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A feasible set approach to the crystallographic phase problem
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I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of
the atom has been reached through the stars.

Sir Arthur Stanley Eddington, 1882±1944²

Abstract

The connection between the crystallographic phase
problem and the feasible set approach is explored. It
is argued that solving the crystallographic phase
problem is formally equivalent to a feasible set problem
using a statistical operator interpretable via a log-
likelihood functional, projection onto the non-convex
set of experimental structure factors coupled with a
phase-extension constraint and mapping onto atomic
positions. In no way does this disagree with or dispute
any of the existing statistical relationships available in
the literature; instead it expands understanding of how
the algorithms work. Making this connection opens the
door to the application of a number of well developed
mathematical tools in functional analysis. Furthermore,
a number of known results in image recovery can be
exploited both to optimize existing algorithms and to
develop new and improved algorithms.

1. Introduction

X-ray diffraction and transmission electron diffraction
both measure the intensity in the diffraction plane,
from which the modulus can be extracted but not the
phase ± the crystallographic phase problem. Deter-
mining approximate values for the phase using what are
called direct methods is now well established
(Woolfson, 1987; Woolfson & Fan, 1995; Gilmore, 1996;
Bricogne, 1984; Sheldrick, 1990; Giacovazzo, 1980;
Dorset, 1996), suf®ciently so that the structure of many
small molecules can be solved relatively straightfor-
wardly. In general, direct methods employ probabilistic
approaches, derived from the fact that the scattering
comes from atoms, to establish connections among the
phases. Following this, peaks in the resulting charge
density maps can be associated with atoms, and further
recycling of the phases and fragments of the structure

used in structure completion steps until all the atoms
are located to within 0.1 AÊ when full structural re®ne-
ments are carried out.

The crystallographic phase problem is by no means
the only occurrence of a phase problem; it arises in
numerous other areas as diverse as electron microscopy,
wave-front sensing, interferometric imaging in
astronomy (Gerchberg, 1974; Gerchberg & Saxton,
1972; Fienup, 1978; Dainty & Fienup, 1987) and
measurement of the current versus magnetic ®eld across
a Josephson Junction (Dynes & Fulton, 1971). Devel-
opments in these areas have been along somewhat
different lines, more related to the formal mathematics
of a general image recovery problem. These methods
have a history (and literature) as extensive as that for
the crystallographic phase problem, and can be traced
back at least as far as the 1930's (Kaczmarz, 1937). To
quote from an article by Combettes (1996):

Four basic elements are required to solve an image
recovery problem:
1. A data formation model:
2. A priori information:
3. A recovery criterion:
4. A solution method.

These four criteria apply equally well to the crystal-
lographic phase problem: we know quantitatively the
formula connecting the scattering and the atomic posi-
tions; we (may) know the number of atoms and we know
that the charge density is positive; we have probabilistic
criteria for the recovery and iterative solution methods.

This raises the question of whether the crystal-
lographic phase problem and the image recovery
problem are really that different. In terms of how the
problems have been approached algorithmically, crys-
tallographers are used to dealing with very large
numbers of re¯ections and exploit multisolution
methods, while the image recovery problem has focused
around mathematical techniques using what are called
`convex sets' (Sezan, 1992; Combettes, 1996; Combettes
& Trussell, 1990; Gubin et al., 1967), and iterative
methods whose formal convergence behavior can be
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analyzed in detail. The mathematics of convex projec-
tions is a well established analytical approach to the
general problem of image recovery. It currently has a
number of technologically important applications, for
example the phase problem in interferometric images
for astronomy, as well as all ®elds involving computer-
aided tomography (Herman, 1980).

The intention of this note is to show that there is a
very large amount of common ground between image
recovery methods using what is called the feasible set
approach and the crystallographic phase problem. In no
way does this disagree with or dispute any of the existing
statistical relationships available in the literature;
instead it expands understanding of how the algorithms
work. Making this connection opens the door to the
application of a number of well developed mathematical
tools in functional analysis. Furthermore, a number of
known results in image recovery can be exploited both
to optimize existing algorithms and to develop new and
improved algorithms.

The structure of this paper is as follows. The next
section (x2) outlines some of the basic elements of the
feasible set approach, primarily de®nition of a number
of terms such as sets, convexity, operators and projec-
tions, as well as some of the known results. The following
section (x3) makes the connection between existing
direct methods, structure completion techniques and the
feasible set approach. A number of simple examples, not
by any means intended to be exhaustive in scope, are
then given (x4). Finally (x5), some possible extensions,
such as using parallel statistical relationships converted
to functionals or operators, and one suggestion about
how to incorporate measurement errors are discussed,
as well as a few mathematical issues which need further
research.

