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Abstract 

We show that it is possible to use a multi-solution genetic 
algorithm search method utilizing direct methods to solve 
surface structures from surface diffraction data. We 
suggest that the method is generally applicable and able 
to replace random searches of the solution space. 

1. Introduction 

Over the last 20 years, a large number of different 
methods have been explored for phasing diffraction 
patterns via direct methods. Among these are the well 
known MULTAN (Germain & Woolfson, 1968), RAN- 
TAN(Yao, 1981), MITHRIL (Gilmore, 1984) and SHELX 
(Sheldrick, 1990) codes as well as more recent introduc- 
tions such as MICE (Gilmore, Bricogne & Bannister 
1990), which exploits a maximum entropy approach. In 
rather different areas the last few years have seen the 
popularization of approaches such as simulated annealing 
(Sheldrick, 1990; Bhat, 1990) and more recently genetic 
algorithms [GAs (Goldberg, 1989; Davis, 1987; 
Gutowski, 1994)] for global optimization problems, as 
well as the problem of solving atomic and molecular 
structures (Xiao & Williams, 1993; Chang & Lewis, 
1994; Miller, Hogel & Filman, 1996). GAs are 
interesting since both conceptually and in terms of 
practical coding they are very simple to implement. In 
essence one allows a set of possible solutions to evolve 
using an artificial natural selection to yield close to 
optimized solutions after a number of generations. 

An area which we have recently been exploring is the 
viability of direct methods for two-dimensional surface 
diffraction data, either transmission electron diffraction 
(TED) or grazing incidence X-ray diffraction [GIXD 
(Collazo-Davila, Marks, Nishii & Tanishiro, 1997; 
Gilmore, Marks, Grozea, Collazo, Landree & Twesten, 
1997; Marks, Plass & Dorset, 1997; Landree, Marks, 
Zschack & Gilmore, 1997)]. There is good evidence that 
transmission electron diffraction from surfaces is almost 
kinematical, with systematic errors due to dynamical 
effects smaller than those associated with the phase 
reconstruction (Tanishiro & Takayanagi, 1989; Marks, 
Savage, Zhang & Ai 1991). For ideal noise-flee data one 
can formulate various figures of merit (FOM's) and then 

seek to optimize these, confident that the best FOM value 
is the correct solution. (Hereafter we will always assume 
that the best FOM value is zero, consistent with 
minimization notation.) However, with surface diffrac- 
tion data noise must be included, and even with the best 
collection methods to date the error in the strongest 
beams is at least 5%, ranging to >100% for the weaker 
intensities (2 to perhaps 3 orders of magnitude smaller) 
due to both Poisson statistics and background noise. 
Furthermore, when surface transmission electron diffrac- 
tion spots and bulk diffraction peaks overlap it is 
difficult, if not impossible, to extract the much weaker 
surface data, resulting in incomplete data sets. Given 
these limitations, the best that can be achieved is a FOM 
that gives a viable solution. A small FOM should be a 
necessary condition for the correct solution, but may not 
be sufficient. One therefore wants to find all possible 
minima within the multi-dimensional solution hyper- 
space and then, based upon chemical and X 2 refinement, 
decide which of these is the correct solution. 

The focus of this paper is to explore the viability of a 
multi .solution genetic algorithm for phasing, particularly 
for the noisy and often incomplete data available from 
surfaces using either transmission electron or X-ray 
diffraction. 

