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Model-independent inversion of x-ray or neutron reflectivity data
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A technique is described for the model-independent analysis of x-ray or neutron reflectivity data. Rather than
trying to find just one optimum solution, the idea is to find the set of solutions that are feasible. The approach
is based on inversion of the missing phase information using a feasible set approach coupled with a genetic
algorithm search for the set of solutions. It does not require previous knowledge of the chemical constituents
or any type of initial model, thus adding a higher degree of objectivity to the analysis. The algorithm is tested
on both simulated data and observed data. Issues regarding inversion problems and multisolution algorithms,
such as the unigueness of the solutions, are also briefly discussed.
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X-ray or neutron reflectivity is one of the standard tech- (Q—Q")|?
niques for the analysis of surfaces and interfaces. Hitherto, Re(Q)= Q+an| (1)

methods available for the analysis of reflectivity data have
been limited and vary considerably in efficiency. More onwhereQ andQ’ are the moduli of the scattering vectors in
this technique and its application can be found in the reviewyacuum and in the material, respectively. The measured re-
by Als-Nielsen! Penfold and Thomasand Als-Nielsen and flectivity R(Q) is related to the ideal reflectivitf Q) by
Kjaer23 The most common approach is a least-squares refine- 8o(2)
ment that starts with boxlike scattering-length-density profile = dp(z .
models and that requires a suitable initial model. Note that if H(Q)=R(Q)/Re(Q)= f_w dz exp(iQz) dz
the initial model is not close to correct, refinement tech-
niques may converge to the wrong solution. Several modehere p(z) is the SLD profile. Thus, provided that devia-
independent techniques have also been developed and dpens from a kinematical approximation are negligible, x-ray
plied with some success, such as maximum entfopy, reflectivity is a classical phase problem in one dimension.
simulated annealingj,cubic B splines’ and parametrid®®  The basic character of such problems has been extensively
splines® Drawbacks include the computationally intensive discussed in the literatuf€ We have applied a methodology
nature of some of these techniques and their lack of reliabiloutlined by Combettd$ (see also Refs. 18—2@p our ap-
ity. In addition, these approaches do not take into account theroach to the phase problem in the case of x-ray reflectivity.
possibility of multiple solutions, which, as discussed below,The mathematical background for the approach, at least for
is an important issue. Some of these methods have been reenvex problems, is now quite well understosée Refs. 17
viewed in papers by Lovell and RichardSoand Lu, Lee, and 19)albeit mathematically complicated, and it differs in
and Thomas® We should also note that the majority of the both strategy and concept from more classical methods such
work in this field is directed toward neutron reflectivity. In as refinements or Lagrangian methods. One of the essential
part, this is because of the added advantage of changing thints in this method is to determine all admissibke priori
contrast using the deuteration of selected laykrs this  information” about the system and exploit it. Such informa-
note, we describe a simple and powerful model-independeriton is used as constraints during the solution by describing it
method for the fast analysis of x-ray or neutron reflectivityin terms of sets. For x-ray and neutron reflectivity, there are
data and the reconstruction of the scattering-length-densitiour constraints acting op(z), the charge density as a func-
(SLD) profile that finds not simply one solution, but a set of tion of positionz:
feasible solutions that match the experimental data. In es- (i) p(z) is positive, (except for a few cases in neutron
sence, rather than relying upon a good guess for the initialeflectivity).
model, the method finds the set of feasible models that are (ii) For the medium above the reflecting surface, generally
consistent with the data. This set can then be used for gacuum, the value g5(z) is known.
subsequent least-squares refinement. This is the same strat-(iii) In the bulk material below the reflecting surfapéz)
egy that has been used for many years to solve the crystak also known.
lographic phase problerte.g., Ref. 12), and has also been (iv) An upper bound to the value @f(z) is usually avail-
used recently with success to solve surface structlegs, able.
Refs. 13-15). A common issue in constrained phase determination prob-
We will focus on x-ray reflectivity, noting that the same lems is the uniqueness of the solutions. If the reflectivity
algorithm can be used for neutron reflectivity in almost allproblem is of “compact support,” i.e., outside of some par-
cases. For cases involving SLD profiles of smaller extentticular region the derivativelp(z)/dzis zero, and this is the
reflectivity can be treated kinematicaflyFor an infinitely  only constraint on the problem, it is known that a multiplicity
sharp interface, the Fresnel reflectivitR{) can be ex- of solutions exist® Even with the additional constraints it is
pressed as not clear that a unique solution exists for the reflectivity
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Tmpose real space elements of the set are also members of the set. Ther&pre,
constraints (S,) is a convex set whils, is a nonconvex sét."?In terms of
3 orthogonal projections, we can construct an iterative method
Impose Fourier as
space .Inverse
constraints (S,) Fourier Transform

