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Summary

The application of electron channelling theory to dynamical
exit wave calculations is briefly reviewed, and a comparison
of channelling results with full dynamical calculations is
presented. The channelling expression to the exit wave
is combined with conventional imaging theory, and it is
shown that a simple expression can be obtained for a
dynamical contrast transfer function (D-CTF), which
incorporates imaging aberrations and thickness-dependent
dynamical scattering effects. The D-CTF can provide
detailed insight into HREM images of a mixed cation oxide
at thicknesses up to 200A, whereby an approximate
correction for non-linear effects is utilized in the larger
thickness regime.

1. Introduction

The possibility of using numerical calculations to accurately
explain the contrast in high-resolution microscope images
from thin samples has existed for many years. In its simplest
form, image aberrations introduced by the microscope
optics can be accounted for using the linear theory first
developed by Scherzer (1949). The dynamical interaction
between an incident plane wave and the sample can be
modelled by a number of techniques, most commonly via
multislice simulations (Cowley & Moodie, 1957). Additional
techniques for calculating dynamical diffraction, such as
the Sturkey scattering matrix formulation (Sturkey, 1962),
the Bloch wave theory of Howie & Whelan (1961) or the
real space method of Van Dyck & Coene (1984), all build
from the same theoretical framework provided by Bethe
(1928), and give results which are essentially in agreement
for a given set of diffraction conditions. Thus, the theory of
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electron diffraction is well established in its main aspects,
and a strong consensus exists.

In spite of the development of a consistent body of
electron diffraction and imaging theory, the complex nature
of the calculations, especially for electron diffraction, tends
to obscure essential qualitative features of the diffraction
and imaging processes for the microscopist. As a simplifica-
tion, one alternative to complete dynamical calculations is
kinematical theory. The kinematical theory is however,
valid only for thicknesses which are at the limit of what is
obtainable with real specimens, and it is thus inapplicable
in most cases. Two-beam dynamical theory, while instruc-
tive for general features of dynamical interaction, and for
certain off-axis imaging conditions, has little bearing on
zone-axis imaging.

In contrast to the above, electron channelling theory
(Berry, 1971; Gemmell, 1974; Kambe et al. 1974; Tamura
& Ohtsuki, 1974; Fujimoto, 1978; Kambe, 1982; Ohtsuki,
1983; Marks, 1985; Van Dyck, 1985; Van Dyck & Op de
Beeck, 1996; Sinkler et al. 1998a) is capable of providing
real insight into on-zone diffraction, in a framework which
is analytical and tractable. The theory has existed for nearly
30 years, but is not widely represented in current literature,
and is particularly underrepresented in pedagogical litera-
ture. However, it has significant value in elucidating many
aspects of dynamical interaction. For example, it provides a
full explanation of recent work in direct methods, in which
it was found that use of strongly dynamical electron
diffraction data can lead to a sensitivity toward light atoms
(Sinkler et al., 1998a; Sinkler et al., 1998b; Sinkler & Marks,
1999). It has also been applied to image formation in high
resolution microscopy (HREM) (Van Dyck, 1985). Its
relatively simple analytical form makes it readily adaptable
to straightforward approximate treatment of topics such as
diffraction from a wedge-shaped crystal (Sinkler & Marks,
1999), and other themes which may be cumbersome to
treat numerically. In addition, it may have potential for use
as a first step in refinements, as it allows dynamical effects
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to be accounted for in a first-order approximation (beyond
kinematical) while providing an algorithm which is vastly
simpler and faster to compute than a full dynamical
calculation.

