
Phase Transitions, 1993, Vol. 44, pp. 235-254 
Reprints available directly from the publisher 
Photocopying permitted by license only 

0 1993 Gordon and Breach Science Publishers, S.A. 
F’rinted in Malaysia 

PHASE TRANSITION IN METAL OXIDES 
UNDER IRRADIATION 

V. A. VOLPERT*, L. D. MARKS and R. A1 

Center for Surface Radiation Damage Studies, 
Department of Materials Sciences and Engineering, Northwestern University, 

Evanston, IL 60208 

(Received 16 September 1992) 

A model to describe experimental results on phase transitions in vanadium oxides was suggested recently 
by Marks, Volpert and Ai (1992). This work is devoted to a more detailed analysis of the model. An 
analytical approach to the problem based on a quasistationary approximation is used to find the 
distribution of the concentration and the interface velocity. A multiplicity of modes of the interface 
propagation is shown to be possible depending on the kinetics of the phase transformation. The stability 
of the interface to small perturbations is studied. Two-interface propagation is also considered. 

KEY WORDS: Electromicroscopy, irradiation, metal oxides, interface propagation. 

1 INTRODUCTION 

There are many experimental results which show that surface radiation damage can 
lead to a transformation of maximal valence transition metal oxides into lower oxides 
or metals (DIET I, 1983). A special experimental method involving high resolution 
electron microscopy provides the possibility of studying the kinetics of the process 
(Marks, 1983; Marks and Smith, 1984; Singh and Marks, 1989; Ai, Fan, Stair and 
Marks, 1990). In some cases, phase transition routes are rather complicated and 
depend on the intensity of the electron flux (Ai, Fan and Marks, 1992). In particular, 
more than one interface can propagate into a sample from the surface. Phase 
separation in the bulk due to precipitation was also observed. 

A theoretical description of the process was given recently (Marks, Volpert and 
Ai, 1992). Comparison with experimental data showed that the model, though rather 
simplified, reflected the main features of the experiments. In this paper we continue 
the theoretical investigation. We begin with a brief description of the process and 
recap the model and results of the previous study. Then we apply an analytical 
approach to the problem based on a quasistationary approximation (Section 2). 
Section 3 is devoted to an analysis of the interface stability. Finally, two-interface 
propagation is considered in Section 4. 

Schematically, phase transitions in metal oxides under irradiation can be re- 
presented in the following way. There is an electron flux which is perpendicular to 
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the surface of a sample. It leads to a loss of oxygen from the material, probably 
oxygen ions due to a process such as interatomic Auger decay (see Knotek and 
Feibelman, 1978a, 1978b). The oxygen loss occurs only from the profile edge (side 
surface). (Experimentally, if new phases were formed at  the top and bottom surfaces, 
this would have been readily visible.) The exact reason why the loss occurs primarily 
from the side surface is still unclear, but is probably due to the dipole polarization 
normal to the electron beam of energy losses with high energy electrons. The loss of 
oxygen in effect creates oxygen vacancies at the surface which can diffuse into the 
material. At some level of oxygen deficiency a phase transformation to a lower oxide 
takes place at the side surface, and the interface appears near it and propagates into 
the sample. This first phase transition can be followed by others. 

To describe the process, we consider a simplified model which includes diffusion 
of oxygen in the bulk and movement of the interface. The interface movement can 
be determined by the balance of mass on the interface and by two additional relations 
connected with the kinetics and thermodynamics of the phase transition. The values 
of the concentration on the interface and the interface velocity can then be obtained. 

Thus we consider the free boundary problem 

au a2u 

at ax2 
- = D -, 0 < x < At), y( t )  < x < L 

Y’ = f b . 9  u - )  

t = 0:  u = uo. 