pn(2)=T 'P,TPip,_1, 5)

where p,, is the current estimate gf(z) and p,,_; is the
previous estimate g¥(z). P; andP, are relaxed orthogonal

Recovery Observed Intensities projection operators, defined by Eq$) and (7). T is the
Criterion /"o é‘;ﬁﬁgig‘;ﬁf&) operator for differentiation and Fourier transformation, and
T lis its inverseP; and P, can be expressed by
YES
Feasible 0, Zevacuum
Selution p(2), 0=<p(2)<Dpax
FIG. 1. Flow chart of the phase retrieval algorithm used for Pip(2)=4 (1= 61)p(2), p(2)<0 (6)
analyzing x-ray reflectivity. The algorithm as a whole involves the Dmax— (62— 1)p(2), p(2)>D max
jecti to set principl d tic algorithm.
projection onto set principles and a genetic algorithm Dsub, 7 < substrate

problem(i.e., an analytic proof However, we do know that 5,4
there will be a set of plausible solutions fo¢z). If we can

find this set, these can then act as the initial models for Tp(2)
subsequent final refinement via a least-squares approach. In P>Tp(z)= \/IO(Q){T— , (7)
other words, this set of solutions will act as the initial model ITo(2)]
input and a degree of objectivity can be imparted to the proynhere
cess, limiting the guesswork and eliminating the issue of
uniqueness of the solutions. dp(2)
The solution method combines two separate algorithms: Tp(Z)=f< 4z 8)

(a) The first finds a solution from some initial starting
point (some of the phases). For this we used a method
iterative orthogonal projectionsee below).

4@nd 6, and 6, are scalar constantsverrelaxatioh’ =29 be-
tween 1 and 2P, corresponds to the correction of the object

(b) The second is a global search algorithm to find the se t_th_e 0—1)th (:;tergt|02,pn_1, W'.th tfhe c;]bserviad moduli
of plausible solutions. This is achieved by employing a ged .IO(Q)]' andP, is the correction for the real-space con-
netic algorithm? straints. For completeness, we have only used orthogonal

projections implicitly with a classical Hilbert spate met-

The first algorithm involves projecting an initial estimate ric; this could be generalized to use Bregman functions and
onto two constraint sets; a flow diagram is given in Fig. 1.generalized projections.
Given m independent constraints, a feasible solution lies at To implement the algorithm, we start with a guess for the
the intersection ofn constraint set’~?°In our case we con- complex structure factor§y(Q), where
sider two sets: one in real space, the second in reciprocal
space. The first se€3; consists of all solutions that obey the Fo(Q)=VIo(Q) exdid(Q)] 9)
constraints om(z), a real space object. The secondSets ,
the set of solutions whose moduli are equal to those mea@Nd ¢(Q) are the unknown phases for which values are
sured experimentally. These sets can be expressed matpRught. It is only necessary to define initial phases for the