2. Genetic algorithm as a search algorithm 

While the basic structure of GAs is well established 
(Holland, 1975; Davis, 1987; Goldberg, 1989; Koza, 
1992), a number of points about how we have 
implemented it for multi-solution phasing problems 
merit description. In the simplest case we start with a 
set of structure factors S, then encode the phases of a 
subset s, consisting of the strongest structure factors in 
most cases, into a set of bits (gene) using conventional 
binary coding or Gray codes. Each gene would then 
represent the phase for a single reflection. The number of 
phases controlled by the GA, s, is situation dependent, 
however, typical values range from 10 to 20% of the total 
number of reflections. This digitization need not be too 
precise and in general steps of 2-5 ° for general 
reflections is adequate, i.e. 6-7 bits. For reflections 
which are either 180 or 360 °, a single bit is assigned. All 
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the genes are stored end-to-end as a single string of bits, 
otherwise known as a chromosome. Starting with a 
population N of chromosomes, we calculate the remain- 
ing (S - s) phases and evaluate the FOM. Then based 
upon some 'natural selection' criteria (which favors good 
FOM values), choose 'parents' for the next generation. 
From pairs of parents, 'children' are produced by 
crosslinking, i.e. a location along the parent chromo- 
somes is selected at random and the bits on one side of 
the location are interchanged. Some level of 'mutation' is 
then introduced into each new popul.ation by randomly 
switching some of the bit values from 0 to 1 or vice 
versa. The FOM's for these children are then evaluated 
and the process iterated with these being the new parents 
for the next generation. In addition to this basic structure 
various modifications of the process can be incorporated, 
some of which are mentioned below (see also the 
Discussion). 

What makes a GA powerful as a global search method 
is how it handles schemata (Holland, 1968, 1975). A 
schemata is a similarity template describing a subset of 
chromosomes with similarities at certain positions, 
similar to phase combinations for different structure 
factors. For the simple case where the number of parents 
and children are the same, even though only N new FOM 
values are calculated for each generation, the algorithm 
effectively processes on the order of N 3 schemata 
(Goldberg, 1989). Crossover disrupts these schemata if 
it occurs within their length, so shorter schemata are 
better preserved across generations; short, effective 
schemata increase roughly exponentially with the number 
of generations used. Since favorable phase combinations 
are the target of a direct methods analysis, GA's provide 
an almost ideal search process. 

How crosslinking is performed with respect to the 
order of phases can be important. The standard method is 
to crosslink randomly along the chromosome, disrupting 
longer schemata and disturbing individual phases. 
Forcing crosslinking to occur only between the genes 
was considered and appeared to have a small favorable 
influence (Fig. 1). Using an order to maximize linkage 
between phases will improve the convergence, although 
in practice ordering in terms of absolute structure factor, 
unitary values or using strong low-order reflections (to 
enforce phasing out to higher angles) were all rather 
similar. 

There are some modifications to classical GA's which 
are appropriate for direct methods. No FOM is a perfect 
measure, so there is no point in refining to a high degree 
of accuracy. More significant is to be able to achieve 
some ranking of a set of plausible solutions, then search 
among them for one which corresponds to realistic atom 
positions. While GAs are better suited toward exploring 
than refining specific solutions, one needs to avoid 
strategies which reinforce refinement. One modification 
involved how parents are chosen. Typically a 'roulette 
wheel' method is used, where the probability is 

proportional to the value of the FOM. Instead we 
implemented a simple ranking scheme (Baker, 1985) 
weighted by 

n u m =  [exp(- 1.0.ranl .T) - exp( -  1.0.T)]/ 

[1.0 - exp( -  1.0.T)], (1) 

where T is a variable controlling how strongly to favor 
lower values and num is the weighted number between 0 
and 1. For all cases herein T = 1 was used. By increasing 
the value of T, lower numbers become more strongly 
weighted. The value of num is then combined with 

p = 1 + integer(num.N) (2) 

to choose the pth chromosome as a parent. The second 
change to prevent convergence of the algorithm to only a 
single solution (enforcing a multi-solution search) was to 
employ a 'uniqueness' operation, removing from the pool 
of possible parents at each generation copies of any given 
chromosome. 

Another modification which was introduced to en- 
hance convergence was to maintain a running set of the 
best solutions at the end of each iteration. Then some of 
these solutions were included in the pool for the N 
parents in every other generation (elitism). 

