beam epitaxy (MBE) 
[3] is well known. One of the earliest and still most 
common methods of exploring surface steps is via 
their effects upon diffraction patterns in either 
low energy electron diffraction (LEED) or in 
RHEED.  A particularly simple case is when the 
steps form a regular periodic structure, essentially 
a vicinal surface, see for instance fig. 1. The pres- 
ence of an additional surface periodicity due to 
this step array leads to extra diffraction spots, 
most readily observable as a splitting of the single 
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Fig. 1. Comparison of the experimental configurations that 
lead to spot splitting in (a) transmission high-energy electron 
diffraction (THEED) and (b) RHEED, In (a) is shown the 
typical geometry for transmission through a wedge-shaped 

crystal, in (b) reflection from a vicinal surface. 

spot from a perfect surface into a number  of 
satellites, as well documented in both LEED [4-6] 
and R H E E D  [7] experiments. Pukite et al. [8,9] 
demonstrated that the spacing of these satellite 
spots could be well described using simple kine- 
matical theory, whilst Hsu and Cowley [10] have 
demonstrated in imaging R E M  experiments that 
the spot splitting was consistent with the presence 
of a periodic array of surface steps. However, 
while kinematical theory can very often correctly 
predict the presence and position of diffraction 
features, as a rule it is totally unreliable as far as 
the intensities are concerned, at least for electron 
diffraction. 

The intent of this paper  is to present a more 
rigorous dynamical diffraction explanation of step 
spot splitting. As we will show, the spot splitting is 
the reflection equivalent of what are often called 
refractive multiplets in transmission diffraction. In 
addition, we present calculated results for the 
intensities of the satellite spots for a number  of 
simple surfaces. 

2. Physics of spot splitting 

In order to understand the source of the spot 
splitting, it is important  to draw the analogies 
between transmission diffraction from a wedged- 
shaped crystal and reflection diffraction from an 
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Fig. 2. Illustration of Bloch wave matching using the dispersion 
surface for a wedge-shaped crystal in THEED. Matching be- 
tween the vacuum level dispersion (equal energy) surfaces 
which are shown at the bottom to two crystal dispersion 
surface, shown at the top along n 1 at the entrance surface and 
n 2 at the exit surface leads to a pair of outgoing spots. (With a 
more detailed analysis there is one satellite spot for each Bloch 
wave within the crystal.) It should be noted that the spot 
splitting depends upon both the wedge angle and the disper- 
sion surface structure, and as a rule a kinematical model gives 

incorrect results. 

array of steps. The basic point  is that  a s tepped 
surface (assuming mona tomic  steps) can be con- 
sidered as a bulk crystal cut at an angle to a " f la t "  
low-index plane, whilst a wedge crystal can be 
considered as a specimen cut on at least one 
surface at an angle to such a plane, see for in- 
stance fig. 1. (We are ignoring surface relaxations 
a round  steps, a point  which we will return to later 
in the d i s c u s s i o n . ) W i t h i n  a Bloch wave for- 
malism, which is equally valid in the transmission 
[11] and reflection geometries [12], we consider 
that  inside the crystal Bloch waves are excited 
which have to be matched across the en t rance /ex i t  
surfaces of  the crystal. In  transmission the wave is 
matched at bo th  the top (entrance) and the bot-  
tom (exit) surfaces, with reflection ignored in gen- 
eral; see fig. 2. In  reflection diffraction the re- 
flected waves are taken into account  when match-  

ing at the top surface, which is bo th  the entrance 
and exit surface as illustrated in fig. 3. 

