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Abstract: We investigate cases where one can argue that sufficient conditions exist for Direct Methods to work

with swift electrons. In addition to simple cases where kinematical scattering holds ~e.g., surfaces in plan view!,

we identify three other configurations: ~a! when 1s channeling holds and kinematical scattering is statistically

correct; ~b! when there is a mapping from kinematical to dynamical intensities that preserves the order of the

intensities, for instance with powder or precession data, and ~c! when the scattering is dominated by one type of

atom. We also briefly discuss the possibility of using Direct Methods to restore the complex exit wave leaving a

sample in the most general case.
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INTRODUCTION

A common problem for electron microscopists is to deter-

mine the structure, or at least a good approximation to the

structure, of some unknown material. In many cases, the

materials contain several phases, making the problem rather

hard for conventional X-ray diffraction. Over the last few

years there has been substantial growth both in the use of

and our understanding of Direct Methods using swift elec-

trons ~i.e., electrons of energy .100 keV!, for instance,

Dorset & Hauptman, 1976; Dorset et al., 1979; Fan et al.,

1991; Vainshtein et al., 1992; Gilmore et al., 1993; Dorset,

1995, 1996; Sinkler et al., 1998b; Sinkler & Marks, 1999a,

1999b; Dorset & Gilmore, 2000; Hu et al., 2000; Weirich

et al., 2000; Chukhovskii et al., 2001. With a few ~important!

exceptions, the approach has been to measure intensities in

diffraction patterns, then apply the same methodologies

that have been developed for kinematical X-ray diffraction

to obtain estimates of the phases. Even with some fairly

large errors in the phases, for instance 208 root-mean-

square, a map using the square root of the intensities

~similar to the magnitude of the structure factors! and the

restored phases will reveal the main features of the atomic

structure. The map may not show accurately all the atomic

columns in projection; some may be too strong and the

positions may be a little incorrect ~by 0.1–0.5 Å!. However,

this does not matter when all one wants initially is a first

approximation to the structure.

In some cases, for instance for surfaces ~e.g., Gilmore

et al., 1997; Collazo-Davila et al., 1998; Marks et al., 1998a,

1998b; Plass et al., 1998; Grozea et al., 1999! the intensities

are rather close to kinematical, so both Direct Methods to

determine the approximate structure as well as refinement

of the positions is valid as a first approximation. ~More

rigorous is a dynamical refinement, e.g., Jayaram et al.,

1993; Plass & Marks, 1995; Collazo-Davila et al., 1998;

Jansen et al., 1998.!
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However, in most cases, kinematical diffraction is a

poor mathematical descriptor for experimentally observed

intensities. Despite this fact, classic X-ray scattering ap-

proaches that assume kinematical diffraction have proved to

be quite successful. Why this should be the case has not yet

been considered theoretically in any detail. There have been

a few papers looking at specific cases, for example, Dorset

et al. ~1979! and Dorset and McCourt ~1994!, but nothing

general with the exception of the 1s channeling condition,

which has proved amenable to detailed analysis ~e.g., Sinkler

et al., 1998b; Sinkler & Marks, 1999a, 1999b; Hu et al., 2000;

Chukhovskii et al., 2001!.

The intention of this article is to look critically at

sufficient conditions for Direct Methods to work with

dynamical diffraction data. In addition to several situations

that previous work has shown to be sufficient, we will also

derive a few additional ones. The hope is that an improved

theoretical understanding of sufficient conditions for the

approach to work will aid in the choice of experimental

problems to tackle, the avoidance of cases where Direct

Methods will not work, and the development of new

methods beyond any kinematical approximation using

contemporary optimization approaches such as successive

projections.

BASICS

Before we analyze sufficient conditions, it is useful to review

some of the basic concepts of crystallographic Direct Meth-

ods for kinematical scattering. We do not intend to provide

a detailed, historical perspective, but rather a concise, albeit

in some cases oversimplified, introduction. The principle is

to reduce the possible phase values by using a priori infor-

mation as constraints; for a more detailed description of the

mathematics, see Stark ~1987!, Combettes ~1996!, Censor

and Zenios ~1997!, and Marks et al. ~1998b!, and for some

general references as well as a more detailed analysis of

conventional Direct Methods see, for instance, Giacovazzo

~1980!, Ladd and Palmer ~1980!, Woolfson ~1987!, and

Woolfson and Fan ~1995!. The constraints fall into two

classes: those based on the fact that the scattering comes

from atoms, and others based on probabilities for random

distributions of atoms. In particular: ~a! We know the

potential for individual atoms, and to a very high degree of

accuracy we can ignore bonding effects and state that the

potential is some linear combination of the isolated atom

potentials, each atom being at some different location in the

sample. ~b! We know that the potential has to be positive.