In this paper, standard linear and non-linear imaging
theory will be applied to the simple analytical expression for
the exit wave, which is obtained from electron channelling
theory. The primary goal will be to establish the viability of
using channelling theory to develop an analytical descrip-
tion of the principal features of dynamical HREM images,
i.e. images at sample thicknesses which are beyond the
validity of the kinematical approximation. The applicability
of the analytical theory based on channelling will necessa-
rily be limited by the channelling approximations to the case
of zone-axis imaging in which well-separated atomic
columns are aligned parallel to the electron beam. Multislice
and the other numerical methods will remain the methods
of choice when it is necessary to calculate images to the
highest possible accuracy. Nevertheless, it will be shown
that channelling theory and standard imaging theory can
be used to fill the significant gap between the well-known
kinematical approximation, and accurate but purely
numerical methods of image calculation. Section Il of this
article presents a brief review of the channelling theory used
in the remainder of the article. No detailed derivation will be
given, but the aim will be to develop a single simple
expression, with a minimum number of parameters, which
nevertheless provides a fair approximation to a many-beam
diffracted wave for samples consisting of well-separated
columns along the beam direction. In Section I, the
analytical channelling expression will be compared with
multislice simulations of the complex exit wave y¥(r) for a
real crystal (Ga,In),SnOs. Section IV presents an application
of linear and non-linear imaging theory to the exit wave
expression obtained from the channelling theory. The result
is a modified CTF, including both thickness-dependent and
imaging effects in a simple expression. The modified CTF
can provide detailed insight into HREM images at thick-
nesses for which the standard kinematical CTF is not
applicable. This is demonstrated via interpretations of
simulated HREM images of the (Ga,In),SnOs mixed oxide
structure for thicknesses to nearly 200 A.

2. Electron channelling theory

The development of electron channelling theory began in
the early seventies with the work of Berry (1971) and builds
on the earlier classical theory for ion channelling due
to Lindhard (1964). Electron channelling has received
significant additional contributions from a number of
researchers referenced above. The central approximation is
the neglect of all scattering contributions outside of the zero
order Laue zone. In this sense electron channelling is a
high-energy approximation, suitable for situations in which
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the incident beam is along a major zone axis, so that the
contribution of first and higher order Laue zones is
minimized. Derivations along several different lines may
be found in the literature (Berry, 1971; Kambe et al., 1974;
Van Dyck & Op de Beeck, 1996), and will not be repeated
here. However, the central result is a description of the
electron exit wave at the bottom surface of the specimen as
(Van Dyck & Op de Beeck, 1996):

Y(R,2) =1+ Zn:cn¢n(R) x {exp (—in—;kz) - 1} 1)

in which R=(x,y) is a two-dimensional vector perpendi-
cular to the incident beam direction. The ¢,(R) and E, are
eigenfunctions and energy eigenvalues of a two-dimensional
Schrodinger equation for an electron in the specimen
projected potential. The channelling approximation signifi-
cantly simplifies the more general Bloch wave solution,
expressing it as a superposition of a set of two-dimensional
functions ¢, each modulated by a characteristic oscillation
along the z-direction.

A significant further simplification which can be com-
bined with the channelling formalism is the atomic column
approximation (Van Dyck, 1985). The wavefunction for the
entire crystal is thereby approximated as a superposition of
individual atomic bound state wavefunctions, i.e.

Y(R,Z) =1+ ZC@i(R - Ri)<exp (—inE;kz) - 1) )

where now the sum is over the i atomic positions, and ¢; is
the lowest-energy atomic bound state for atom i. This
lowest-energy state is a centrally peaked radially symmetric
function which is the two-dimensional analogue of an
atomic 1s state. Validity of this approximation requires that
the potential consist of well-separated atomic columns, so
that the only significant bound states are those of the
individual atomic columns (as opposed to more complex
states involving more than a single atomic column
potential). A reasonable approximation to this deepest
bound state may be obtained by considering the case of a
potential containing a single atomic column, and setting
this equal to the expression for a weak phase-object as z
approaches zero (Sinkler et al. 1998a). From this, one
obtains:

ca R =T ®

i

and the final approximate expression for the dynamical exit
wave is therefore:

Y(R,2) =1+ Z@ <exp (—iw%kz) — 1> 4)