To match  correctly the incoming wave above 
the crystal and the Bloch waves within, one has to, 
geometrically, draw lines normal  to the crystal 
surfaces f rom the incoming wave to the dispersion 
surface, and then lines again normal  to the exit 
surface out  to Ewald spheres for the diffracted 
beams as illustrated in figs. 2 and 3. (Details of 
the s tandard  dispersion surface analysis can be 
found  in numerous  texts and articles, for instance 
ref. [11].) In  t ransmission two sets of lines are 
drawn for the top and bo t t om surfaces respec- 
tively, leading to spot  splitting as experimentally 
and theoretically discussed by a number  of  authors 
[13,14]. In  reflection the entrance surface is also 
the exit surface, and spot splitting occurs if the 
surface is at an angle to a low-index flat surface or 
zone axis, by  a directly analogous process. (Creat- 
ing a surface cut  at a small angle to a flat surface 
is almost identical to a vicinal surface with an 
array of  surface steps and no surface relaxations; 
we will return to this point  in the discussion.) The 
relationship between the spot splitting and the 
misorientat ion of  the surface can be more  readily 
seen by  reference to fig. 3. F r o m  such a diagram 
the posit ions of  the spots can be indexed by the 
relationship 

dp:Lg = sin-1 [cos(0i q_ fleff)q: ~ s i n  f le f f ] ,  (1)  

ao ±g = sin-l [cos( Oi + flar ) -T- -~sin fl eff ] 

- (½~r - O i - f l ~ f e ) ,  ( 2 )  

where 

fl a ' =  t a n - l ( t a n / 3  cos ~ ) ,  (3) 

with q~ ± g the angle between the reflected electron 
beam and the surface normal,  a o ± ,  the angle 
between the specularly reflected beam and the 
reflected beam g, /3 the misorientat ion angle, ~/i 
the azimuthal  angle; and g refers to the part icular  
Ewald sphere onto  which the matching occurs. We 
have adopted  the no ta t ion  of indexing the satellite 
spots via the part icular  Ewald sphere that  they 
arise f rom with a subscript  " s "  to denote  satellite, 
and we are using the specularly reflected beam as 
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Fig. 3. Illustration of Bloch wave matching for RHEED in (a), with the relative geometry of the beams with respect to the surface 
shown in (b). Matching along ns, the surface normal, leads to satellite spots around each outgoing wave; for instance the spots ± g in 
the figure will appear as satellites around the specular beam. The satellite spots are indexed in terms of the vacuum dispersions 
surfaces from which they originate; for instance the satellite g in the figure is indexed as (g)s with subscripting to denote that these 

are satellite spots. 

the natural origin since, except at an exact Bragg 
condition, it does not correspond to any reciprocal 
lattice vector translation of the incident beam and 
its seems illogical to employ irrational indices for 
diffraction spots. Here fleff is the effective surface 
misorientation angle after taking the beam azimuth 
with respect to the Lane zone axis into account. 
This equation gives the same results as that de- 
rived using kinematical theory by Pukite et al. 
[8,9] if we define the specular beam as our origin; 
here we have derived it using dynamical theory. 
Using eq. (2) we can reproduce exactly the polar 
plot shown in fig. 2 of ref. [9] for the angular 
separation between the (200)s and (200)s spots 
versus the incidence azimuth angle for a fixed 
incident angle of 0 i = 65 mrad. Although it might 
seem obvious that the dynamical and kinematical 
theories should lead to the same spot positions, in 
fact this is not true; for transmission diffraction 
through a wedge crystal the spot positions are, in 
fact, different since they reflect the dispersion 
surface structure rather than simply the wedge 
angle alone as predicted by kinematical theory. It 

should be noted that in the dispersion surface 
analysis the additional spots are not a conse- 
quence of the additional surface potential due to 
the steps, as might be thought, but are instead due 
to the boundary conditions. 

Two points should be clarified here, the first of 
which is the specular beam position. One can 
straightforwardly show, using simple kinematical 
arguments, that the specular beam is reflected 
from the vicinal surface, not the low-index surface; 
this point is not clear in the analysis of Pukite et 
al. [8,9]. The difference between the two is, in fact, 
very small as a rule, but to obtain exact agreement 
with the experimental data it is important to take 
this into account. The second point concerns the 
validity of eq. (1) and fig. 3a if evanescent waves 
are excited in the crystal. The actual internal 
Bloch wave states excited, whether they are 
evansecent or travelling, do not enter into the 
momentum conservation law which allows us to 
draw fig. 3a; for a perfect crystal without inelastic 
scattering there is no mechanism for momentum 
transfer normal to the surface (ignoring HOLZ 



lines), and the only role that the Bloch wave states 
in the crystal have is in determining the relative 
amplitudes of the diffracted waves. 