~c! If the data has a reasonable resolution ~corresponding to

a reconstruction with about a 0.1-nm resolution! we know

that most of the potential is zero—the spaces between the

atoms. All these are additional types of information that we

can exploit in some fashion. The oldest, and simplest is ~a!,

which is known as atomicity. Consider the case of a struc-

ture with only one type of atom. In reciprocal space the

structure factor can be written as

F~k! 5 (
l

f ~k!exp~2pik{rl 2 2Bk 2 ! ~1!

for atoms at the positions rl with f~k! the known atomic

scattering factor. Here B is the isotropic temperature factor

for each atom. Dividing by Nf~k!exp~22Bk2!, where N is

the number of atoms, gives what are called the unitary

structure factors:

U~k! 5 1/N (
l

exp~2pik{rl !. ~2!

In real space we therefore have

u~r! 5 1/N (
l

d~r 2 rl ! 5 Nu~r!2, ~3!

or, alternatively, in reciprocal space:

U~k! 5 N (
h

U~k 2 h!U~h!. ~4!

If we know the phases of U~k 2 h! and U~h!, we can

therefore generate an estimate for the phase of U~k!. Alter-

natively, if we guess the phases for the different reflections,

we can use the difference in the phase ~and amplitude! that

we estimate from equation ~4! and the phases that we

started with to gauge how good that particular set of phases

is. The “true” set of phases has to obey equations similar to

equation ~4!—that is, they cannot be totally random.

An alternative approach is to look at the same question

using statistics and probabilistic relationships. To illustrate

these, consider the product

U~k 2 h!U~h! 5 1/N 2 (
l

exp~2pk{rl !

3 (
m

exp~2pih{@rm 2 rl # !. ~5!
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If the atoms are randomly distributed, the most probable

value of the second sum is unity, so,

U~k! ' N^U~k 2 h!U~h!&. ~6!

Let us next consider

6U~k! 2 NU~k 2 h!U~h!62

5 6U~k!62 1 N 2 6U~k 2 h!U~h!62

2 2N 6U~k!U~k 2 h!U~h!6

3 cos~f~k! 2 f~k 2 h! 2 f~h!!, ~7!

where f~k! is the phase of U~k!. In a statistical sense, we

will have a distribution of values. If we consider the moduli

of the unitary structure factors 6U~k!6 to be known, and

consider random values of the phase, in a statistical sense

we will have a distribution of values for the right-hand side

of equation ~7!. A standard theorem in statistics is the

Central Limit theorem: All distributions tend towards being

Gaussian. Hence the probability takes the limiting form

P~U~k! 2 NU~k 2 h!U~h!!

' C exp~26U~k! 2 NU~k 2 h!U~h!62 !, ~8!

where C is a normalization constant. Removing the terms

that depend only on the ~known! moduli, we can reduce

this to a variant of the Cochran distribution ~Cochran,

1955!

P~U~k! 2 NU~k 2 h!U~h!!

' D exp~2N 6U~k!U~k 2 h!U~h!6

3 cos@f~k! 2 f~k 2 h! 2 f~h!# !, ~9!

with D another normalization constant. The standard

deviation of the distribution in equation ~9! scales as

1/!2N6U~k!U~k 2 h!U~h!6. Therefore, if the unitary

structure factors are large, the sum of the phases

f~k! 2 f~k 2 h! 2 f~h! ' 2np, n 5 0,1,2 . . . ~10!

This is known as the triplet phase relationship, abbreviated

as S2. Considering several different values of h and multi-

plying probabilities yields

)
h

P~U~k! 2 NU~k 2 h!U~h!!

' 2NC expS(
h
6U~k!U~k 2 h!U~h!6

3 cos$f~k! 2 f~k 2 h! 2 f~h!%D. ~11!

If we further consider the most probable value of f~h! by

taking the derivative of equation ~11! we have

tan~w~k!!