In this expression for the exit wave, the only unknown
parameters are the 1s bound state energies E;, of which
there is one for each unique column in the projected
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Fig. 1. Ball-and-stick model of (Ga,ln),SnOs, viewed in b-axis
projection.

structure. The wave has a particularly simple form in this
expression: it consists of discrete maxima, in form identical
to the atomic potentials Vi(R), which oscillate in both
amplitude and phase as a function of thickness. The form of
the oscillation is given by the term in parentheses which
describes a unit circle centred at (-1,0) in the complex
plane. In the following section, the ability of Eg.(4)
adequately to describe the exit wave for a real crystal
consisting of well-separated atomic columns along the beam
will be investigated using comparisons with multislice
simulations for (Ga,In),SnOs.

3. Comparison of channelling approximation with
multislice simulation

Figure 1 shows a ball-and-stick model of (Ga,In),SnOs,
which was recently solved in the course of an investigation

Table 1. Energy eigenvalues (all values in eV). Calculation for iso-
lated atomic column with interatomic distance of 3-:163 A, and
from multislice for the (Ga,In),SnOs, [010] projection.

Eigenvalue Eigenvalue
Atom (isolated atom) (multislice)
Oxygen -15-486 -28
Gallium -101-462 -128
Gallium/indium (50%) —144.204 -194
Tin -193.817 - 246
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Fig. 2. Amplitudes of |y(r)-1] at the centres of atomic columns for
all unique atoms in the (Ga,In),Sn0s structure [010] projection.
(a) oxygen, (b) gallium, (c) gallium/indium, (d) tin. Curves calcu-
lated with multislice, using Debye—Waller factors B=0-3A?
(metal atoms) and B=0-5A%2 (oxygens). The multiple curves
plotted are for the different unique atoms in the unit cell.

of the Gay03-In,03-SnN0, system for transparent con-
ducting oxides (Edwards & Mason, 1998). The structure in
b-axis orientation is particularly suitable for treatment
using the channelling theory, as it consists along this
direction of close-packed atomic columns, which are well
separated in projection. It is not to be expected that the
approximation given by Eq. (4) will be valid for more general
structures and orientations in which there is significant
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Fig. 3. Comparison of exit waves |y(r)-1]
for (Ga,In),Sn0Os calculated using Eg.(5)
(a-f) and multislice (g-1), at the thick-
nesses noted.
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overlap of neighbouring atoms in the projected potential
(Sinkler & Marks, 1999). However, many electron micro-
scopy techniques, particularly HREM imaging, tend to be
most useful for well-separated atomic columns along the
beam direction. Therefore, conclusions drawn from this case
will nonetheless be applicable to a large number of cases in
which HREM imaging is most effective.

The energy eigenvalues E;. may be obtained by solving
the Schrodinger equation for an isolated atomic column
potential, and the result of such a calculation is shown in
Table 1 for all atom types in the (Ga,In),SnOs structure.
However, these eigenvalues differ somewhat, due to slight
overlap of potentials, from those obtained empirically from
multislice calculations. For example, under the assumption
that the atomic potentials are well separated, the function
|¥(R,2)-1] may be written using Eq. (4) as:

Vi(R - Ry) . E
— sin <7r2—EOkz)‘ (5)

1
Near to an atomic column, the function |(r)-1] therefore
oscillates with depth with a wavelength given by 2EgN/|E;],
as shown in Fig. 2 based on multislice simulations. Effective
energy eigenvalues obtained by measuring the wavelengths
of these oscillations are listed for comparison with those for
an isolated atomic column in Table 1. From the discrepancy
between the value for an isolated atomic column and an
atomic column situated within a crystal, it is clear that

X

W(R,2) — 1| = ZZ’

Fig. 3. Continued.

reasonable agreement with a multislice simulation will be
obtained only if the channelling eigenvalue is treated in a
phenomenological sense as a parameter characterizing the
interaction, but not necessarily taken from an exact
solution for a completely isolated atomic column. A guide
towards the choice of eigenvalues is an empirical linear
scaling with the atomic number (Van Dyck & Op de Beeck,
1996). The exact value of E; may be chosen empirically
using a best fit to either multislice (using perhaps a similar
structure) or to experimental data.