Three fundamental control parameters are the popula- 
tion size, number of children and mutation rate. 
Population size has been discussed in the literature 
(Grefenstette, 1986; Schaffer, Caruana, Eshelman & Das, 
1989; Davis, 1989; De Jong & Spears, 1990; Nakano, 
Davidor & Yamada, 1994) with little definitive conclu- 
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Fig. 1. Comparison of the efficiency of the GA for a noncentrosym- 
metric structure when crossover is performed anywhere along the 
chromosome (o) and breaking chromosomes only in between 
individual genes (o) against a standard random number search. 
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sion. One needs a balance between schemata exploration 
which favors larger sizes and schemata reinforcement 
which will favor smaller numbers. We found (see below) 
that modest population sizes 1-5 times the number of bits 
worked well. We also did not use the simple methodol- 
ogy of producing N children from N parents. Instead the 
number of children was treated as a separate input 
parameter, choosing only the top N children to act as 
parents for the next generation. The optimal mutation 
rates were typically low, however, this again varies. Each 
of these parameters are so problem dependent that 
optimization for any given class of problems is required. 

A final point is the effect of the size of the hyperspace 
explored on the algorithm. By reducing the number of 
beams allowed to vary, either by origin definition or 
inequality relations between phases, the effective size of 
the hyperspace can be decreased, thereby increasing 
performance. In the noncentrosymmetric case, limiting 
the phase of a strong beam to a smaller subset of possible 
phases effectively defined a unique origin, which was 
sufficient for the solutions to converge. For the 
centrosymmetric model, an origin was defined by 
assigning specific phases to two beams, which remained 
unchanged throughout the calculation. In this case it was 
sometimes necessary to include additional phases to 
achieve a realistic solution. Such can also be the case 
when several of the strong beams are absent from the 
data set. 

3. Numerical method, figures of merit and noise 

The evaluation function is based upon a Sayre-Tangent 
formula (Woolfson & Hai-fu, 1995; Woolfson, 1991) 
with unitary structure factors in two dimensions. For a set 
of unitary structure factors, U(g), with g a reciprocal 
lattice vector, it is possible to write 

Um(g)  ---= Z Um-,(g- h ) U m - l ( h )  (3 )  
h 

to determine an estimate of the mth structure factor from 
the m - 1 estimate, the latter corrected to have the 
experimental moduli. Keeping fixed those phases as- 
signed by origin definition or phase inequality relation- 
ships, and allowing the rest to vary according to the 
Tangent formula, at each stage the FOM is calculated 
based upon 

R" = {E'l[Fm_l(g) - OtFm(g)]/cr(g)l"}/ 

E t l [ F m _ l  ( g ) ] / a ( g ) l " ,  (4) 

where E" refers to a summation which includes all terms 
except the F(0) term; Fm - l(g) is the (known) amplitude 
and (variable) phase of the structure factor at the 
beginning of each cycle for diffraction spot g; Fm(g) is 
the amplitude and new (variable) phase calculated at the 
end of the cycle; oe is a scalar chosen to give the smallest 

Table 1. Atomic positions for  Model 1 and Model 2 

In both cases the structures consisted o f  only a single atom species, 
silicon. The a and b spacing are given along with the corresponding 
angle, y. The values o fx  and v correspond to the atomic positions along 
a andb.  