The above explanation of the source of the spot 
splitting does not, of course, specify the intensi- 
ties; for this we require a dynamical calculation 
which we turn to in the next section. 

3. Numerical results 

a 

Numerical results were calculated using a Bloch 
wave diagonalization method which has been de- 

scribed in detail elsewhere [12,15]. The presence of 
a vicinal surface was included in the calculations 
by using a surface cut at an angle to the zone axis 
of the crystal. (It should be noted that this ignores 
any effects due to surface relaxations around steps 
and only includes single atomic steps.) The results 
of the Bloch wave diagonalization calculations 
were transferred to standard imaging programs 
written at Northwestern operating on Apollo 
workstations, and these programs were used to 
produce both real space images and diffraction 
patterns via interfacing to a suite of image analy- 
sis routines; the details of these routines are not 
relevant to the results presented herein. 
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Fig. 4. Simulated RI-IEED patterns for a GaAs (001) surface with the incident beam near to [010] and a glancing angle of 2.4 ° 
without any absorption: (a) diffraction pattern and (b) y-modulation representation of the same. In (a) some of the stronger satellite 

spots are indexed. 
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Fig. 5. Simulated RHEED patterns for a GaAs (001) surface for the same conditions as in fig. 4 but with a vicinal surface 2.5 o off 
(010) zone axis: (a) diffraction pattern and (b) y-modulation representation of the same. In (a) some of the stronger satellite spots are 

indexed. 

As an example of the effect of an inclined 
surface, fig. 4a shows a simulated RHEED pattern 
from a perfect GaAs (001) surface for 100 keV 
electrons with the beam azimuth along [010] and a 
glancing angle of 2.4 o without any absorption. In 
the calculation only the zero-Laue-zone Fourier 
coefficients of the potential have been included, so 
that only a single semicircular pattern from the 
zero-order Laue zone occurs. Fig. 4b shows a 
y-modulated presentation of the same data as in 
fig. 4a which shows just single peaks. (In these and 
all the subsequent y-modulation graphs the finite 
width of the diffracted beams is due to the 

numerical representation, and the scale is saturated 
so that the weaker peaks can be more readily 
seen.) In this and all subsequent y-modulation 
graphs the well separated peaks correspond to the 
satellite spots. For comparison, fig. 5 shows the 
results for the same relative orientation, but now a 
vicinal surface 2.5 ° off (010) zone axis. Spot split- 
ting occurs because of the surface misorientation, 
and the spots are also slightly streaked normal to 
the surface. The pattern changes from a semicircle 
to an intensity distribution in two dimensions. (It 
should be noted that the intensities of some of the 
satellite spots are so low that they are not ap- 
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Fig. 6. y-Modulated simulated RHEED patterns for the same conditions as for fig. 4 except for incident angles of 27 and 50 mrad in 
(a) and (b), respectively. 

parent in the figures.) The pattern also shows that 
each reciprocal rod has two strong spots, which is 
consistent with experimental data [7-10]. 

Eq. (2) also indicates that the spacing between 
the spots increases as the incident angle is re- 
duced: This is demonstrated in fig. 6 which shows 
y-modulated images for the same conditions as fig. 
4, except that in fig. 6a it is 27 mrad, and in fig. 6b 
50 mrad. The variation in the spot splitting is 
quite obvious. 

The separation of the spots decreases with the 
surface misorientation angle, until for a flat surface 
the spots overlap [13]. The beam azimuth changes 
the effective misorientation angle, i.e. the farther 
off the zone axis, the smaller the effective miso- 

rientation angle, as observed experimentally [7-9]. 
To demonstrate this point, figs. 7a and 7b show 
y-modulated images for the same diffraction con- 
ditions as figs. 6a and 6b, respectively, but with an 
azimuthal angle of 1 °. The spacing between the 
spots in figs. 7a and 7b is obviously smaller than 
in figs. 6a and 6b. 