'
(

h
6U~k!U~k 2 h!U~h!6sin~f~k 2 h! 1 f~h!!

(
h
6U~k!U~k 2 h!U~h!6cos~f~k 2 h! 1 f~h!!

.

~12!

This equation, a variant of the standard tangent formula, is

essentially the same as the unitary Sayre equation described

earlier ~e.g., equating real and imaginary parts of equation

~4!, then dividing!, derived in a statistical sense. By consid-

ering different powers or combinations of structure factors,

others can be derived. The triplet is generally considered the

most useful for bulk crystallography.

Exploiting these or other constraints with kinematical

scattering and not too many atoms ~e.g., less than about 100

unique sites!, it is relatively straightforward to solve a struc-

ture, particularly in three dimensions. In ab initio Direct

Methods one starts with a guess of the phases for some of

the reflections ~plus some fixed phases to fix the origin and

enantiomorph in some cases, with all the phases obeying

the appropriate conditions for the symmetry of the struc-

ture!, then sees how well these satisfy the constraints. Re-

duced to its fundamentals, the general approach is to use

variants of the Gerchberg–Saxton algorithm ~Gerchberg &

Saxton, 1971, 1972!, which can be written mathematically as

a successive projection approach ~e.g., Combettes, 1996!.

~The Gerchberg–Saxton algorithm was originally used to

find the phase by combining an image and a diffraction

pattern. It has subsequently been generalized to the concept

of exploiting known information in real and reciprocal

space, or, in fact, any other type of known information; see,

e.g., Combettes, 1996. For further details on the connection

to traditional crystallographic methods, see Marks et al.,

1998b.! As illustrated in Figure 1, one successively applies

reciprocal space constraints ~known moduli! and real-space

constraints ~atomicity or statistics!. By performing a search

over different initial phases, those that best satisfy the con-
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straints are possible solutions. These phases combined with

experimental amplitudes give the initial maps. One can

often identify some of the atoms, then, using their presence

as additional a priori information, the rest can be found.

Much of the success of Direct Methods is due to this second

step called “structure completion.” As more atomic sites are

determined, the degree of a priori information increases

and the analysis rapidly converges to reasonably accurate

~e.g., better than 0.01 nm! positions for the atoms, which

can, as the final step, be refined.

One point that will become important later is the

well-known fact that the phases are more important than

the absolute values of the moduli in obtaining a reasonable

map of the structure. To help illustrate this, Figure 2 shows

the role of both phase and amplitude errors for a represen-

tative material, perbromophthalocyanine. Note that we only

need to find the phases with a relatively small error, and the

results are quite insensitive to amplitude errors.

SUF FICIENT CONDITIONS

From an electron microscopy experiment we may have

available an HREM image, from which some phases can be

extracted, and a diffraction pattern. Various methods exist

to extract quantitative intensities from the diffraction data

~e.g., Xu et al., 1994!, and we will not discuss these here. The

question is how valid is it to apply Direct Methods to this

data?

We will now consider several cases where one can

establish reasonable sufficient conditions for Direct Meth-

ods to work. The basic strategy will be to show that in

several cases either ~or both! the atomistic or statistical

arguments remain valid even with fully dynamical diffrac-

tion. As a caveat, it is hard if not impossible to be fully

rigorous; all we seek to establish is a strong case. Some cases

that should work may not, and there are probably other

conditions beyond what are analyzed herein—a topic for

future research.

CASE 1: KINEMATICAL DIF FRACTION

Pure kinematical diffraction corresponds exactly to the case

that one has in almost all examples of X-ray diffraction, and

is the situation for which Direct Methods has been de-

signed. Probably the closest approach to this configuration

in practice is diffraction from a surface in plan view. Pro-

vided that the substrate is tilted off a zone axis ~to damp

multiple scattering by the bulk of the surface beams!, the

intensities are very close to the kinematical ones and it is

relatively straightforward to recover a good map. As an

example, Figure 3 shows results for the Si ~111! 7 3 7

Figure 1. Schematic of a generalized Gerschberg–Saxton or succes-

sive projection method. Starting from an initial estimate, recipro-

cal space ~e.g., moduli! and real space ~e.g., atomicity! constraints

are applied. So long as these constraints are applied using particu-

lar mathematical methods called projections ~see Marks et al.,

1998b!, the iterations converge to a local solution.
Figure 2. Illustration of the role of errors in amplitude/phase for