ematically as strongest 10-20% of measurety(Q) values. Using
Fo(Q)=0 for the unset values in the first cycle, values for
S1={p(2)|p(z) eR"; Dpac=p(2)=0; p(2)=Dgyp, the others are generated automatically at the end of this pass.
On any particular guess for the phases, the system of succes-
ze substrate; p(z)=0, ze vacuun (3) sive orthogonal projections described abgsee also Fig. 1)

is performed until there is essentially no change in the out-

dp(2)\ |2 put. A mathematical figure of merfEFOM) is then calculated
32:{,3(2); }-( Zz ) :|0(Q)]- (4)  as a recovery criterion, defined by
Herely(Q) is the observed ideal reflectivity data as a func- E |Fn(Q)_Fn—1(Q)|2+E IEL(Q)]— VIo(Q)

tion of the reciprocal coordinat®, D ., the maximum pos- FOM=
sible normalized density in the SLD profilBg,,the normal- 23 IF.(Q)2
ized substrate density, aiflis the Fourier transform. A set n

is termedconvexif all points on the line connecting any two (10)
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whereF,(Q) andF,_(Q) are the moduli and phase for the define the character of constraints and solutions allows a
nth and (—1)th iterations, respectively. In the ideal case proper, rigorous mathematical formulation of the problem.
without noise this FOM is exactly zero for any phase valueg-or instance, recognition th& is nonconvex means that we
that satisfy the constraints. However, since the problem igan unconditionally state that multiple solutions may
not convex(setS, is not convex), there may be many rather exist—in other words, there is no guarantee that the reflec-
different phases that give small to zero values for the FOMtivity problem has a unique solution. Second, and more im-
One therefore has to perform a global search to find the set gfortantly, the approach intrinsically accounts for this pos-
¢(Q) values that give small FOM values, this set being thesible nonuniqueness. If twr more) solutions exist, our
feasible set of solutions for the problem. For this a genetiapproach will find them. It is also worth stressing that the
algorithm (GA) was used to implement a global search toalgorithm requiresonly three pieces of informatior(a) the
find the best set of phases. Successive projections onto thiensity of the substratéb) an upper limit(which does not
constraint sets refine the initial phadesally, but within the  need to be very accuratéor the density of the surface ma-
GA a global optimization is achieved by a method similar toterial, and(c) an upper bound to the width of the surface
“natural selection,” which favors phases with better FOM material.
values. Phases with good FOM values are chosen as “par- No prior assumptions are required regarding the form of
ents” for the next generation of “children.” The output the film density, except that it is positive and real. The output
from the algorithm is a solution set in which the solutions arewill be a set of solutions ranked in terms of how well they
listed in an ascending order with regard to their FOM’s. Thematch the known informatior(These solutions can then be
first solution, or top solution, has the lowest FOM and isused as the initial models for refinemehtsr some cases,
considered to be the most plausible solution to the problenyparticularly with large measurement errors, there may well
Details on phase restoration using GA’s and FOM selectiorbe several quite different solutions that all match the con-
can be found elsewhere in papers by Carmetial?! and  straints; in this case, unless some can be excluded on physi-
Marks and Landre& For completeness, we should mention cal grounds, the reflectivity measurements are intrinsically
that care and use of sharing algorittfhare required to find nonunique.
the set of feasible solutions rather than just one or two solu- In order to examine the algorithm and solution method,
tions. several test models were preparéal) a two-box model and
The approach we are using may at first appear rather contb) a three-box mode[Figs. 2(a)and 2(b)], simulating a
plicated and similar to existing methods, but differs from monolayer of fluorocarbon amphiphilic molecules on water;
them in several important aspects. First, our use of sets t() a multilayer model[Fig. 2(c)], modeled after five alter-
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1x10° ¢ the real space constraint s@t. The fundamental challenge
1x102§ in L_Jsing three- and two-box models is that in the |Qw-
region (Q<0.6 A°1) the two-box and three-box models do
%’ 1x10° _____________ not have significant differences in the ideal reflectivity
§ 1x10°0 ¥ . curves, as shown in Fig. 3. The results, consisting of the top
% _15 ! solutions for these cases, given in Fig&a)and 4(b), indi-
Z X107 o Box Model cate that the algorithm was able to differentiate between
B 1x102f - Three Box Model these cases and match the original models very well—nearly
af Four Box Model exactly, if corrected for the displacements observiedii-
X107 Muttilayer Model cated byA in the figures). A displacement in real space cor-
1x10™L : ‘ responds to a systemagihase shifin reciprocal space with
0.0 0.2 0.4 0.6 0.8 1.0 respect to the correct phases, which does not affect the shape