The results above for GaAs show the general 
trend of the results. However, it may be hard to 
match these experimentally because we are ignor- 
ing phenomena such as surface relaxations. We 
have therefore calculated results for a simpler 
surface which is known to have little to no surface 
relaxation, a Pt (111) surface close to a [211] zone. 
Fig. 8 shows the ratio of the specularly reflected 
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Fig. 7. y-Modulated simulated RHEED patterns for the same conditions as in figs. 6a and 6b, respectively, with a change of the 
azimuthal angle to 1 o. 

beam to the (333)s beam as a function of different 
azimuthal for a fixed surface misorientation angle, 
no absorption and 10% absorption. The (333)s 
beam here is that produced by matching onto the 
(333) Ewald sphere, as described earlier in the 
text, with the origin taken as the specularly re- 
fleeted beam (see eqs. (1)-(3) for the position of 
the spots). The Pt(111) surface is believed to have 
very small to no surface reconstruction and is 
therefore a good test case. There are two obvious 
features in fig. 8a: (1) the intensity ratio for the 
case with no absorption is generally lower than 

that with 10% absorption, which means that ab- 
sorption reduces both the total diffraction inten- 
sity and the relative satellite spot intensities; (2) 
the intensity ratio is lowest at the zero azimuthal 
angle both with and without absorption. The vari- 
ations in the intensity ratio about zero azimuthal 
angle is possibly related to surface resonance, 
although this merits further exploration. Fig. 9 
shows a graph of the same ratio as the function of 
the incidence beam angle for zero azimuthal angle 
with a fixed misorientation angle and no absorp- 
tion. The curve shows that the intensity ratio 
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Fig. 8. Plots of the ratio of the intensity of the speculaxly 
reflected beam to the (333)s beam as a function of azimuthal 
angle for a fixed azimuthal angle, above with 10% absorption 

and below without absorption. 

increases sharply when the incidence angle is close 
to zero, which means that the satellite spots can 
barely be observed at small angles. (All the calcu- 
lations are for 100 kV electrons.) 
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Fig. 9. Plot of the ratio of the intensity of the specularly 
reflected beam to the (333)s beam as described in the text for a 
fixed ~Timuthal angle as a function of the incident glancing 

angle. 

4. Discussion and conclusion 

The results that we have obtained are very 
encouraging in terms of understanding spot-split- 
ting effects; for instance, we have found that in 
general there are two strong spots, which is quali- 
tatively in agreement with experimental results 
[7-10]. At the same time we should acknowledge 
that some phenomena are not included in our 
calculations. First, we have only discussed regu- 
larly distributed surface steps, and there will quite 
often be irregularly distributed steps on any given 
surface. The effect of irregularly distributed surface 
steps on the diffraction pattern is hard to analyze 
exactly theoretically, but  to first order should be 
equivalent to an incoherent sum of different 
stepped surfaces, summed over the probability of 
finding in any given micro-region a given step 
separation. This will lead to streaks in the diffrac- 
tion patterns normal to the surface. Secondly, we 
have not included any effects due to surface re- 
laxations or strain fields around steps; in principle 
there can be a relaxation of the surface stress 
around a step which can lead to atomic displace- 
ments, which we can consider as a strain field. The 
presence of such a strain field will alter the dif- 
fraction to a small but  significant extent. In ad- 
dition, there will also be an effect due to dif- 
ference between the potential cut that we have 
used herein and a potential which is allowed to 
slowly decay into the vacuum. However, it should 
be noted that some preliminary calculations [16] 
indicate that this has only a minor effect on the 
diffraction pattern intensities. This is understan- 
dable since high-energy electron diffraction is only 
really sensitive to the core potential, not the weak 
interatomic potential which is what is being 
changed by the precise form of the surface poten- 
tial. Finally, we have not here considered images 
of steps as obtained in REM images. In principle 
these can be calculated from the Bloch wave ap- 
proach, but  we suspect that the long-range strain 
field around a surface step will contribute sub- 
stantiaUy to the image contrast; this will be dis- 
cussed elsewhere. In general, we think that this 
theoretical development gives a clear dynamical 
method of understanding spot splitting and re- 
lated phenomena in the RHEED,  although its 
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a p p l i c a t i o n  to real  e x p e r i m e n t a l  surfaces  r e m a i n s  
to be  tested.  
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