perbromophthalocyanine: top, phase errors in degrees ~standard

deviation!, and bottom, with amplitude errors in terms of the per-

centage R-factor ~100!(6Ftrue~k! 2 F~k!62/(6Ftrue~k!62 excluding

F~0!!. The amplitude errors were generated using noise in steps of

8% of the strongest beam amplitude. For reference, a 108 phase

error gives an R-factor of about 20%, scaling similarly for the

others. The figure demonstrates the fact that we only need a good

approximation to the phases, not exact values, and that quite large

amplitude errors can be tolerated so long as the phases are correct.

In all the maps white corresponds to regions of strong intensity.
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surface ~A. Subramania & L.D. Marks, in prep.!. Provided

appropriate care is taken to obtain a thin region and mini-

mize dynamical effects, one can obtain essentially the cor-

rect phases for all reflections.

CASE 2: STATISTICALLY KINEMATICAL
DIF FRACTION

Except for surfaces, kinematical diffraction is a rather poor

model for absolute intensities—even a single atom of gold

at 100 kV is a dynamical scatterer. One important exception

is the case when the structure has pseudo-random atoms in

projection, for example, an amorphous material or some

biological structures. In this case, the different contribu-

tions to the dynamical scattering from different atoms add

with essentially random phases, so the net result can be very

close to kinematical in character ~e.g., Marks, 1988!.

Surprisingly, the fact that kinematical diffraction is a

poor model does not mean that Direct Methods will not

work. As mentioned earlier, we are only looking for a

reconstruction of the phases with a reasonably small error,

for example, 10–208. If the true phase of the complex wave

leaving the exit surface of the sample only deviates in an

average, statistical fashion about a mean ~as against a system-

atic deviation! by this magnitude from the kinematical

wave, and with some correspondingly small deviation ~e.g.,

10–20%! of the intensities, we can expect that Direct Meth-

ods will work. To be more specific, consider the log of the

probability distribution of S2 values from equation ~9!

rewritten as

D~f~k! 2 f~k 2 h! 2 f~h!!

5 A~k, h!!I ~k!I ~k 2 h!I ~h!

3 cos$f~k! 2 f~k 2 h! 2 f~h!%

5 B~k, h!cos$f~k! 2 f~k 2 h! 2 f~h!%, ~13!

where all normalization terms have been buried in A~k,h!

with I~k!, I~k 2 h!, and I~h! the experimental intensities.

Maximizing D~f~k! 2 f~k 2 h! 2 f~h!! corresponds to

finding the most probable phases. Provided that this log

probability distribution ~for different h and k! has a maxi-

mum with a reasonably small deviation when B~k,h! is

large for zero ~or some fixed angle! value within the cosine,

we have a sufficient condition for Direct Methods to work.

In the general case of dynamical diffraction, this is a

complicated problem that merits further study. For one

specific case, namely a 1s channeling model ~Van Dyck &

Op de Beeck, 1996; Sinkler & Marks, 1999b!, it is possible to

do a general analysis. The phase relationships in classical

direct methods are formulated based on prior knowledge

that the sample potential is consistent with discrete atom-

like maxima. Dynamical scattering theory offers a corre-

sponding prior knowledge that for reasonably thin samples

~typically in the range up to a few hundred Angstroms!, for

directions in which columns of atoms are well separated,

the exit wave is dominated by 1s channeling Bloch states,

that is,

c~r, z! 2 1 5 (
i

Vi ~r 2 ri !

Ei
SexpS2ip

Ei

E0

kzD2 1D
5 (

i
ai ~r 2 ri ! ~14!

in which the sum is over atomic columns i with projected

Lindhard potentials Vi ~Ohtsuki, 1983!, r is a vector in the

x,y sample plane, k 5 1/l, Ei is the 1s channeling eigenvalue

for column i and E0 is the energy of the incident electrons.