QA™ of the solution, changing only the relative position of the
solution with regard to a reference point. The displacement
for the two-box solution is measured to be around 1 A, while
that of the three-box model is approximately 2.5 A. This
insignificant effect can be overcome by implementing stricter
nating layers of Pt and Si on a SiQubstrate; andd) a real-space constraints in the algorithm; however, we have
four-box model[Fig. 2(d)], to scrutinize the uniqueness is- chosen not to do so for simplicity. Smaller displacements are
sue. A Gaussian interface roughnessoef3.0 A was used also observed for the top solutions for multilayer and four-
for all interfaces in the models. The ideal reflectivity curvesbox models, given in Figs. 4(@nd 4(d).
for the models were simulated kinematically and are shown The multilayer model is included to inspect the applica-
in Fig. 3. The algorithm was set to search and reconstruct thbility of the algorithm to the analysis of ultrahard multilayer
phases for the largest 20 or 40 reflectijmalues ofl ,(Q)]  coatings and similar stratified media. In reality, the reflectiv-
of a total of 500(20 for two- and three-box and 40 for four- ity from such a system is better explained using dynamical
box and multilayer models). The input consisted of simulatednodeling* due to the effects of multiple scattering between
ideal reflectivities, the reciprocal space constraintSsetand  the layers. The top solution for the multilayer model displays

FIG. 3. Simulated ideal reflectivity curves for the models in
Fig. 2.

18 . 18 .
—— Original — Original
16+ ] \ — - Top solution 16} — Top solution |
14} 4 1 141
12} / N E 12f
2 1 " g 1
So8 - ._A 3 o8y
0s / 0e FIG. 4. Solutions for the test
04 / 0.4 SLD profiles:(a) Two-box model,
02 _/ 0.2 / (b)  three-box model, (c)
0 : . . 0 _ . . . multilayer model, and(d) four-
-10 0 10 A 20 30 -10 0 Depth ;OA 20 B box model. The full curves indi-
Depth, Z () epth. 2 (A) cate SLD profiles and the dash-
(a) (b) dotted curves represent the
solutions found using the present
® " — oOriginal 2 ' ' ' ' technique. The displacements, in-
— Top solution ; \ dicated by &\, in the solutions are
20¢ { J | discussed in the text. The arrow in
! Il 15¢ | [ | (c), the solution for the multilayer
J ’ \ model, indicates the deviations in
15} ] | !
£ i £ ; | the low-density regions from the
S [ S 1 ! original model.
O 10t [ 1 o J \ A
J 1 p/ \ );
|l s |
3 ! 1 j
4 :! — Original
- — Top solution
®=0 s 100 180 200 260 300 360 L— 20 40 80 80
Depth, Z {A) Depth, Z (A}
(©) (d