2. The feasible set approach

We will provide here a brief introduction to the feasible
set approach, as a prelude to the later sections of the
paper. While in certain cases the formal mathematical
shorthand of the literature will be used, this will be
restricted as much as possible; this note is not being
written for mathematicians. A useful overview of the
concepts involved is provided in an article by Sezan
(1992) and more formal analyses are available in the
articles in a book edited by Stark (1987) and the recent
review article by Combettes (1996; hereinafter referred
to as PLC).

To start, we will be dealing almost exclusively with the
case for which we know the moduli of the structure
factors in reciprocal space and want to obtain phase
estimates so that we can recover an approximation to
the real-space charge density and, from this, approxi-
mate atomic coordinates for subsequent re®nement.
Structure factors, whether they are the true ones, unitary

or normalized, will be written in terms of a generalized
structure factor X unless otherwise speci®ed. The
Fourier transform of X will be written as x, standing for
a generalized charge density. Both X and x are vectors in
a Hilbert space, X with complex values, x being only
real. For later reference, we will consider that the
complex vector X can be written as

X � jXj exp�iu�; �1�
where |X| is a real positive vector, the values of which
are known from the experimental data, and u is a vector
of the unknown phases. We will now de®ne a number of
terms that are required for later stages of the analysis.

We specify those values of X (or x) which have certain
properties as belonging to some set, S. In standard
shorthand, this is written as

X 2 S: �2�
For any vector in the Hilbert space, we can de®ne a
magnitude or norm of any vector X as

jjXjj � P
i

X�i Xi

� �1=2

�3�

and a `metric' corresponding to a distance between two
vectors X and Y:

d�X;Y� � jjXÿ Yjj: �4�
[Some of the metrics used later in the paper are not
those normally associated with a Hilbert space,
suggesting that it would be better to use the more
general term `Banach space' (e.g. see Ramkrishna &
Amundson, 1985). However, this is perhaps more a
technical mathematical detail, not a substantive issue for
the main results of this paper.] For any given set, a
particularly important question is whether it is `convex'.
For any two members X and Y of a given set, the set is
convex if a third point Z is also a member, where

Z � �X� �1ÿ ��Y; 0<�< 1; �5�
i.e. all points lying on the line connecting X and Y
belong to the set. Also of relevance later is the idea of a
`functional', loosely de®ned as a function of either X or x
(as appropriate) which gives a real-valued scalar or
vector, although we will only use scalars herein. The
sections of some functional g(X), i.e. the region

g�X�<� �6�
with � a scalar, are also a set. Using the same notation as
above, a functional is convex (as is the associated set for
arbitrary �) if

g��X� �1ÿ ��Y� � �g�X� � �1ÿ ��g�Y�; 0<�< 1:

�7�
Finally, consider some general operator T which acts on
X to give some new point, i.e.
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T�X� � Z; �8�
where Z is a modi®ed structure factor. [Similarly, T(x)
will give a modi®ed charge density.] We can also
consider as a set the eigenvectors of T, known as the
®xed points (Fix T) of the operator. An operator is
contractive if

jjT�X� ÿ T�Y�jj � kjjXÿ Yjj; 0< k< 1; �9�
and nonexpansive if

jjT�X� ÿ T�Y�jj � jjXÿ Yjj: �10�
If the operator is contractive, the set of ®xed points is
convex and there is a unique ®xed point (Youla, 1987;
PLC, pp. 168±170). If the operator is non-expansive then
the ®xed point is not unique, but it nevertheless can be
proven under certain conditions that the set of ®xed
points is convex (Youla, 1987). A more general class of
operator of importance to direct methods is not rigor-
ously nonexpansive (though it may behave as a con-
traction for regions of the Hilbert space; see below). In
such cases, the set of ®xed points may be nonconvex
and discontinuous. An important consequence of non-
expansivity is found by taking

Y � T�X� �11�
so

jjT�X� ÿ T�T�X��jj � jjXÿ T�X�jj: �12�
Thus, for a nonexpansive operator T, T(X) is always
closer or the same distance from a ®xed point of T than
is X.

We now need to de®ne what is meant by a `projec-
tion'. Suppose we have some set S and some point X
which is not a member of the set. Let Y be the point on S
such that jjXÿ Yjj is minimized. The projection of X
onto the set S, written as P(X), is equivalent to

P�X� � Y: �13�
Projections typically arise associated with constraints,

and it is convenient to refer to a constraint that leads to
a convex set as a `convex constraint'. Finally, the concept
of a mapping (not to be confused with the crystal-
lographic terminology of map for an estimated x)
converts from one Hilbert (or Banach) space to another.
For instance, a Fourier transformation is a mapping from
x to X.