Here u is the concentration of oxygen, D the diffusion coefficient, h a constant which 
characterizes the loss of oxygen through the side surface and which is supposed to 
be proportional to the value of the electron flux, uo an initial concentration of oxygen, 

and y’ = dy/d t .  The notation At) f 0 means that the limit is taken, as x tends to y( t )  
from the right or the left. Condition (1.3) gives the balance of mass on the interface. 
(1.5) is a kinetic equation. Condition (1.4), which is necessary to have a well-posed 
problem, is given here in a general form. We specify the functionsf and g below. We 
note that the conditions on the interface we consider here is close to those considered 
by Gurtin and Voorhees (1992). 
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To complete the formulation of the problem we should put a condition on the 
interface appearance. We denote by y o  the critical nucleus size and suppose that the 
interface appears for t = to if u(yo, to) = ue. We have 

In two-interface propagation the conditions on the second interface and of the second 
interface appearance are similar. 

The problem under consideration was studied numerically by Marks, Volpert and 
Ai (1992) for linear kinetics and an impenetrable interface (see Section 2). It was 
shown that one interface propagation occurred for high values of the electron beam 
intensity (large h). For low values of the electron flux the appearance of the first 
interface accelerated the appearance of the second. Then the presence of the second 
interface led to a decrease of the first interface velocity, they merged and the 
intermediate phase disappeared. These results were in accordance with the experi- 
mental data (Ai, Fan and Marks, 1992). 

We begin the analytical investigation of the problem with one-interface propaga- 
tion. 

2 ONE-INTERFACE PROPAGATION 

Conditions on the interface 

Consider the diffusion equation written in the moving frame such that the interface 
is located at the origin: 

av a2u au 

at ax2 ax 
- = D - + c - ,  - y ( t ) < ~ .  

Here c = y'(t). The boundary conditions have the form 

au 
ax x = -y(t): - = j u  

x = O : D ( * I  ax - o  - * I  ax + o  ) = c ( u + - u - ) .  

To specify (1.4), we consider the interface with a non-zero width located in the 
interval 1 < x < 0. Diffusion of oxygen inside the interface is described by the 
boundary value problem 

a U  a 2 v  au _ -  - D i - + + - - - ,  - I < x < O  
at a x 2  ax 

d- l ,  t )  = u-( t ) ,  40, t )  = u+(t). 



238 V. A. VOLPERT, L. D. MARKS AND R. A1 

Here Di is the value of the diffusion coefficient inside the interface. Using a 
quasistationary approximation we can find the concentration profile 

From the matching conditions at x = 0 

we have 

This equality determines the function g in (1.4). For the limiting case of small D j  
(2.5) has the form 

This is the case of an impenetrable interface. Another possible limiting case is 
that of a small interface velocity. In this case we have 

where d is a constant. 
We proceed now to the kinetic equation (1.5). Since we do not consider vacancies 

and interstitials in the model, as well as specific features of the original and the new 
crystal structures, the kinetics of the transition from the higher oxides to the lower 
oxides should be determined by the function f only. We assume that the reduction 
rate is a function of the concentration of oxygen on the interface, or, more precisely, 
of the deviation of the concentration from some equilibrium value 4 = u, - us. Here 
u, is the equilibrium concentration and v, the mean value of the concentration on 
the interface. We take for simplicity us = 0.5(v+ + v - ) .  The rate of the reduction is 
supposed to be zero when the oxygen concentration on the interface is rather high, 
and the two phases are in equilibrium, and it increases with decreasing oxygen 
concentration. An example is linear kinetics when f(q) = kq. The second possible 
assumption about the kinetics is that the reduction rate can be decelerated by the 
products of the reduction. This is a well known effect for heterogeneous reactions and, 
in particular, for phase transformations in metal oxides (King, 1989). In our model 
we can take this effect into account assuming that the reduction rate is small for 
small values of the oxygen concentration on the interface (for large deviations from 
the equilibrium value). We consider a model function f of the form 

f(q) = kq"e-mq 

which reflects the specific features of the kinetics described above. Obviously, we have 
linear kinetics when n = 1, m = 0. 
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Linear Kinetics 

We consider the problem (2.1H2.3), (2.5), (lS), (2.6) with a linear function5 To find 
the solution analytically we apply a quasistationary approximation. We suppose that 
the concentration D(x, t )  to the right of the interface is equal to the initial value of the 
concentration 

u(x, t )  = uo, 0 I x I L - y(t), t 2 0. 

This is the case for an exact solution of the problem if the critical nucleus size y o  is 
zero. 