Model 1 : noncentrosymmetric trimer model: a = 11.52, b = 11.52 A, 
y = 120 ° 

X V 

0.17 0.0 
0.0 0.17 

-0 .17  -0 .17  

Model 2: centrosymmetric 4 × 2 model: a = 7.68, b = 15.36 A, y = 90 ° 

0.19 0.5 
0.81 0.5 
0.29 0.5 
0.71 0.5 
0.5 0.15 
0.5 0.85 
0.5 0.28 
0.5 0.72 
0.0 0.117 
0.0 0.307 
0.0 0.693 
0.0 0.883 

value of R; or(g), when used, is the error; n can be either 1 
[similar to the Karle FOM (Woolfson, 1987)] or 2 
(similar to a least-squares analysis). The process of 
calculating phases and determining the FOM is iterated 
until all the missing phases are defined and then 
continues refining the phases so long as the value of R 
reduces. Equation (4) operates as a penalty function for 
constraining possible solutions. Note that the above uses 
the complex structure factors not the moduli. While the 
modulus form of the equation is more commonly used 
(Woolfson & Hai-fu, 1995), it did not give as good 
results and will not be discussed further. 

One important point concerns the mean value F(0) and 
the variable u. For surface data it is often difficult to 
impossible to approximate F(0) from a priori data since 
the unit-cell contents are rarely well known. (In the case 
of an adsorbate on a surface, one may have a good idea of 
the number of adsorbed atoms, but no information on 
how many relaxed substrate atoms contribute to the 
surface scattering.) Empirically, we have found that a 
normalization such that 

F(0) = 1; E'F(g)2 = 1 (5) 

is satisfactory. Allowing oe to be a free variable 
compensates for some of the uncertainty in F(0). For 
the test cases considered herein a better approach was to 
use the more conventional form, dividing F(g) by an 
effective atomic scattering factor 

f (g)  = (El(g)2) 1/2, (6) 

then (for the normalized scattering factors) using the 
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standard normalization < E 2 > = 1 and 

E(0) -- {[El(0)]  2 / Z f ( 0 )  2 } 1/2 

with 

U(g)  = ECg)/E(O) 

To represent experimental errors within each o f  the 
models, we added a random term proportional to 

(7) 
r/(g) =/3[r*(F(g)) ]  + y, (9) 

where r* is a random number  between - ~  and +oc,  
(8) with a Gaussian distribution having a standard deviation 

and the sums in (6) and (7) taken over atoms i. 
To quantify the results, we used two structures 

consisting of  the atomic positions shown in Table 1, 
which will be referred to later as Model 1 and Model 2. 
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Fig. 2. (a) Comparison of the C factor versus FOM for the 

noncent rosymmetr ic  model  (Model  1) with both the n -- 2 (square) 
and the n = 1 (mod)  case. (b) A similar  compar ison  for  a 
cent rosymmetr ic  model  (Model  2). 
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Fig. 3. Evolution of the average R factor for a given population, the best 
R factor, the average C factor o f  the populat ion,  the best  C factor and 
the average R factor for the solutions file calculated at the end o f  
every iteration for (a) the noncent rosymmetr ic  model  and (b) the 
cent rosymmetr ic  model  as a function o f  the number  o f  c h r o m o s o m e s  
treated. 
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of 1.13 scales the first term in (9) to be roughly 10% for 
the average of the three strongest beams and 3/is set to be 
1% of the average of the three strongest beams. The 
result is a final data set whose errors ranged from roughly 
10% for the strong beams to >100% for the weaker 
beams, modeling a Gaussian error distribution with a 
constant background. 

The diffraction data for both models are calculated 
from a 2-D arrangement of Si atoms with beams up to 
1 A resolution. Model 1 has p31 m symmetry and a total 
of 49 beams. An origin can be defined by restricting the 
range of the (4,3) beam to within 60 and 180 ° and 
establishing an enantiomorph by limiting the range of  the 
(2,2) beam to values between 0 and 180 °. For Model 2, 
p2mm symmetry, a total of 105 beams were used and the 
(0,5) and (3,5) beams were set at 180 ° to define a unique 
origin. In addition, the (4,0) and (6,0) beams were set at 
360 ° based upon El relationships. We then used a 
consistency check given by 

C = E ' lFe(g) l{1-  cos(0c - 0,)}/2E'lFe(g)l, (10) 

where Fe is the experimentally measured structure factor, 
Oc is the calculated phase and Ot the true phase for every 
beam. The correctness value (C factor) was calculated for 
every chromosome in a given population and provided a 
means of monitoring the progress of the code during a 
calculation. 

of the algorithm for n = 1 and n = 2 decreased. This is a 
useful general result, indicating that the errors in the 
direct method algorithm itself are larger than the 
measurement errors for typical surface diffraction data. 
Hereafter, we will report results only for the n = 1 case. 