Using atomic potentials given by Doyle & Turner (1968),
atomic coordinates given elsewhere (Sinkler et al., 1998b),
and the channelling eigenvalues from multislice calcula-
tions, the electron exit wave for (Ga,In),SnOs in [010]
orientation was calculated from Eq.(4) for a number of
thicknesses, and is compared with multislice simulations in
Figs 3 and 4. The only additional parameters used in the
simulations were the accelerating voltage (300kV) and
Debye—Waller factors B which were set equal to 03 A2 for
the metal atoms and 0-5A? for the oxygen atoms for both
sets of simulations. Shown in Fig. 3 are comparisons of the
moduli |¥(R,2)-1], while in Fig. 4 the complex ¥(R,z)-1 are
plotted using an Argand diagram representation. In the
latter, the real and imaginary parts of each pixel value in
the calculated unit cell are plotted on the horizontal and
vertical axes. As can be seen, the |¥(R,z)-1] tend to remain
similar at small thickness, but also change in strongly
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Fig. 4. Comparison of Argand representations of the exit waves /(r)-1 for (Ga,In),SnOs calculated using Eq. (4) (a—f) and multislice (g-1). All
values are relative to a unit incident beam amplitude. Scaling on all graphs is identical.

parallel ways as the thickness increases. The similarities
persist in spite of the appearance of ring-like 2s states
centred on the heavier cation positions in the multislice
calculations at thicknesses beyond 50A. An additional
feature which is reproduced well using Eq.(4) is the
predominance of the light atoms in the waves starting at
thicknesses of ~50A. This feature is explainable by the
channelling eigenvalue in the denominator of each atomic
term in (4), which counteracts and actually reverses the
larger potentials of the heavier metal cations (Sinkler et al.
1998a). For thicknesses beyond 100A, the agreement
becomes merely qualitative, and in particular it is noted
that the peaks at the atomic positions in the multislice
simulations have a tendency to broaden significantly in
comparison with the form of the atomic potential (Sinkler &
Marks, 1999).

A final comparison between the exit waves calculated
using the channelling approximation and multislice is the
scaling of the Fourier coefficients, which is shown in Fig. 5.
This is of particular importance for structure refinements
using electron diffraction intensities. As can be seen from
the figure, the approximation of Eq. (4) does a significantly
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better job than a simple kinematical approximation in
matching the intensities predicted by a multislice calcula-
tion to thicknesses at which a kinematical approximation
is no longer justifiable. In general, the failure of the
kinematical approximation to reproduce the Fourier ampli-
tudes becomes pronounced at thicknesses for which the
change in |y(r)-1] deviates significantly from linear. From
Fig. 2, this occurs in the present case for the tin atoms at a
thickness of ~ 30 A, and in agreement, the scaling between
| ¥(h)] and the kinematical structure factors |F(h)| breaks
down between 25 A and 50 A. The successful incorporation
of dynamical effects in the Fourier amplitudes of the exit
wave is seen in the continued rough scaling between the
multislice | ¥(h)] and that from the channelling theory for
a thickness of 50 A, which from Fig. 2 is already beyond first
oscillation period for the tin atoms.

4. Application of channelling to HREM image contrast

Imaging aberrations can be modelled in the linear imaging
approximation by multiplying the wave’s Fourier transform
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Fig. 5. a—d. Examination of scaling between Fourier moduli |¥(h)] of the exit wave for (Ga,In),SnOs calculated using Eq. (6), and that
calculated using multislice. Thicknesses are indicated in the Figures. e-h. For comparison, the corresponding scaling of the kinematical

structure factors |F(h)] with the | ¥(h)] from multislice is shown.

by the incoherent envelope and coherent transfer function

E(u) and exp(- ix(u)), resulting in:

Vi(u)
Ei

(m((nE)

in which the V;(u) are the Fourier transforms of the atomic
column potentials, and the parameter t replaces z as the
specimen thickness. The image Fourier transform is given
in the linear imaging approximation (Self & O’Keefe, 1988)
as:

E(u) exp(i[2iu-R; — x(W)])

¥ (U, t) = 8(U) + Z
' (6)

I(u,t) = ¥'(u,t) + ¥'*(—u,t) (for u # 0) )

Neglecting asymmetric aberrations (primarily astigmatism
and beam tilt), the image Fourier transform from (6) and (7)
is given by:

I(u,t):4ZViE(

x E(u) sin(x(u) — wK;t)

W sin(wK;t) exp(27iuRy)
i (€)]

(for u# 0)

where Kj=(-Ei/2Ep)k is the inverse of the channelling
oscillation period (E; is taken to be negative for bound
states). From Eq.(8), it can be seen that the inclusion of
dynamical effects via the channelling approximation leads
to a modification of the standard sin(x) expression for weak

phase objects (see for instance Spence, 1988) to include a
thickness component. In addition, the contrast level has a
species-dependent modulation with thickness due to the
sin(wKjt) term.

From (8), it should thus be expected that optimum
imaging conditions will depend not merely on defocus and
optical parameters but also on specimen thickness and the
nature of the specimen. The transfer of contrast from a
given atomic column is controlled from (8) by an effective
contrast transfer function (dynamical contrast transfer
function, or D-CTF) given by sin(wKit)E(u)sin(x(u)-=Kit),
depending both on the phase «Kjt, and defocus Az. A
tableau representing the D-CTF is shown in Fig. 6. The
leftmost column of Fig. 6 approximately represents the
classical kinematical CTF. Strictly considered, the latter is
obtained when the term «Kjt is equal to nw, in which case
there is zero contrast in the present model. For small values
of wKit, optimum defocus conditions occur near to the
classical Scherzer defocus /(Cs)N), at —420A in the present
case, for which the transfer function has a broad negative
pass band. However, as can be seen from Fig. 6, the overall
contrast level improves when the phase #K;t is near to «/2,
and with increasing phase there is a shift in the optimum
pass band toward smaller defocus values.

The D-CTF presented in Fig. 6 permits far more accurate
detailed insight into HREM image contrast than does
the kinematical CTF, as can be illustrated using the
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Fig. 6. Tableau showing the dynamical CTF (D-CTF) sin(wKit)sin(x(u)—rKitz, calculated for values of defocus Az and wK;t which are noteg.
The scaling is such that the edge of each box corresponds to Ju| =0.5625 A~%. The D-CTFs were calculated using a defocus spread of 80 A,
beam convergence of 0-75 mrad, C;=0-9 mm, and zero values for all other image aberrations.

(Ga,In),Sn0s case as an example. Figure 7(a) shows a
S|mulated HREM image along [010] for a thickness of
31-6 A and defocus of — 300 A (for additional conditions see
figure caption). In the figure, the atom positions are
indicated, and the atom types can be found by reference
to Fig. 1. In Fig. 7(b)—(e) are shown line plots of the D-CTF
for each atom of the structure at the same defocus using
values of wK;t based on the thickness and the channelling
eigenvalues (column 2 of Table 1). From the D-CTF plots,
one would expect the oxygen atoms to be weak (due to their
small value of 7Kt at this relatively small thickness), while
all cations should be imaged with negative contrast (i.e. as
convex features), in agreement with the simulated image.
This is similar to a Scherzer defocus image under roughly
kinematical conditions, but is correctly predicted by the
D-CTF to occur at a slightly smaller defocus value. The
D-CTFs can account for fine details of the image. For
example, the gallium D-CTF has the most pronounced pass