We assume that the interface location and its velocity change slowly, so that the 
concentration profile can be found as a stationary solution of (2.1H2.3). This 
approximation can be used if the characteristic diffusion time y2 /D  is much less than 
the characteristic times of the changing of the interface location and the interface 
velocity : 

YZ Y Y 2  Y’ - <-, - <--. 
D y’ D y” 

In this case we have from (2.1H2.3) 

(2.9) 

For linear kinetics (n = 1, m = 0) 

(2.10) 

A simple analysis of (2.10) shows that if u, > uo then y’ - k(u, - uo) and condition 
(2.8) is not satisfied. If uo > 2u, then there are no solutions with positive velocities. 
We consider now the case when u, < uo < 2 4 .  Then the interface velocity tends to 
zero as time increases and 

Condition (2.8) is satisfied if 

(2.1 1) 

(2.12) 

or uo is close to 224,. 
Condition (2.12) provides the applicability of the quasistationary approximation 

for large time. We can consider another case when (2.8) is also satisfied. This is the 
case of small y. Replacing (2.10) by 

(2.13) 
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Figore I Location of the interface versus time: 1, 2-xperimental results, 3, 4-numerical simulations; 
1-flux 5.5 A/cm2, 2-2.0 A / m 2  (from [l]). 

we can find the interface velocity explicitly as 

E = - l + J l + a .  

Here 
-, C Dhk(2t.4, - uO) 
c =  , a =  

Dh + k(u0 - u,) (Dh + k(u, - u , ) ) ~  ' 

If a G 1 then we have approximately 

k(2ue - ~ 0 )  

y'=2(1 + $ ( u , - u e ) ) ,  

We see that if k(uo - uJDh << 1 then the interface velocity depends on h (or the value 
of the electron beam intensity) weakly, and this is the case for the experimental results 
(see Figure 1). 

The approximation of a constant interface velocity, developed above, is an 
intermediate asymptotic, when the velocity does not depend on the initial conditions, 
but the velocity decrease is still negligible. This approximation reflects the specific 
behavior of the experimental curves and of the numerical solution of the whole 
problem (Figure 1). 
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We note that the approximation gives a good description only for the second part 
of the experimental curve. The same is true for simulations of the whole problem 
(see Marks, Volpert and Ai, 1992). We recall that all the analysis above is fulfilled 
for linear kinetics. To give a better description of the experimental results we proceed 
now to more general kinetics where rn and n are arbitrary. 

Nonlinear kinetics 

The applicability of the approximation of a constant velocity is determined only by 
the condition (2.8), and it does not depend on the kinetics of the phase transformation. 
Thus we can apply it not only to linear kinetics but to any other kinetic function. 
We have 

c = f(u, - f ( u o  + u-) ) .  (2.14) 

Here c is the interface velocity, u-  = u(0, t) and can be found from (2.9) 

1 
I(- = uo 1 ( 1 + c/Dh)* 

Thus (2.14), (2.15) give an equation for c. Denoting 

q = u, - f (u0  + u-  1, 

we have 

(2.15) 

(2.16) 

This equation can have one or more solutions depending on the value of the 
parameters. We now find the conditions for non-uniqueness of the solutions. 
Equation (2.16) can be rewritten in the form 

b(& - 1)  = wne-.pw, (2.17) 

where a, b, p, w are dimensionless parameters 

UO 
a = 2 - ,  

UO 

There are 4 parameters in Eq. (2.17). In the corresponding 4-dimensional space there 
are different regions which correspond to different numbers of solutions of (2.13). 
These regions are separated by surfaces which are determined by two equations. 
One of them is (2.17), and the other one we obtain as an equality between the 
derivatives of the left-hand side and the right-hand side of (2.17) with respect to w :  

(n - PW). (2.18) W n  - 1 - pw - b  ~ - 1 
(w + a)2 - 
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From (2.17), (2.18) we have 

- w  = (w + ax1 - a - wXn - pw). (2.19) 

We now look for solutions of (2.13) in the interval 0 < w < I - a. If (2.19) does not 
have a solution in this interval, then (2.17) has only one solution for all b. If there 
are two solutions of (2.19) for some values of a, n, p then on increasing b, we intersect 
the surface which separates the regions with one solution and the region with three 
solutions twice. This means that, if for small b, (2.17) has one solution, then for b in 
some interval this equation has three solutions, and it has again only one solution 
for large b. Figure 2 shows a graphical solution of (2.17) for different values of the 
parameters. 