The 1s channeling approximation shares with conven-

tional direct methods atomicity; there are atomlike peaks at

the atomic columns. However, the effective single atomic

potentials ai~r 2 ri! are complex, rather than real as in

kinematical scattering. For X-ray diffraction when anoma-

lous absorption is included, the single atom potentials are

also complex, so we can directly convert from known results

Figure 3. Map from a Si ~111! 7 3 7 surface using data taken

off-zone from a sample approximately 18 nm thick ~determined by

EELS of the plasmons; A. Subramania & L.D. Marks, in prep.!. A

total of 1,600 reflections out to 0.1 nm21 reduced to 112 indepen-

dent reflections.
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in the X-ray literature ~with a few additional simplifications

due to the particular character of the 1s model; see Hu

et al., 2000, and Chukhovskii et al., 2001, for details!. The

key results are:

1. The phases of 1k and 2k reflections obey, statistically

~see Fig. 4!, the relationship

f~k! 1 f~2k! ' 2np 1 a, ~15!

where n is an integer and a is a constant, depending on

the type of atoms present and thickness, not k. ~Here a is

zero in kinematical theory.!

2. The triplet sums obey a similar statistical relationship

~see Fig. 5!

f~k! 2 f~k 2 h! 2 f~h! ' 2np 1 b. ~16!

Note that b is zero with kinematical scattering.

3. There are deviations from Friedel’s law, but the law

remains valid in a statistical sense ~see Fig. 6!.

Therefore, provided that a 1s channeling model is a

good approximation, for example, a sample that projects

well into nonoverlapping atomic columns and is not too

thick, for instance less than 10 nm, Direct Methods can

Figure 4. Probability histogram of the triple product F~g!F~2g!

calculated via multislice for ~a! centrosymmetric and ~b! noncen-

trosymmetric ~random! models of C32Cl16CuN8-crystal, with a

total thickness of 5.264 nm, taken from Hu et al. ~2000!. The

distribution resembles a Gaussian distribution, with an offset

origin.

Figure 5. Probability histogram of the triple product F~g!F~h!

F~2g 2 h! calculated via multilsice for ~a! centrosymmetric and

~b! noncentrosymmetric ~random! models of C32Cl16CuN8-crystal,

with a total thickness of 5.264 nm, taken from Chukhovskii et al.

~2001!. The distribution resembles a Gaussian distribution, with

an offset origin.
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work because the underlying statistical formulas remain

valid.

An interesting consequence of this result is that it

forces us to reconsider what we mean when we say that

“kinematical diffraction is not correct.” In a formal math-

ematical sense, this is certainly true. However, both the

amplitudes and the phases can have mean values that are

the same as those in kinematical theory. Provided that the

standard deviation about the mean is relatively small, we

can consider kinematical theory to be “statistically correct.”

As an analogy, consider a set of intensities:

IObs~k! 5 IKin~k! 1 h~IKin~k!!, ~17!

where IObs~k! and IKin~k! are the observed and kinematical

intensities, and h is a random noise term that depends

somehow on the kinematical intensity. Provided that the

noise contribution is relatively small, we would still con-

sider a kinematical model to be valid, although it is only

formally correct if there is no noise.

Interestingly ~a slight digression from the focus of this

article on using diffraction information!, this also implies

that in the same thickness regime one can use a kinematical

approximation to generate a qualitatively correct interpreta-

tion of other types of electron microscope images, for

instance, high-resolution micrographs. This last point is, in

fact, rather widely used, although the justification of this

approach in a statistical sense is new.

CASE 3: INTENSITY MAPPING

There is a different set of conditions that, similar to the

analysis in the previous section, can yield good results in

Direct Methods. Let us suppose that the intensities for any

two beams obey the rule

I ~k! . I ~k' ! iff 6F~k!6 . 6F~k' !6, ~18!

where F~k! is the kinematical scattering factor. Let us write

T ~k! 5 exp~if~k!!!I ~k!/N~k!, ~19!

where f~k) is the true structure factor phase and any

normalization terms are included in N~k!. If ~18! is valid,

then whenever 6F~k!F~k 2 h!F~h!6 is large ~or small!

6T~k!T~k 2 h!T~h!6 will necessarily be large ~or small!. In

terms of the S2 phase terms ~see equations ~9! or ~13!!, the

distribution using T~k! values will have the same character

as that using F~k!. Consequently we can expect use of the

observed intensities to give essentially correct phases. Since

phase values are more important than moduli in generating

an approximate restoration of the electrostatic potential, we

can infer that the basic features will be correctly recovered.