5. Performance of the algorithm 

Fig. 3 illustrates the behavior of the individual FOM's as 
a function of the number of populations treated. Several 
permutations of the mutation rate, population size and 
number of children were explored to determine the 
optimal parameters. While the exact values were found to 
be problem-dependent, trends were observed which 
suggested a useful set of starting values to use. A 
parent-to-child ratio of 1:2 or 1:3 appeared best, with 
typical values being between 60 parents to 120 children 
and 80 parents to 240 children, roughly of the order of 
the number of bits per chromosome. Mutating roughly 
every fifth gene appeared to provide the ideal amount of 
random switching without hampering the convergence of 
the solution set for centrosymmetric structures. For 
centrosymmetric data sets, this equated to every fifth 
phase switching its phase 180°; for noncentrosymmetric 
structures, roughly five times the number of bits used to 
define a single gene. (A mutation rate of X is defined as 
switching the bit value of one in every X bits for an entire 
population.) 

4. Calibration of the FOM's 

Representative examples of  the behavior of the FOM's 
versus the consistency of the solutions (C factor) are 
shown in Fig. 2. Choosing n = 1 rather than n = 2 in (4) 
when errors are not included was as good as or superior 
in both cases. While the square (n = 2) did succeed in 
isolating the correct solution for the centrosymmetric 
model (Model 2), it was unsuccessful at finding the 
correct solution in the noncentrosymmetric case. In both 
cases when errors were included in (4), the performance 

6. Determination of multiple solutions 

In order to check that the algorithm would find multiple 
solutions, a test of Model 1 without restricting the (2,2) 
beam was performed. Figs. 4(a) and 4(b) are images of 
two of the solutions for p3 l m symmetry from the final 
solution set. Both solutions have essentially the same 
FOM and, except for the inversion, are identical with 
minor differences in the background. Comparing the 
solutions calculated by the GA without limits on the 

Fig. 4. Images of two solutions 
calculated for Model 1 without 
restricting the range of any beams. 
(a) and (b) have essentially iden- 
tical FOM's. 
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possible phases, and those calculated with a limit of 0-  
180 ° placed upon the (2,2) beam (Fig. 5), one sees a 
larger spread of solutions in the set where no limits were 
imposed. This indicates the algorithm has explored 
multiple redundant solutions which differ only in their 
origin. 

7. Solution hyperspace 
An important issue is the shape of the solution hyper- 
space and how choosing different FOM's can alter how 
one explores this 'surface'. In reality, the solution 
hyperspace occupies n + 1 dimensions, where n corre- 
sponds to the number of variables, but for simplicity it is 
instructive to limit this to a two-dimensional surface. One 
can imagine at either end of the spectrum two types of 
features, very large shallow pits and very sharp deep 
spikes. If a very coarse search mesh is projected onto the 
surface, as in Fig. 6, a search will not necessarily detect 
the sharp deep minima. What will be found are large 
shallow minima. Alternatively, for a fine search mesh, all 
the solutions will occupy the bottom of the sharp deep 
minima, while solutions from the shallow minima evolve 
into extinction. In either case, potentially correct 
solutions are being lost. The FOM also influences the 
morphology of this surface. This is demonstrated by Fig. 
2(a), where, depending on the FOM, the algorithm 
discovered different solutions. This is also illustrated in 
Fig. 7, which displays the ratio of the average C factor of 
the entire solution set for two different figures of merit 
used v e r s u s  the number of chromosomes treated (see 
caption). For 60 parents and 180 children, minimization 
using the normalized structure factors converged to the 
correct solution more effectively than the unitary 
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Fig. 5. Comparison of the different solutions found without placing 
limits on the phase of any of  the beams being defined and limiting the 
(2,2) beam to a phase between 0 and 180 °. 

structure factors. The opposite trend was observed for the 
case of 80 parents and 240 children. 