Thus a non-uniqueness of solutions of (2.17) occurs if (2.19) has solutions in the 
interval 0 < w < 1 - a. There are three parameters in this equation and, as above, 
there are different regions in the 3-dimensional space with a different number of 
solutions. In this case these regions can be found explicitly. To do this along with 
(2.19) we should consider again the equation which is obtained by differentiation of 
(2.19). Excluding w from them, we have an equation which determines the boundary 
of the regions. However, this equation is too awkward. Thus we consider here some 
limiting cases. We note that 0 < a < 1, n =- 0, p > 0, and n / p  < 1 - a. This last 
inequality implies w < 1 - a. 

The first limiting case we consider is a = 0. In this case (2.19) has two solutions if 

n > p + 2 &  or n < p - 2 &  

Only the second solution satisfies the condition on the parameters presented above. 
The second limiting case is when a = 1. Then n = 0 and p is arbitrary. Finally, 

if n = 0 then again from (2.19) we find that this equation has two solutions for p > 4. 
Thus we can describe now the domain in (n ,p ,a )  space where (2.19) has two 

solutions in the interval 0 < w < 1 - a, or, the same, (2.17) has three solutions for 
some values of b. First of all it is located in the region 

o < a < 1, p 2 4,0 < n < p - 2&. 

Furthermore, for any positive n and a between 0 and 1 the multiplicity of solutions 
of (2.17) can occur for all p large enough. 

Thus we can make the following conclusions. The asymptotic behavior of the 
solutions of (l.lH1.6) for large time does not depend on the kinetics of the phase 
transformation, and is unique. The behavior of the solutions for finite time can be 
described by the approximation of a constant velocity of the interface, and is 
determined by the kinetic function. In particular, there can exist one, two, or three 
modes of interface propagation with different velocities for the same values of the 
parameters. The multiplicity of solutions takes place in the case of strong deceleration 
of the reaction rate by the products of the reaction. If the kinetic parameters are 
taken is such a way that the multiplicity can occur, the number of solutions is 
determined by the value of the product Dh of the diffusion coefficient and the constant 
which characterizes the intensity of the electron flux. If it is large there is only one 
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Fm 2 Graphical solution of (2.17), a = 0.5, n = 1. (a) p = 15, 1. b = 0.005, 2. 0.02, 3. 0.034, 4. 0.05; 
(b) p = 7, 1. b = 0.05, 2. 0.1, 3. 0.15. 
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solution with a small velocity (see Figure 2a). Decreasing Dh leads to a velocity 
increase. Then for a critical value of this quantity two more solutions appear. They 
coincide if the values of the parameters are equal to the critical ones, and they are 
different for the smaller values. Further decrease of Dh causes the disappearance of 
the solutions with small and intermediate velocities. 

We return now to a comparison of the experimental and theoretical results. The 
experimental curves have two parts. On each of them the interface velocity is close 
to a constant, but first its value is small and then increases. The model (l.lH1.6) 
with linear kinetics gives an interface velocity close to a constant. This is a good 
approximation to the second part of the experimental curves, but does not describe 
the first one. If we consider now non-linear kinetics with deceleration of the reaction 
rate by the products, then a multiplicity of the modes of the interface propagation 
can occur. If this is the case and there are three modes for the same value of the 
parameters then the two with the largest and smallest velocities are stable, and the 
intermediate node is unstable (see the next section). This unstable solution has stable 
and unstable manifolds. Solutions approach the quasistationary solution along the 
stable manifold and move away from it along the unstable one. Therefore, if at some 
time a solution is close to the stable manifold, it will approach the unstable 
quasistationary solution, and the interface velocity will be close to the velocity of the 
interface for the intermediate solution. Then after some time the transition to the 
stable solution will occur, and the interface velocity will change. This behavior is 
similar to what was observed experimentally. 