195414-4



MODEL-INDEPENDENT INVERSION OF X-RAY ... PHYSICAL REVIEW B53 195414

several deviations from the original model, especially in the 2.0
low-density regions, indicated by an arrow in Figcy how- 1.8
ever, the shape and the width of the high-density layers are 1.6
correct. This result suggests that to the extent that reflectivity 1.4
from a multilayer can be approximated kinematically, the 2 1.2
solutions from the algorithm can be used as starting points & 1.0
for a least-squares method. This case was also repeated set- & 0.8
ting phases of the 20 largest valueslgfQ). Although in 0.6
general the solutions are very encouraging, the reconstruc- 0.4
tion of the low-density layers is not as good. 0.2
The final simulated case, the four-box model, is used to 0.0
examine the uniqueness question inherent in both multisolu- -150 -100 -50 0 50 100 150 200 250 300 350
tion algorithms and the inversion problem. As shown in Fig. Depth, Z (A)

2(d), several step heights and lengths are nearly identical.
Stepsa—f and c—d are designed to have no more than a
25% difference between their heights. The same is true of
step length® ande. Such near-degeneracy of features in the
model makes the accurate reconstruction of the step heights 0.06
and lengths harder, enabling the possibility of structures with
a combination of identical features positioned differently to O g4
have nearly identical calculated reflectivity curves. The most ES v o
feasible(top) solution for the four-box case, shown in Fig. e o e ' cs.® .o A . .
4(d) indicates that the algorithm performed very well. The 0.02 P e T e . . e
deviations from the original model are minimal, and all of r',- & oee oo .
the features are positioned correctly, thus indicating no ap- 0
parent signs of problems associated with the uniqueness of o 0.0002 0.0004 0.0006 0.0008
the solution. FOM

The ability of this algorithm to obtain a multiplicity of
solutions that obey the applied constraints was tested sepa- FIG- 5- (8) Multiple solutions generated in a single trial of the
rately on another two-box model. SLD profiles of eight of algquthm. SLD profiles are dlsplac.ed along thg density axis for
the top solutions given in a typical trial are compared in Fig.clarity. (b) CFOM vs FOM for 250 different solutions.
5(a), where it is clear that a number of plausible solutions ] ) . ]
with differing features have been reconstructed. For each of The final phase of this study consisted of applying the
these, both a FOM as given in Emo) and a calibration algorithm to the ana|ySiS Of- data from the X-ray I’efleCtiVity
figure of merit(CFOM) that compares the solution phases toStudy of fluorocarbon amphiphile perfluorododecyl aspartate
those of the original simulation, are calculated. The CFOM(PFA) monolayers on water by Jacquemainal *® The data
and FOM for 250 solutions are plotted in Fig(bd. In the  consist of four sets, Fig. 6, acquired under the following
CFOM, defined as

‘oo'B

1x10" ¢
2 {Fa(Q)1-cod ¢n(Q)— dro(Q1I} i
CFOM= ) 1%100 1~
2 L
22 Fo(Q) £
11 B r ED
(@D T 1x10°71: oy + o8
dno(Q) represents the phase generated by the simulation of % 9 Egix
the ideal reflectivity curve from a box model and would not & o water + KOH X
; . ] . _ — 2 x high pressure water
be known in an experimental case; however, in examining 1X10°F & low pressure water +2
our algorithm, we use the CFOM as a measure of the suit- r + water + CsOH
ability of the FOM in determining the fitness of a solution. I
Two branches of solutioridabeledA andB in Fig. 5(b)]are 1x107
visible, each of which corresponds to a particular set of simi- 0 5 10 15 20 25 30 35

larly shaped solutions as shown in Figah Within a given Q/Qc
family, individual solutions differ from each other only sub-