We now have enough of the preliminaries to state the
feasible set problem in a concrete fashion. Suppose that
we want to consider ®nding the `best' value of some
scalar functional g(X) (e.g. a ®gure of merit or FOM)
which is consistent with a number of constraints. Each of
these constraints can be represented as a set Si ,
i � 1; . . . ; n, either convex or nonconvex. The standard
optimization approach is

minimize g�X� subject to X 2 S1 \ . . . Sn; �14�

where \ is the standard notation for intersection of sets,
i.e. ®nd the minimum value that obeys all the constraints.
Rather than solving this particular problem, we
associate a set So with the values of g(X) which are
below some certain value [e.g. equation (6) above], so
the problem is to ®nd the set of points X at the inter-
section of all the sets Si , i � 0; . . . ; n, i.e.

X 2 S0 \ S1 \ . . . Sn: �15�
All such values are reasonable solutions to the problem.
We can in fact de®ne as our set of feasible solutions the
intersection of all the sets Si , i.e.

Sf � S0 \ S1 \ . . . Sn: �16�
Note that the feasible set depends both upon the
constraints and how in detail we de®ne the set S0. While
we want this set to be convex and continuous, there is no
reason a priori why it should not be nonconvex and
discontinuous. (In practice, we may want to start with a
relatively loose constraint on S0 and tighten it as the
calculation proceeds.)

The key results are (Youla, 1987; PLC) as follows.
(i) If all the sets are convex, there exists one and only

one possible intersection for all the sets; see e.g. Fig. 1.
(ii) If all the sets are convex, and for each set Si we can

associate a projection operator Pi(X), then the sequence

Xm�1 � Xm � ��Pn�Pnÿ1�. . . P0�Xm��� ÿ Xm�; 0<�< 2;

�17�
where m is the iteration number, converges to a point
in the unique solution set Sf [provided Sf is not empty;
see point (iii)]. In other words, applying consecutive
projections for convex sets ®nds the unique feasible set
Sf. Here � is a relaxation parameter, which for best
results is typically in the range 1<�< 2 (Levi & Stark,
1987; PLC, p. 168). Fig. 2 illustrates how the algorithm
works assuming two convex sets and different values of
the relaxation parameter.

Fig. 1. Intersection of three convex sets. The shaded region
corresponds to the feasible set of solutions.
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(iii) If the constraint on the FOM is too tight, for
instance there are experimental measurement errors or
some of the constraints are only approximately (or
probabilistically) correct, there may be no true solution
as the union of the sets. However, we can still consider
optimal solutions based upon minimizing the distance of
a point from all the sets (PLC, pp. 202±209; ChreÂ tien &
Bondon, 1996).

(iv) If one or more of the sets is not convex, there may
be more than one local solution and no unique solution
via the successive projection approach of equation (17).
However, the approach is locally convergent (PLC, p.
186), so will yield local minima of the problem consid-
ered as a feasible set [point (iii) above].

(v) If instead of using a projection we employ a
contractive or nonexpansive operator T(X), the ®xed
points of which lie within the set g�X�<�, then since
this is a downhill step towards a ®xed point we can
replace one or more of the projections in (17) by
operators, as illustrated in Fig. 3. Hence, the iteration of
(17) with operators always yields a better or equal point,
converging if all the sets are convex in a global fashion.
According to the literature, the method will converge
locally in general if one or more of the sets are not
convex, although we will see below that this depends
upon when the FOM is calculated (see also Fig. 4). For
later reference, we note that, near to any ®xed point,
jjT�X� ÿ Xjj can always be expanded as a quadratic, so

the region around any ®xed point (local minimum) is
necessarily locally convex.

3. Direct methods as a feasible set problem

Having now de®ned the basics of the feasible set
method, we will show how it can be used in a very
general sense for direct methods. We have available a set
of experimental |X| values. This provides a constraint
and a corresponding set within which lie all possible
values for the phase, i.e. the set of complex numbers X
which have the appropriate moduli and arbitrary phase.
This is a nonconvex set, as may be veri®ed from equa-
tion (5). Associated with any value X is a mapping
(Fourier transform) to an associated charge density x.
For well measured data to ®nite resolution, the true
charge density is real and positive and the set of all real
positive x is a convex set. The ®nal set of relevance is all
the possible atomic coordinates for a ®nite number of
atoms that can be obtained by some mapping (e.g. peak
location) from x.

Fig. 2. Examples of (a) an unrelaxed projection operator, � � 1:0, and
(b) an over-relaxed projection operator, �> 1:0.