One more experimental result which confirms the explanation above is connected 
with the dependence of the interface velocity on the parameters. Increasing of the 
value of Dh leads to an increase of the interface velocity for the unstable intermediate 
solution. If we compare now the experimental curves which correspond to the values 
of the electron flux 2.0 A/cm2 and 5.5 A/c,’ (Figure l), we see that the interface velocity 
on the first part of the curve is greater in the second case when the values of the 
diffusion coefficient and constant h are greater (see Marks, Volpert and Ai, 1992). 

We note that the multiplicity of stationary modes is well-known for chemical 
reactors and combustion processes (see Zeldovich, Barenblatt, Librovich and Makh- 
viladze, 1985; Khaikin and Khudyaev, 1979) where it is caused also by an interaction 
of reaction and diffusion processes. 

3 LINEAR STABILITY ANALYSIS 

Stability of an interface to small perturbations can be studied by linearization of the 
problem on a stationary solution and investigation of the location of the eigenvalues. 
Such analysis has been performed for different phase transition problems (see, for 
example, Christian, 1981; Weeks, Saarloos and Grant, 1991). Phase transitions in 
metal oxides under irradiation have some specific features connected with the type 
of boundary conditions and the conditions on the interface. Moreover there is no 
stationary solution for the problem under consideration, and we will instead linearize 
it on the quasistationary solution which was found in Section 2. 
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Consider a two-dimensional formulation of the problem 

Here z is the second spatial variable, <(z, t) the location of the interface. We suppose 
that the functionfdepends on the difference u, - u- , where u, is an equilibrium value 
of the concentration. 

We can write a solution of (3.1H3.5) in the form 

5 = E exp(ot + ikz), u = us + V’ exp(wt + ikz), (3.6) 
where w is an eigenvalue, k the wave number, us the quasistationary solution, V’ 
a small perturbation, E a small parameter. Substituting the expression for u from (3.6) 
into (3.1), we have 

DV’ + CY - (W + Dk2)C = 0. 

Thus 
q.9 = c1 exp(p,x) + c2 exp(p2x), -Y < x < t, 
4x)  = c3 exp(plx) + c4 exp(p2x), 5 < x < L, 

where 

From the boundary conditions (3.2H3.5) we conclude that c3 = c4 = 0 and u E uo 
for x 2 5. 

We obtain from (3.2H3.4) 

Y( -y)  = h 4 - y )  

Da(0) = -c6(0) + &W(U(J - U,(O)) 

EW = f ’ ( U S ( 0 ) ) ( & U ~ O )  + C(0)) 

We note that this system of equations is not solvable in the casef’(vJ0)) = 0. This 
means that there are no eigenvalues with a positive real part in this case and the 
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solution is stable. If f’(uJ0)) # 0 then the system can be written in the form 

E l  + E2 = E(& - 1) 

ic‘,(d - 1) - iE2(1 + d) = -(Zl + Z2) + ER 

El(d - 1 - &)exp((l - d)s) - E2(l + d + h)exp((l + d)s) = 0 

(3.7) 

(3.8) 

(3.9) 
Here 

C - Dh cy 
20  

h = 2 -, s = -. a =  f ’ (uAW00 - uA0)) ’ C 

The condition of nontrivial solvability of (3.7H3.9) with respect to c,, c2, E gives 
an equation for SZ 

(d - 1 - h)[(d - 1)A + 2 4  = (d + 1 + i ) [ ( d  + 1)A - 2Q] * exp(2ds), (3.10) 

Here A = aS2 - 1. The interface is stable if the real part of R is negative for all 
k, and it is unstable if R lies in the right half plane of the complex plane for some k. 
If R has zero real part then (3.10) gives the stability boundary. It corresponds to 
cellular instability if R = 0, h # 0, and to oscillatory instability if R = i4, 4 # 0. 