8. Discussion 
The general conclusion is that GA's are a viable method 
of handling direct phasing problems, determining a 
reasonable set of possible solutions much better than a 
simple random search. As such, they can readily be 
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Fig. 6. Representation of a solution hyperspace surface for two different 
aFoiwary phases, 01 and 02. 

© 
L h  

o . 0  

~OL) 

< <  

"--<D-- parents=80; children=240 | 
--0 • parents--80; chiMren=80 l 
- D - parents--.-60; chil&tn=I80 l 

• - parents=60; chil~=60 i 

1.2 .... , .... , .... , .... , .... , .... , .... , .... 

/x 
x, 

I 

1.1 t O -- \ ..C7" 
- / 

i.-~ iii\ "I ~ :  I 

U \ ~ r~ " ".1~ ~ v "  I 

0.9 ~ q ~  

0.8 

o  ooo 
Number of Chromosomes Treated 

Fig. 7. Plot of  the ratio of  the average C factor for a solution file per 
number of chromosomes treated for two different FOM's. FOM-0 
used the structure factors in (4), while FOM-4 used the unitary 
s t ruc tu re  factors. 
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introduced into current methods such as RANTAN (Yao, 
1981), Shake-and-Bake (Miller, Gallo, Khalak & Weeks, 
1994) or even Maximum Entropy (Gilmore, Bricogne & 
Bannister, 1990) to control the choice of phases. We have 
found no problems simultaneously assigning phases for 
20 beams with steps of 5-10 ° and this could be increased 
without major problems. The rate-limiting step is the 
phase extension. 

It is evident that the ability of the algorithm to find 
multiple unique solutions is necessarily a combination of 
the number of parents and children, the mutation rate and 
the FOM used to define the problem. Unlike other 
applications of the GA, which look for a single best 
solution and apply a large amount of refinement, we 
ideally want a suitable FOM to explore all possible 
unique solutions without prejudice and then apply some 
refinement. From this point, chemical criteria and X 2 
analysis can be applied to the set of possible solutions to 
arrive at a final refined solution. Various modifications 
may be appropriate for larger problems and might give 
better convergence. For instance, 'niche specialization' 
(Goldberg, 1989) could be used to reinforce multi- 
solution behavior. Some effort to optimize the phase 
(schemata) ordering would be useful based upon a 
modification of the standard convergence analysis 
(Woolfson, 1987). Alternatively, methods exist for 
incorporating reordering operators to handle this dyna- 
mically (Goldberg, 1989). One can also devise selection 
criteria for the parents using multiple FOM's in a 
nonadditive sense, which may be useful. 

This general FOM methodology has been applied to 
and solved several known surface reconstructions 
including the Au on S i ( l l l )  31/2 × 31/2 and 5 × 2 
(Marks, Plass & Dorset, 1997), and the Si(111) 7 × 7 
(Gilmore, Marks, Grozea, Collazo, Landree & Twesten, 
1997) structures. The GA has since also been applied to 
several unknown structures such as In on S i ( l l l )  4 × 1 
(Collazo-Davila, Marks, Nishii & Tanishiro, 1997), 
TiO2(100) 1 × 3 (Landree, Marks, Zschack & Gilmore, 
1997) and Au on S i ( l l l )  6 × 6 (Marks, Grozea, 
Feidenhans'l, Nielsen & Johnson, 1997) with equally 
encouraging results. 

We would like to acknowledge the support of National 
Science Foundation on grant #DMR-9214505 in funding 
this work. 
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