The particular case analyzed in this section can occur

in two ways. The first corresponds to small deviations from

kinematical scattering. We can expect that the intensity of

the strong beams will not increase as fast with thickness as

weaker ones, but initially the constraint used above should

still hold.

The second is for precession or powder diffraction. The

idea behind an electron precession camera ~Vincent & Midg-

ley, 1994! is to integrate the diffraction pattern from

a single region while rotating electronically the incident

beam and removing the deflection after the sample. Powder

diffraction achieves the same results by averaging over nu-

merous grains, which also will include an average over

thicknesses. There is extensive empirical evidence, primarily

from powder work ~e.g., Vainshtein et al., 1992! but more

recently from precession data ~e.g., Gjønnes, 1997; Gjønnes

et al., 1998a, 1998b! that these intensities give rather a good

description of the structure.

Figure 6. Plot of the normalized dynamical moduli for F~g! ver-

sus F~2g! for the noncentrosymmetric structure used in Figure 4,

taken from Chukhovskii et al. ~2001!. The values are distributed

about a straight line, demonstrating that Friedel’s law is obeyed

statistically.
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The basic theory for the intensity distribution is the

Blackman formula ~Blackman, 1939; see also Cowley, 1981,

chap. 16 and Reimer, 1984, chap. 7!, which relates the

observed intensity ~by integrating the two-beam formula

over directions! to the structure factor via the equation

IDyn~k! 5 IKin~k!E
0

A~k!

J0~2x!dx/A~k!, ~20!

with IDyn~k! and IKin~k! the dynamical and kinematical

intensities respectively, and

A~k! 5 2pem0 tF~k!/h 2. ~21!

Let us consider two different reflections, for which the ratio

will be given by

IDyn~k!

IDyn~h!
5

IKin~k!F~h!E
0

A~k!

J0~2x!dx

IKin~h!F~k!E
0

A~h!

J0~2x!dx

. ~22!

This equation has interesting limits. If both A~k! and A~h!

are small,

IDyn~k!

IDyn~h!
'

IKin~k!

IKin~h!
, ~23!

that is, we can exploit a kinematical approach for the

relative values, ignoring absolute value deviations from ki-

nematical. Alternatively, if they are large,

IDyn~k!

IDyn~h!
'

F~k!

F~h!
, ~24!

which means that the order is preserved, and we have the

condition discussed in the previous section. The worst case

will be when A~k! ' 2.75 and A~h! '1.2, the first two zeros

of the Bessel function, in which case

IDyn~k!

IDyn~h!
' 0.45

F~k!

F~h!
' 1. ~25!

Thus, under almost all circumstances, the Blackman for-

mula preserves the order of the intensities relative to the

kinematical case, which implies that statistical relationships

based on this order will be valid. As a caveat, the Black-

man formula is known to break down for higher-order

reflections ~e.g., ~400!! when there is a strong lower-order

reflection ~e.g., ~200!!, overestimating the result. While this

is a concern for simple structures, one is not interested in

solving very simple structures, only more complicated ones,

where this breakdown is much less likely to be an issue. It

is also an open question how valid the Blackman formula

is for the ~precession! intensities from a large unit cell

material—this is a topic that merits more study, both theo-

retically and experimentally.

CASE 4: SCATTERING DOMINATED
BY ONE ATOM TYPE

We can generate a very different set of conditions where

Direct Methods will work, namely, when the scattering ~i.e.,

the exit wave, not simply the potential! is dominated by one

type of atom. Let us consider that the electron wave in real

space can be written as

c~r! 5 (
l

a~r 2 rl ! 1 R~r! 1 C, ~26!

with some set of positions l, a constant C, and some residual

R~r! that we will ignore. This case is relevant to a structure

in which a channeling model can be used, with a~r 2 rl! an

appropriate sum of the 1s, 2s, 2p . . . channeling states and

R~r! the delocalized ~unbound! states. The “shape” of each

atom is given by a~r!, which in general will be complex. We

can rewrite equation ~26! as

c~r! 2 C 5 (
l

a~r! * d~rl !. ~27!

If we ignore the constant term, which only affects the

transmitted beam, in reciprocal space

C~k! 5 A~k! (
l

exp~2pik{rl !

and

I ~k! 5 6A~k!62 6(
l

exp~2pik{rl ! 6 2. ~28!