Fig. 4. Contours of FOM [e.g. jjT�x� ÿ xjj, assumed here to be
nonconvex] and a given set. The ®gure demonstrates how one
iteration PM�T�x�� may result in an increase of the calculated FOM.

Fig. 3. Contours of jjT�x� ÿ xjj (assumed here to be locally convex) and
the nonconvex set de®ned by the known constraint jXj � jXej
where |Xe| are the experimentally measured moduli.



L. D. MARKS, W. SINKLER AND E. LANDREE 605

Since we know that the scattering comes from atoms,
we have certain constraints on the possible values of X,
which are more conveniently written in real space in
terms of x and nonlinear operators. For instance, we
have the Sayre equation (Sayre, 1952), i.e.

T�x� � Cx2; �18�
where C is a calculable constant or function that
depends upon the number and type of atoms in a stan-
dard fashion. The ®xed points of (18) are the set of all
electron density maps x containing only the values 0 and
1=C. Let PM correspond to projecting a given set of
values onto the measured |X|, as illustrated in Fig. 5. The
iterative sequence

xn�1 � PM�T�xn�� �19�
corresponds to a `generalized direct methods' algorithm
and is clearly very similar to an iterative feasible set
solution method. The application of an operator T
represents a step closer to a ®xed point of T (presuming
T is nonexpansive; see below). By de®ning the func-
tional g(X) such that ®xed points of T are minima of
g(X), equation (19) provides an iterative scheme for
minimizing g(X) consistent with the measured |X|.

In a similar sense, we can describe structure comple-
tion in terms of some mapping MA that projects onto the
set of atomic coordinates d, i.e.

dn � MA�xn�: �20�
The general solution to the crystallographic phase
problem combines in some fashion equations (19) and
(20), which can be represented diagramatically as indi-
cated in Fig. 6.

A requirement of the proposed strong parallels
between direct methods and the feasible set problem is
nonexpansivity of the operator T. However, as de®ned
in (18), T is expansive (i.e. the opposite of contractive)

for many x; one can consider T as a `sharpening
operator' in the sense that it increases large values of x
and suppresses small ones. To overcome this problem,
we note that (assuming all |X| are known)

PM�T�xn�� � PM��T�xn��; �21�
where � is an arbitrary constant. Let us choose the
renormalization constant � such that it minimizes some
metric (not necessarily jj . . . jj) of �T�x� ÿ x. The same
metric can be interpreted as a log-likelihood or prob-
ability functional g(x); it is minimal (zero) for x a ®xed
point of T, and we can associate with the values of this
functional below some scalar value a set, the set S0

discussed earlier. Use of a scaling by � can be considered
as making the operator �T(x) `conservative' in the sense
that it conserves either the mean or the standard
deviation, e.g.

� � hxni=hT�xn�i; �22�
or � is taken to minimize either the L1 or L2 mean, i.e.
minimize

Lp �
�P jxn ÿ �T�xn�jp

�1=p �23�

or the equivalent form in reciprocal space taken over the
measured re¯ections. Proving that this is nonexpansive
for general direct-methods operators in a formal math-
ematical sense is not an easy task. Pragmatically, it can
be tested numerically. For the simple Sayre-type
operator using the mean from equation (22) does not
give a nonexpansive operator, but using either an L1 or
L2 mean minimization does. For later reference, the
`minimum relative entropy' (Cover & Thomas, 1991;
Marks & Landree, 1998) or Kullback±Leibler distance
(Kullback & Leibler, 1951) operator given by

T�x� � x ln x=hxi � hxi �24�
is nonexpansive for any of the above renormalizations.
Hereinafter, we will assume that the operators are
nonexpansive within some range of x which can be
enforced by renormalization, with the caveat that some

Fig. 5. Projection of X onto |Xe| in reciprocal space for two
representative re¯ections X i and X j.

Fig. 6. Schematic representation of the relation between the different
components necessary for structure determination.
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more formal analysis would be very useful. Since there
are many different ®xed points of T for different atomic
arrangements, the set of such ®xed points is in general
nonconvex, as is the log-likelihood functional set S0. The
feasible set may be nonconvex and discontinuous; see
for instance Fig. 7.

One additional slightly complicated constraint needs
to be introduced before we ®nalize our representation of
direct methods. In addition to the statistical operators
T(x), we also have information about the shape of the
distribution in reciprocal space. In a conventional �2

sense, two large normalized (or unitary) structure
factors are more likely to predict the phase of a third
structure factor. If several �2 relationships (Karle &
Hauptman, 1956; Shmueli & Weiss, 1995) all predict
approximately the same phase, there is a higher prob-
ability that this phase is correct and should be accepted
for further steps in a phase extension. We need to
encode this `phase-extension constraint' in a more
formal mathematical way.