© 1999 The Royal Microscopical Society, Journal of Microscopy, 194, 112-123

band, which explains why it is more strongly imaged than
tin or gallium/indium positions, for which the D-CTFs have
shallower pass bands. Figure 8 shows a simulated image at
- 600A defocus and 63-3A thickness. In this case, the
gallium shows strong positive contrast, in agreement with
the well-defined positive pass band for gallium in the D-CTF.
The tin D-CTF shows negative contrast at low spatial
frequency, which explains the dark contrast at the loca-
tions of the tin atoms (for which 2s states are important
at thicknesses in excess of 50A, see Fig. 3). The Ga/ln
positions have an intermediate contrast level, in agreement
with their nearly flat D-CTF, and the oxygen atoms tend to
have a slight negative contrast. Finally, at — 800 A defocus
and 124-5A thickness, the predominant feature of the
simulated image in Fig. 9(a) is the positive intensity at
the oxygen atomic positions. It should be recalled that the
particular emphasis of the oxygens is also due to their larger
channelling eigenfunctions, as shown in the previous
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Fig. 7. (a) Multislice calculation of HREM image of (Ga,In),Sn0Os at — 300 A defocus and 31-63 A thickness. Additional imaging parameters
are as in Fig. 6, in addition to which a 0-5A gaussian smearing in the image has been applied to simulate specimen vibration. Atomic posi-
tions are indicated in the figure using ® = oxygen, B = gallium, = gallium-indium and A = tin. b—e show D-CTFs for (b) oxygen, (c) gallium,
(d) gallium-indium, (e) tin, which were calculated using the thickness and imaging parameters, as well as effective channelling eigenvalues

from dynamical exit wave calculations (Table 1, column 2).

section. The galliums, which should appear bright as well,
are somewhat obscured by the nearby oxygen atoms,
and the tins are present as broad dark features in the
image, in agreement with the narrow negative pass band in
the D-CTF plot.

As the thickness increases, the strengths of diffracted
beams increase to become comparable to that of the direct
beam, resulting in a breakdown in the linear imaging

approximation. An additional term needs to be added to
I(u), P(u) given by

P(U) =4 ADAX(D) J\”/,-(v — uyexp[—27i(v — WR;
W 9

+ix(v — u)]
Vi(v) exp[2miRV — ix(V)]E(V, v — u)dv

T i - -
- b) nKt=0.180 n 4 | d} =Kji=1.039 = -

1.00

.50

(AL

«0.50

| o) nK;t=1.318 = ]

108 00

spatial frEqﬁl.Eumv[ﬁ. '1]1'

b}

Fig. 8. (a) Calculated HREM image as in Fig. 7a, but for — 600 A defocus and 63-26 A thickness. b—e show D-CTFs for the same conditions for

(b) oxygen, (c) gallium, (d) gallium-indium, (e) tin.
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Fig. 9. (a) Calculated HREM image as in Fig. 7a, but for — 800 A defocus and 126-53 A thickness. b—e show D-CTFs for the same conditions

for (b) oxygen, (c) gallium, (d) gallium-indium, (e) tin.

where
sin(wK;t)

A = E

exp(irK;t) (10)
With the exception of the envelope term E(v,v-u), the
integral in (9) is similar in form to a convolution between
two functions Aj*(u) and Aj(u), in which Aj(u) is the Fourier
transform of V(R-R;)*T(R), and T(R) is the point spread
function, the Fourier transform of exp(-—ix(u)). If there is
little overlap in the potentials of the atomic columns at R;
and R;, and if the point spread function is sufficiently

localized, the integral will be small. For structures in which

there is little overlap between neighbouring atomic column
potentials, this is the case to a first approximation for all
i # J, and Eq. (9) can be rewritten:

P(u) =4 |A” exp(2miuR;) J\7i(v — u)V,;(v) explix(v — u)

— ix(V]E(V, Vv — uwdv 11

In conventional non-linear theory (Bonevich & Marks,
1988), the envelope function is expressed as a product of
two gaussians describing the contrast effects of beam
convergence and defocus spread. Both of these gaussians

L b) <K A=0.450 n ]

! I
- d) Kji=3.117 n 1

.00

0.50

T T
- ) nKj=2.057 n .