We recap that (3.10) is obtained by linearizing the problem on a quasistationary 
solution which is obtained under the assumption cy/D -4 1. To have the stability 
analysis consistent with the quasistationary analysis we should put in (3.10) s = 0. 
In this case equation (3.10) can be solved explicitly as 

i ; + 2  
u(Z + 2) - 2’ 

R =  (3.11) 

It follows from (3.11) that the interface is stable for f ‘  < 0. In particular, this is 
the case for linear kinetics. The condition for instability of the interface is 

2 
a>ac=-  

i i + 2  
(3.12) 

It was shown in the previous section that a multiplicity of solutions can occur, 
and for some critical values of the parameters two solutions appear or disappear. The 
usual situation is that for critical parameters the linearized system of equations has 
zero eigenvalue. But we see from (3.11) that there are no zero eigenvalues for any 
values of the parameters. Formally there is one forf‘(uJ0)) = 0 but (3.10) is obtained 
when this derivative is not equal to zero. When it equals zero all the eigenvalues are 
negative (see above). In our case the solutions bifurcate not for zero for for an infinite 
eigenvalue. To show this we should differentiate (2.14) with respect to c (u is given 
by (2.15)). This equation defines the parameters when two solutions merge, and it 
coincides with (3.12). From this we can conclude that the solution with a large 
interface velocity is stable, and an intermediate one unstable. Indeed, we know that 
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Figme 3 High-resolution image showing the roughness of the V,O,/V,O, interface. The image was 
taken along the [Ool] zone axis after about 15 min electron irradiation at a beam flux < 1.5 A/cmz. 

the solutions with f’(u,(O)) I 0 are stable, and they change their stability when the 
denominator in (3.1 1) changes sign. 

Thus if an initial condition is close to a mode with an intermediate velocity, then 
the solution can stay close to it for some time, and then a transition to a stable 
quasistationary solution occurs. Such behavior is in accordance with the experimental 
data (see Section 2). We note also that the positive eigenvalue does not depend on 
the wave number. If we consider a sample bounded in the z direction, then a discrete 
set of wavenumbers is determined by the boundary conditions. This means that a 
cellular instability, when the interface is curved and its shape and velocity are 
constant, can also take place. The experimental results show that such phenomena 
can occur for a phase transformation in metal oxides under irradiation (Figure 3). 

4 TWO-INTERFACE PROPAGATION 

We have considered above the case of one-interface propagation. However, the 
experimental results show that two and three interfaces can propagate into a sample 
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one after another (Ai, Fan and Marks, 1992). This section is devoted to two-interface 
propagation. We consider the diffusion equation written in the moving frame, such 
that the second interface is located at x = 0, and denote by s the distance between 
the interfaces. Thus we have the following formulation of a free boundary problem 

au a20 au 
at ax2 ax 
_ -  - D ~ + C Z  - , A t )  < - X  

au 0 
x = -At): - = h ax 

dY 
- = c2 
dt 

ds 
- = c1 - c2 
dt (4.7) 

Here i = 1,2 and index 1 corresponds to the first interface, index 2 the second, 
+ and - mean that the value of the quantity from the right or from the left of 

the interface are taken. 
We obtain from (4.1), (4.3), (4.4) 

(4.9) 

This is a more general form of mass balance. If (4.3) gives the balance of mass 
on the interface, then (4.8kbetween the interfaces, ( 4 . 9 t o n  the interval to the left 
of the second interface. If we consider an exact solution then the problems (4.1H4.7) 
and (4.1), (4.2), (4.4H4.9) are equivalent. But for approximate solutions they can give 
different results. 

We proceed now to the construction of an approximate analytical solution. The 
main assumption here is that 

(4.10) 

We note that it is in accordance with the real values of the parameters (Marks, 
Volpert and Ai, 1992). (4.10) means that the characteristic diffusion time is much less 
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than the characteristic time of variation of the interval length. This allows us to apply 
a quasistationary approximation but, contrary to (2.4), does not imply constant 
interface velocity. The approximation of a constant interface velocity was used in 
Section 2 for the case of one-interface propagation. We know from the experimental 
results and numerical analysis that the interface velocities are not constant particu- 
larly for two-interface propagation. In particular, the first interface decelerates, the 
distance between the interfaces decreases, and they merge. The purpose of this section 
is to give a simple analytical description of the process. Therefore, we cannot use the 
approximation of constant velocities here. 