One method is to consider the individual i compo-
nents of the structure factors after each cycle, Xi

n�1,
relative to the experimental moduli jXi

ej. If the predicted
amplitude is large, i.e. comparable to jXi

ej, this corre-
sponds to the case in which the individual phase
predictions for beam i are in good agreement and
constructively interfere If this is the case, it is more
probable that there is a correct prediction of a new
phase. In a more formal way, we can specify the condi-
tion for accepting a new phase as

�jXi
n�1j>
n�1jXi

ej; 0<
n�1 < 1; �25�

with � the scaling constant from before and 
 some
adjustable scalar. Introduction of this phase-extension
constraint provides a connection between direct-
methods approaches based on real-space operators, such
as the Sayre method or the minimum relative-entropy

operator, and reciprocal-space methods employing
classical phase extension in an approach which gradually
adds beams to the known set. (Note that exploiting the
prior information available in the distribution in prin-
ciple goes beyond simple phase extension.) The set of
complex structure factors that obey equation (25) is not
convex.

We can now state that the generalized (with renor-
malization) direct-methods algorithm is formally
equivalent to an iterative feasible set method using a
statistical or atomistic operator interpretable via a log-
likelihood as a functional (hopefully, but not guaranteed
to be nonexpansive) and projection onto the nonconvex
set of experimental structure factors coupled with a
phase-extension constraint. If we take X to be the
structure factors, we have the original Sayre method
(Sayre, 1952); if we take X to be the normalized struc-
ture factors, we have the tangent formula (Karle &
Hauptman, 1956).

Some additional points merit mention. First, above we
have assumed that the `true' solution for the phases is a
®xed point of the operator T, but in reality the operator
is probabilistic in character. However, since we always
have a downhill step (or at least not an uphill one) we
will have a general error-reducing behavior. If the
operator T moves all the way to a local minimum, this
will always be the case. However, if instead it moves part
way towards a minimum, the method may move slightly
uphill after ®nding the best point depending upon
exactly when the FOM (metric) is evaluated; see Fig. 4.
This is not really a concern since we only need to ®nd
approximately correct values in general. Since around
any local minimum we have a locally convex set, we will
have strong convergence to that minimum assuming that
it satis®es the other constraints.

Second, we note that the general FOM should be (as
noted previously) an appropriate metric of the distance
from all the constraints, with zero for an ideal ®t. Since
in reality there are measurement errors and errors in the
scaling to give unitary or normalized structure factors,
this will not be zero in the general case. There is no
reason why this metric should be the classic Hilbert
space norm de®ned above in equation (3), and in fact
there are good reasons why it should not be. The Hilbert
space norm is similar to a classical �2 re®nement in that
it is not tolerant of a few points with large errors
(outliers). Other metrics, for instance the L1 metric
[equation (23)], are more robust in that they tolerate
outliers more, similar to the classic R factor used in the
re®nement of atomic positions. (It is in this sense that
the term Banach space, where norms other than jj . . . jj
can be applied, may be better.)

Finally, the success of the method will depend upon
how good is our choice of the operator T. To strengthen
this, one can introduce a `window function' W(k) in
reciprocal space (Marks & Landree, 1998), such that for
(say) the unitary structure factors U(k)

Fig. 7. Schematic illustration of the nonconvexity and discontinuous
nature of the problem. Shown is the intersection for the nonconvex
set (e.g. jXj � jXej) and the set de®ned by jjT�x� ÿ xjj � �
(assumed to be locally convex).
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U 0�k� � W�k�U�k� �26�
and

W�k� � 
Fÿ1T�FW�k�� �27�
with F the Fourier transform operation and 
 a constant.
This enforces atomicity in the sense that it makes a set of
atoms a ®xed point of the operator. [For completeness,
W(k) need not exist for all possible operators, but only
needs to be achievable within the limits of measurement
and other errors, e.g. errors in the conversion from F(k)
to U(k) or E(k).]

Quite a few additional points about how the algor-
ithm can be employed are worth mentioning.

(i) The simple algorithm of (19) does not exploit the
relaxation parameter � used in the more general
statement of (17). Since it is exceedingly well docu-
mented in the literature that values of �> 1 converge
much better (Levi & Stark, 1987), it immediately
follows that, for instance, the simple tangent formula
should be over-relaxed to improve convergence.
(Unfortunately, the literature is also clear that the
optimum value of � is dependent upon the exact
problem being solved, and tends to be somewhat
empirical in character.)

(ii) Rather than just using one operator, more than
one operator can be employed. As an example, what is
called the parallel projection method (PLC, pp. 206±
209) combines a number of different operators Ti(X) via

T�X� �PwiTi�X�;
P

wi � 1: �28�

In practice, we have found that combining the relative
entropy operator and positivity gives better results than
either alone (see below).