Fig. 10. (a) Calculated HREM image as in Fig. 7a, but for — 300 A defocus and 189-8 A thickness. b—e show D-CTFs for the same conditions

for (b) oxygen, (c) gallium, (d) gallium-indium, (e) tin.
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Fig. 11. (a) Calculated HREM image as in Fig. 7a, but for — 700 A defocus and 189-8 A thickness. a—e show D-CTFs for the same conditions

for (b) oxygen, (c) gallium, (d) gallium-indium, (e) tin.

are maximal when |v|] =|]v-u], and therefore, a rough
approximation of non-linear effects is simply:

P(u) =4 |A” exp(2iuR;) J\“/i(u)zdu (12)

This corresponds in real space to positive features at the
atomic columns, scaled by a thickness-dependent factor
|Ail% and by the square of the atomic potential. The
approximation may be used as a guide to interpretation of a
small non-linear correction at moderate thickness.

Figures 10 and 11 show examples of images at 189-8 A
thickness and —300A and —700A defocus, respectively.
Because the thickness is constant between the two images,
the only change in the D-CTFs is due to the defocus change.
In Fig. 10, all D-CTFs except that for oxygen are relatively
small, due to the phase factors for the cations, which are all
reasonably close to an integer multiple of 7. The oxygen has
a broad negative pass band, and yet it can be seen at several
positions in the figure that there are faint concave (positive)
contrast features at the oxygen positions. This is consistent
with the approximate analysis of non-linear imaging effects
given above, and is explainable by a cancellation of the
negative features predicted using linear theory by the positive
contribution of the non-linear cancellation term. Finally, at
700 A defocus, Fig. 11 shows strongly positive features at the
oxygen atomic positions, which in this case result from a
reinforcement of the linear and non-linear effects.

5. Discussion

In the present work, simple expressions have been developed
using channelling theory for both the electron exit wave
and HREM image intensity. Of most immediate value to

interpretation of microscopical data is the insight into
HREM image interpretation which can be obtained by a
reasonably simple analytical combination of channelling
and linear imaging theories. From the examples shown in
the last section, the D-CTF can explain HREM image
contrast in most significant details, where clearly the use
of a single kinematical CTF would be insufficient. The D-CTF
is valid throughout the thickness regime used for most
HRTEM imaging applications in inorganic chemistry and
materials science, and its validity in the thicker part of this
regime can be extended by using a simple approximation to
non-linear effects. The most significant limitation to
application of the present theory is in the assumption of
non-overlapping atomic column potentials. However, a
parallel approach using the more general channelling
expression Eq.(1) may be useful for more arbitrary
structures.

In addition to application to HREM imaging, the
channelling approach to diffraction calculation has already
been shown to provide a full explanation of direct methods
results using dynamical diffraction intensities. The possibi-
lity of using direct methods with dynamical diffraction
intensities relies on the ability to formulate an expected
form for the exit wave, much as classical direct methods rely
on the expectation of a real-space electron density distri-
bution consistent with the presence of atoms. Electron
channelling theory provides an approximate form which
is suitable for dynamical direct methods. In particular,
Eq.(4) predicts an exit wave with atom-like maxima
each with a relatively constant phase. Therefore, electron
channelling is central to development of techniques using
quantitative electron diffraction measurements to solve
crystal structures.
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Finally, the present work has explored the possibilities and
limitations of electron channelling theory as a basis for
guantitative structure refinements using electron diffraction
measurements. As is clear from Fig. 5, the channelling
theory permits rapid calculation of intensities in reasonable
agreement with dynamical calculations for limited thick-
nesses. Use of the theory in a refinement scheme would
require, in addition to atom position data, refinement of the
effective value of the phase wKjt for each atomic column
position. The speed of such refinements may make them
suitable for distinguishing rapidly between a number of
crystal structure models.
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