Using the quasistationary approximation we obtain from (4.1), (4.2), (4.4): 

, - y < x < o  
- cz(x + Y ) / D  

u = u 2  1 -  ( 1 + c 2 / D h  

u(x, t )  = u1, 0 c x < s, u(x, t )  = UrJ, s < x 

where uo is an initial value of the concentration, u1 and u2 are to be found from 
the other equations of the system. From (4.10) we conclude that u depends weakly 
on x in the interval y < x < 0, and we can approximately equate 

, - y < x < o .  (4.1 1) 

Thus we approximate the solution of the problem by a piecewise constant function. 
This is in accordance with the results of numerical analysis. 

If we use now the balance of mass on the interface (4.3) we obtain formally 
c1 = c2 = 0. This shows that we should use here the integral form of the mass balance 
(4.8), (4.9) rather than the local one. Indeed the approximation of the solution by a 
piecewise constant function means actually that we consider the limit of infinite 
diffusion coefficient. In this case the balance of mass gives 

(see (2.4)). 
One more assumption we make to simplify the problem is that c,/Dh 4 1. In this 

case we have from (4.11) u = 0, - y  < x < 0. Thus we have the system of equations 
( 4 3 ,  (4.7), (4.8) to fmd ul, s, cl, c2. We can rewrite it in the form 

(4.12) 

(4.13) 

f = 0: s = so, u1 = u10 
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0 
0 
_I 

We keep here the same notations for the kinetic functions as functions of one 
variable u l .  Obviously, (4.12), (4.13) can be reduced to the equation 

-- du, (uo - Ul)f1(4) - 
ds S ( f l ( 4  - fZ(U1)) 

from which we find 

Here c is an arbitrary constant which is to be found from the initial conditions. To 
have an explicit answer we consider the linear kinetics 

fi(u1) = kl(ue1 - O.% + ~ 1 ) ) -  f A u 1 )  = k ~ ( u e 2  - 0.5~1). 

s = c(uo - U1)"(2Uel - uo - uly, 
In this case 

where 

k, 2ue - 00 kz uel - 0 . 5 U O  - u,Z 
a ,  =- - 1 , a  -- * - k,  k 1 2(ue 1 - 00) uel - uo 
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We make a natural assumption that u,, < uel < uo. We conclude from (4.12) that u1 
increases. There are two basic cases. If a, < 0 then c, = 0 at t = to, where 

c = S O ( U 0  - u1)-a~(2u,, - u g  - u,)-a*, 

Thus in the first case the second interface stops while the first one continues to 
move. 

If a, > 0 then c, = 0 and s = 0 at t = t,, 

This means that the distance between the interfaces decreases and they merge. 
Such behavior was observed experimentally (Ai, Fan and Marks, 1992) and in 
numerical simulations (Marks, Volpert and Ai, 1992). Figure 4 shows a numerical 
solution of (4.12), (4.13). First there are two interfaces, then they merge and the 
intermediate phase disappears. For t > t, we have one-interface propagation (see 
Section 2). 

5 CONCLUSION 

This paper completes a cycle of experimental and theoretical work devoted to phase 
transitions in metal oxides under irradiation (see references above). The purpose of 
the theoretical analysis is to suggest a mathematical model which describes the 
experimental results and, at the same time, is not too complicated to allow us to 
form a simple understanding of the process. This is the reason why we consider only 
one substance, oxygen, in the model although the real process is more complicated 
and involves vacancies and interstitials as well. Accepting this simplification, we have 
a diffusion equation in the bulk, a radiative boundary condition on the external 
surface of the sample, and an interface (one or more) which propagates the sample. 