(iii) Both structure completion methods and algor-
ithms such as Shake-and-Bake (Miller et al., 1994), by
which atoms are introduced as elements of the structure,
incorporate convex constraints into the problem. For
instance, the set of all x with atoms at certain locations is
a convex set, and as the number of known atoms
increases, this set shrinks in size.

(iv) One can create new algorithms using known
convex set constraints. For instance, we may know (for
instance from low-resolution phasing or electron
microscopy) that there are no atoms at certain loca-
tions. This is similar to what is called a `support
constraint' (Fienup, 1987; Hayes, 1987) in the image-
processing literature, and is a convex set. Furthermore,
it is known that in many cases (see Hayes, 1987) the
phase problem is fully de®ned by such a support
constraint plus knowledge of the structure-factor
moduli. (Positivity can also be exploited.) If an upper
bound to the charge density is known (e.g. via the
heaviest atom), this can also be exploited, as can a
variety of statistical projections if the measurement
errors are known to be Gaussian (PLC, pp. 193±198).

4. Numerical examples

We will present here a few examples that will illustrate
the application of the feasible set approach.

4.1. Structure completion

Suppose we know a subset of the atomic sites and
apply the chemical constraint that there are no atoms
within some region of each of the atoms. This is a convex
constraint which can be written via the projection

P�x� � �k for x 2 Sk

x otherwise,

�
�29�

where �k are the known values and Sk the set of points
within a certain radius of each atomic position. Coupling
this with the positivity PP,

PP�x� � x for x> 0

0 for x< 0,

�
�30�

gives a combined projection

P�x�r�� �
�k for x 2 Sk

x for x =2 Sk; x> 0

0 for x =2 Sk; x< 0.

8<: �31�

Finally, adding in projection onto the moduli, i.e.

PM�X�k�� � X�k�jXe�k�j=jX�k�j; �32�
where jXe�k�j are the experimental moduli, gives an
algorithm very similar to the Gerchberg±Saxton
(Gerchberg & Saxton, 1972; Gerchberg, 1974) and
Fienup algorithm (Fienup, 1978, 1987).

To illustrate application of this algorithm, Fig. 8 shows
results for perbromo-, perchloro- and per¯uoro-
phthalocyanine complexes with copper with kinematical
electron diffraction data and an over-relaxation
parameter of � � 1:95, assuming that only the halogen
atoms are known and with c2mm symmetry imposed (no
origin de®nition or other phases were set). Using the
deviation from the projection of equation (31) as a
FOM, the best (FOM) results for 30 different trials, each
ten cycles long with initial random values, are shown.
(The moduli projection is not convex, so local minima
will be found.) Almost independent of the starting point,
results similar to Fig. 8(a) were obtained for the bromine
complex and are close to exact restorations of the true x
with well de®ned atomic features. For the chlorine
derivative, several of the results were similar to Fig. 8(b)
and again approach restorations of x. For the ¯uorine
compound (Fig. 8c), the results are much worse but still
relatively close, and would improve if a larger number of
tests were performed. In none of these examples was
atomicity in the unknown portions of x used.

This is a very simple algorithm, similar in many
respects to approaches that have previously been used in
the literature (e.g. Woolfson & Fan, 1995; Millane, 1996;
Millane & Stroud, 1997). The relevant point here is that
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the de®nition in terms of a feasible set approach is an
illustration of the link between this and already estab-
lished structure completion methods.

4.2. Restoration of unmeasured re¯ections

A particular problem with surface diffraction data
(Marks et al., 1997, 1998; Gilmore et al., 1997; Collazo-
Davila et al., 1997, 1998) is that some of the strongest
re¯ections may not have been measured; without these
included in some sense in the calculation it may not be
possible to solve the structure. If we know (or can link
statistically) the phases of the measured re¯ections, we
have a good estimation of the phases of the unmeasured
re¯ections. For a given set of estimated phases, the set of

all moduli for the unmeasured re¯ections is a convex set.
Coupling this with positivity, we have the intersection of
two convex sets for the unmeasured re¯ections, so the
problem is in principle well de®ned.