tly and primarily by the aforementioned phase shift, and thus  F|G. 6. Experimental data from the x-ray reflectivity study of
may be treated as a single “quasisolution.” In general, it iSPFA monolayers on watdiby Jacquemairet al. (Ref. 25)]: O,
found from our observations of the two- and three-box SLDwater+KOH solution,pH=11.2, /=30 mNm%; X, pure water,
profiles generated by our algorithm that the number of quaz=28 mNm%; O, pure water7=13mN nT%; +, water+CsOH
sisolutions in such cases, while greater than one, is small. solution,pH=11.1, 7=30mN m %,
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conditions: (1) pure water, surface pressure=13mNnT%; ence of a similar kinKartifact 1)in Fig. 7(b), the rest of the
(I) pure water, high pressure=28 mNm%; (Ill) basic so- solutions do not. The head group for the low-pressure solu-
lution (KOH) with pH=11.2,7=30mN m % (IV) basic so- tion is visible around 19 A, which does agree well with the
lution (CsOH)with pH=11.1, 7=30 mN mi L. The original  length of the PFA molecul€19.6 A) calculated previousI§?
analysis of the data sets from the PFA/water system is givedllowing for molecular tilt and other effects. The head group
by Jacquemairet al?® using a least-squares refinement. Infor the high-pressure solution, Fig. 7(b), is much more pro-
addition, Pedersérhas also analyzed the same data set usin%ounced than that for the low-pressure case, similar to the fit
a method involving a profile correlation function. In general, by Jacquemairet al”® The position for the head group is
the solutions for the SLD for the PFA/water system fromaround 20.5 A.
both studies resembles the three-box case examined earlier, The major difference between the high-pressure solution
although the two-box case is also very similar. and the solution for the KOHwater case, Fig. 7(c), is the

In this analysis, again only the phases of the 20 mospositioning of the extra density for the head group. This fea-
intense reflections were varied in the algorithm, although théure is around 19.5 A below the zero reference point for the
whole set contained a total of 31 reflections as shown in FigkOH+water solution. The same feature is found to be fur-
6. The reflectivity values foQ/Q.<1 in the data sets are ther pronounced, and at 21 A below the surface in the top
greater than unity, probably originating from instrumentalsolution for CSOH-+water case shown in Fig. 7(d). The pre-
resolution or other issues with data acquisition. The top sovious values reported by Jacquemainal>® and Pedersén
lutions for the data set on pure water are shown in Figs. 7 agree well with these values.
(low pressurepnd 7(b) high pressure). The solution for the In summary, a method for the analysis of x-ray reflectivity
low-pressure data set indicates a lower roughness in fulllata has been developed. This method is based on the recon-
agreement with the previous results. There is a marked struction of the missing phase information through methods
difference between the roughness of the low-pressure sollknown both in the image recovery field and in x-ray crystal-
tion and the rest of the solutions that are from data sets withography. This technique involves application of the feasible
much higher surface pressufe-30 mNmi ). However, sets approach to the retrieval of the missing phases using
there are two problem areas in the solution as shown in Figconstraint sets on the real space obj&itD) and the recip-
7(a) ) the kink at the PFA-water interface af®®) the hump  rocal space datdideal reflectivity) coupled with a global
in the surface region. The cause for these can be a combinaearch via a genetic algorithm. The method and the algo-
tion of the following, among other possibilities: nonunity rithm have been tested using four different simulated cases,
beam intensities foQ/Q.<1 and/or placement of the con- which resulted in nearly perfect reconstructions of the mod-
straints regarding regions where SLD is zero. Although theels in question. Furthermore, the applicability of the tech-
top solution for the high-pressure case does indicate the presique to the real experimental data has been demonstrated
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using experimental x-ray reflectivity studies of PFA on wa-the case, and in general to check for uniqueness issues, the
ter. The solutions from the method are comparable to thosmodel-independent approach outlined herein should be far
obtained from least-squares fits of molecular médedut  superior.

without the need to make any initial assumptions about the

character of the solution. The same trends in the variation of We would like to thank Dr. Kjaer and Dr. Pedersen for
roughness with the surface pressure of the water, and tHée x-ray reflectivity data sets described herein. We also ac-
positioning of the head groups in the SLD profiles, are obknowledge the support of the Air Force Office of Scientific
served. For cases where a very good initial model is alreadiResearch for Grant No. F49620-94-1-0164 in funding this
known, refinement would be a simpler approach; if this is notwork.
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