An important point here is to choose appropriate conditions on the interface. There 
are two well-known limiting cases: diffusion control and interface control (see, for 
example, Christian, 1981). But the physical idea of the process under consideration 
is that the concentration step on the interfaces is equal to zero at the moment the 
interface appears, and then the step increases. This means that we should consider 
mixed control rather than one of the limiting cases above. There are some works 
which consider mixed control for solidification problems (see Aziz and Kaplan, 1988; 
Coriell and Sekerta, 1983; Merchant and Davis, 1990; Spencer, Voorhees, Davis and 
McFadden, 1992) and in a general thermodynamic formulation (Davi and Gurtin, 
1990; Gurtin and Voorhees, 1992). We cannot apply these models directly, but we 
also use the balance of mass, kinetics of the phase transformation, and one more 
relation describing an interaction of the bulk and the interface to determine the 
conditions on the interface. The balance of mass has a conventional form. The kinetics 
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of the phase transformation is discussed above in this paper, and one more condition 
on the interface is derived under the assumption that we can use a quasistationary 
approximation to find the distribution of the concentration inside the interface. This 
condition has a rather general form, and, as a particular case, it includes the case of 
an impenetrable interface which we consider in this paper. The physical explanation 
of the impenetrability of the interface for the diffusive flux is as follows. The transition 
from higher oxides to lower oxides leads to the appearance of extra oxygen atoms 
and, in the limiting case, the concentration of the vacancies on the interface is zero, 
while the concentration of the interstitials is maximal. This means that the oxygen 
atoms cannot diffuse through the interface. The more general case of a partially 
penetrable interface is also described by our model and is a subject for further analysis. 
Here we note only that in the limiting case of large penetrability there is no 
concentration step on the interface, and the free boundary problem becomes degener- 
ate: the diffusion equation can be solved independently of the interface location. 

One of the important conclusions of the theoretical analysis is that, after an 
induction period connected with the initial conditions, the interface velocity is close 
to constant. This was first found experimentally, then in the numerical simulations. 
Now we understand that it is connected with the presence of the small parameter 
cy/D in the system. This means that in a real time scale the velocity increase is not 
observed, though it tends to zero as time tends to infinity. In other words we have 
here an intermediate asymptotic when the system forgets about the initial conditions 
and is still ‘far’ from infinity. We emphasize again that, though the interface velocity 
is close to constant, it is not an interface controlled process. 

The presence of the small parameter allows us also to apply a quasistationary 
approximation, which makes it possible to find the interface velocity explicitly. We 
note that experimentally the interface velocity depends on the value of the electron 
flux only weakly. The analytical approach gives the same result. 

The approximation of a constant velocity is applicable for any kinetics. If we take 
into account a deceleration of the rate of the reduction by the products then a 
multiplicity of solutions can occur depending on the values of the parameters. This 
means that the interface can propagate with different velocities, and the choice of the 
velocity is determined by the initial distribution of oxygen concentration. The 
non-uniqueness of the modes of the interface propagation can take place only for a 
finite time. The asymptotic behavior of the interface velocity, as time tends to infinity, 
is unique. 

When the multiplicity occurs one of the solutions, as usual, is unstable. Since we 
consider only a leading term of the expansion with respect to small parameters, linear 
stability analysis shows that the positive eigenvalue does not depend on the wave 
number. This means that one-dimensional perturbations, which correspond to zero 
wavenumber, grow pith the same rate as two-dimensional perturbations which lead 
to the appearance of non-flat interfaces. Non-flat interfaces were observed in some 
of the experiments. 

One of the interesting experimental results is that more than one interface can 
propagate into the sample depending on the value of the electron flux. In some cases 
the interfaces merge and the intermediate phase disappears. In our previous work 
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we showed numerically that the model describes these effects. For high values of the 
flux the time difference between the appearance of the first and second interfaces is 
too small, the distance between them is also small, and the intermediate phase cannot 
exist if we assume that the critical nucleus size is positive. For small values of the 
flux the time difference is large, and the first interface is rather far from the side 
surface of the sample when the second interface appears near it. In this case these 
interfaces coexist for some time. However, the experiments and the numerical 
computations show that the appearance of the second interface decelerates the first 
one. The reason is that the second interface is impenetrable for oxygen (or partially 
impenetrable) and the oxygen concentration between the interfaces grows. This leads 
to a decrease of the first interface velocity, while for the second one this effect is 
compensated by oxygen loss through the side surface. As a result the interfaces can 
merge. In this paper we give an analytical description of these phenomena. This 
analysis is based on the assumption, confirmed numerically, that the oxygen con- 
centration between the interfaces depends on the spatial variable only weakly. 

We note that in the limiting case of diffusion control, when the values of the 
concentration on the interface are given and constant, the interfaces cannot merge: 
when the distance between them decreases the flux From the first interface increases 
and it accelerates. 
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