The central issue is how to scale the unmeasured
moduli, and here the scaling term � used previously
works very well in practice. The full algorithm can be
written as

T�x� � x ln�x=hxi� � hxi for x> 0

hxi otherwise,

�
�33�

Xn�1 �

QnjXej=jQnj for X 2 SM;
jXn�1j> �
n=��jXi

ej
�Fÿ1T�xn� for X =2 SM; �h; k; l� 2 D

0 for X =2 SM; �h; k; l� =2 D

jXj exp�iuF� for X 2 SF ,

8>>><>>>:
�34�

with

Qn � Xn � ��PM��Fÿ1T�xn�� ÿ Xn�; �35�
where SF is the set of ®xed (e.g. origin de®ning) re¯ec-
tions with phases uF, SM is the set of measured re¯ec-
tions and D the set of all possible re¯ections (hkl) which
lie within an elliptical aperture in two-dimensional
space, or an ellipsoidal aperture in three-dimensional
space, that includes the measured re¯ections. The FOM
used is a normalized L1 mean taken over the set
SM \ SF , i.e.

FOM � ÿP jXn ÿ �Xn�1j
��P jXnj; �36�Fig. 8. Completed structure density maps of (a) perbromophthalocya-

nine, (b) perchlorophthalocyanine and (c) per¯uorophthalocyanine.

Table 1. Comparison of the FOM and number of
iterations necessary to converge to the minimum solution
for the minimum relative-entropy algorithm and the

hybrid algorithm with positivity constraint

Minimum entropy only Hybrid algorithm

� FOM No. of iterations² FOM No. of iterations²

0.6 0.4351 8 0.4392 5
0.7 0.4219 7 0.4392 5
0.8 0.3952 12 0.4382 5
0.9 0.3761 9 0.4340 6
1.0 0.3736 9 0.4299 6
1.1 0.3390 12 0.4269 7
1.2 0.3358 10 0.4202 6
1.3 0.3365 10 0.4054 11
1.4 0.3423 9 0.3943 11
1.5 0.3503 6 0.3791 7
1.6 0.3466 7 0.3530 10
1.7 0.3452 6 0.3514 10
1.8 0.3498 6 0.3163 15
1.9 0.3695 6 0.3161 11
2.0 0.3752 8 0.4273 7
2.1 0.3779 7 0.4273 7

² No. of iterations refers to the number of iterations for the algorithm
to converge to its minimum value.
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and the constant � minimizes (35). A phase-extension
constraint as in (25) was used with


n � 0:3 exp�ÿn=2�: �37�
For reference, the combination of (34) and (35) includes
over-relaxation of the phases as illustrated in Fig. 9.

As an example, Figs. 10 and 11 show the results of a
phase extension with experimental electron diffraction
data for the Si (111) 7� 7 surface (Gilmore et al., 1997)
using the minimum relative entropy operator with initial
phases to about 2.8 AÊ and phase extension to approxi-
mately 0.5 AÊ resolution. Comparison of the maps
without and with projected values for the unmeasured
re¯ections (Figs. 10a and 10b, respectively) shows their
importance; the unmeasured (7,7) re¯ections have
structure factors 3±5 times larger than any of the other
re¯ections and without them not all the atoms are visible
(arrowed in Fig. 11). For reference, an over-relaxation of
� � 1:2 was used and Figs. 10(c) and 11(c) are for a
different algorithm, discussed below (x4.4).

4.3. Effect of over-relaxation

To demonstrate the role of over-relaxation, Table 1
shows the total number of iterations to convergence of a
calculation as a function of the relaxation parameter
[e.g. equation (17)] for the same data as in Figs. 10 and
11, and also the ®nal FOM. In all cases, the FOM
(metric) is the L1 mean [equation (36)] appropriately
scaled in reciprocal space over the measured re¯ections.
Here over-relaxation was only used for the phases (Fig.
9). [While the result shown here is for a simple centro-
symmetric case, similar results have been found for
noncentrosymmetric structures and by ab initio
approaches using a genetic algorithm (Landree et al.,
1997) to control the initial phase choices.] Interestingly,

the `better' values for the relaxation parameter tend to
give slightly smaller FOMs ± a reproducible effect that
we have seen in many cases.

4.4. Hybrid relative entropy/positivity algorithm

As an example of combining different projections,
consider the relative entropy operator [equation (33)]
and the positivity projection [equation (30)]. While
positivity does not have to lead to atomistic solutions, it
is still approximately correct. (Since experimental data
are band-width limited, equivalent to superimposing an
aperture in reciprocal space, the charge density for a
single atom with the measured re¯ections is not every-
where positive.) Using a combined operator as in

Fig. 9. Schematic representation of over-relaxation of the phase for X i,
shown for �> 1, �> 0 (e.g. � � 1, � � 0).

Fig. 10. Minimum relative-entropy phase-extension maps of the Si
7� 7 (a) without and (b) with projected values for the unmeasured
re¯ections, and (c) for a hybrid minimum relative-entropy algorithm
with projected values for the unmeasured re¯ections and positivity
constraint.
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equation (28), the weighting scheme for the entropy
(we) and positivity (wp),

we � max��; 1�;
wp � 1ÿ we;

�38�

with � the renormalization term from before, is,
empirically, effective. Figs. 10(c) and 11(c) compare
calculations with this hybrid algorithm and without the
positivity (Figs. 10b and 11b) for a relaxation of 1.8, and
the ®nal FOM is shown versus relaxation parameter in
Table 1. In this case, the effects are relatively subtle and
are a suppression of background noise improving the
contrast (peak to background ratio); we have seen
similar and more substantive effects in other calcula-
tions with different structures.

5. Discussion

This paper is a start towards combining the feasible
set approach and direct methods, not the end. The
connection is clearly there and enables both more
formal mathematical analysis of the algorithms as well
as tools (e.g. over-relaxation) for the optimization and
design of new algorithms. In no way does this approach
disagree with or dispute any of the existing statistical
relationships available in the literature; instead it
investigates the actual algorithm wherein they are used.

Many topics remain for further work, both in terms of
the formal mathematics and in terms of implementation.
To discuss the mathematics ®rst, clearly the issue of
nonexpansiveness of the renormalized operators needs
to be analyzed in more detail. While the `proof', i.e.
numerical tests, given herein is relatively weak, one does
of course have a stronger empirical proof, i.e. direct
methods have been known to work for more than thirty
years. Certainly the problem of convergence (and other
characteristics) for nonconvex sets needs to be
addressed in more detail than it appears to have
received to date. Indeed, several papers consider the
nonconvex problem to be prohibitively expensive in
computer time and therefore unfeasible. The multi-
solution approaches developed over the years for direct
methods, such as magic numbers (White & Woolfson,
1975), error-correcting codes (Gilmore & Nicholson,
1994), simulated annealing (Sheldrick, 1990; Bhat, 1990)
and genetic algorithms (Landree et al., 1997), contradict
this view. By its very character it may never be possible
to recast the crystallographic phase problem in terms of
convex sets which have a single solution. However, we
do not consider this to be an important issue since global
search algorithms are now relatively mature and not
prohibitively expensive in computer time.

Much work could usefully be performed converting
some of the existing direct-methods FOMs to an
operator (or functional) format for incorporation,
assuming that they are nonexpansive. Rather than a
multiple-FOM approach as currently used, a multiple
operator/projection approach could be employed similar
to the hybrid method described above. While this does
increase the programming complexity, our experience to
date is that the convergence rate and faithfulness of the
solutions are worth the effort. Furthermore, such an
approach is intrinsically parallel, so may be able to
exploit developments in computer architecture rather
well.

There are many possible new algorithms that can be
constructed, not all of which will work. Within the
feasible set approach, one can formulate methods for
including error estimates for the measurements. For
instance, instead of projecting onto the measured
structure factors (|Xe|), one could use the projection

P�X� � Y � X=jXj��jXej � �1ÿ ��jXj�; �39�
Fig. 11. Magni®ed regions from Figs. 10(a)±(c). Atoms previously

unseen due to the exclusion of the unmeasured re¯ections are
arrowed for reference.
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where � is chosen such that

�p � 1 � 1=M
P�jXej ÿ jYj�p=�p �40�

with � the measurement error, M the number of points
and p � 1 or 2 for robust or Gaussian errors. Following
this projection, the moduli used for the next cycle will lie
distributed about the measured values in a fashion
consistent with the experimental data.

Methods for accelerating convergence may also be
relevant. For instance, we use Fourier transforms and
real-space operators; the Fourier transforms constitute
the rate-limiting step. Using two steps of the atomistic
operators prior to back transforming might substantially
improve performance.

One can also formulate methods for cases in which
there are overlapping re¯ections, for instance twinning
or for surfaces when re¯ections from the surface layer
coincide with bulk re¯ections. As an example of the
latter, the scattering from the bulk can be calculated and
combined with the estimated coincident surface
complex value and projected onto the measured
coherent addition of the two; in numerical tests that will
be discussed more elsewhere, this works rather well.
Going one step further, there is no need to insist upon
strict conformance with kinematical scattering and
extensions are possible for dynamical electron diffrac-
tion. Provided that appropriate operators and/or func-
tionals can be de®ned, solutions of the dynamical phase
problem are possible using modi®ed direct methods, as
has already been shown for well resolved zone-axis
orientations (Sinkler et al., 1998; Sinkler & Marks, 1999).

Of course, not all methods suggested by the feasible
set approach will work; there are always questions of
stability which are not easy to analyze in a formal
mathematical sense. However, it is the belief of the
authors that there are enough new avenues that some
will outperform, perhaps rather substantially, existing
algorithms.
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