We can always substitute for A~k! some other function B~k!

which is conjugate symmetric, that is, corresponds to a real

~as against complex! feature in the object plane. In particu-
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lar, we can choose a form that will give a symmetric feature

by writing

B~k! 5 S~k!6A~k!6 where S~k! 5 61. ~29!

With some appropriate S~k!, we will have an effective real

and symmetric atom b~r! ~the Fourier transform of B~k!! at

each atomic column. Provided that the pseudoatom b~r! is

reasonably small and well separated from other pseudo-

atoms, it satisfies the atomistic constraints. Hence, Direct

Methods should recover this, therefore, a reasonable map of

the structure.

This condition, in a slightly different form, was used to

understand why oxygen positions show up clearly in resto-

rations of several oxides. If we look instead at 61 2 c~r!6,
if the Fourier transform of this is a good approximation

of the observed intensities, we can expect to recover a

reasonable map of the structure. An example is shown in

Figure 7. Note that there does not have to be any direct

correlation between the recovered pseudoatom and the true

complex wavefunction, except that their centroids will be

similar.

DISCUSSION

The bulk of this article has considered some cases where

one can use dynamical intensities for structure determi-

nation in a more or less classical Direct Methods context

and recover nearly correct phases. The conclusion we

come to is that there are quite a few situations where we do

not need strict kinematical scattering to apply, and some

cases ~e.g., with powder or precession data! where dynami-

cal effects can be quite large without losing the ability to

obtain a useful result. Remembering that the phases deter-

mine the basic character of an image more than the

amplitudes do, it is reasonable to expect recovery of the

atomic column positions. True, not all the columns may

be present, their amplitudes may be slightly incorrect and

the positions a little wrong. However, this does not matter

if the focus is to find a good approximation to the struc-

ture. Not so clear is the extent to which one can use

structure completion methods with dynamical diffraction

data to find atoms that are not present in the original

maps. If the deviations from kinematical are just statistical

in character, classic difference maps may work. However,

for the other cases we have analyzed, this may not be the

case, and more research is needed. Note that the fact that

the recovered map is a good representation of the struc-

ture does not imply that a kinematical refinement will also

give a good result; most refinement strategies discard the

phase information and work solely with the amplitudes in

reciprocal space. It has been known for many years that

there can be sufficient differences to make refinements with

kinematical methods inappropriate, and dynamical ap-

proaches ~e.g., Jayaram et al., 1993; Plass & Marks, 1995;

Collazo-Davila et al., 1998; Jansen et al., 1998! are far

superior.

Of course it is always important to have a good sample.

Strain and other defects can always increase the intensity of

kinematically forbidden but dynamically allowed reflections

~the classic “dynamical extinctions” analyzed by Gjonnes

& Moodie, 1965; see also Eades, 1994!. Unfortunately in

some cases in the literature, “secondary scattering” ~e.g.,

Cowley, 1981, chap. 16! has been invoked to explain this

phenomenon, that is, incoherent planar faults. Although

this might possibly be the case in some organic crystals, in

our opinion it is the exception rather than the rule. Pro-

vided that the area observed has the same thickness and

orientation, which is much easier to achieve with a surface

than with a bulk material, in our experience, highly repro-

Figure 7. Direct Methods solution used to solve ~Ga,In!2SnO5

structure ~Sinkler et al., 1998b!. The solution was obtained with

93 experimental electron diffraction intensities, combined with 18

phases from an HREM image. The solution uniquely identifies

projected oxygen atomic positions ~dots!.
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ducible data can be achieved with appropriate experimental

care.

An open question is the possibility of using dynamical

intensities to reconstruct a complex-valued exit wave, c~r!.

So-called complex direct methods is a relatively new field,

and the successes to date have been limited. The central

issue is to find constraints on the form of the wavefunction

that: ~a! are true for dynamical diffraction conditions,

~b! converge when used in a successive projection approach

~Fig. 1! or some other approach, ~c! are fast, as we have to

consider numerous different initial guesses since the overall

problem is not convex, and ~d! do not also have other

solutions which are not appropriate.

Our experience has been that it is often simple to find

plausible constraints even for dynamical diffraction, and

much harder to find ones that also converge or do not also

have unreasonable solutions. In a classical Direct Methods

approach, both the atomistic approaches ~equations ~3! and

~4!! and the statistical methods ~equations ~9!–~12!! are

sharpening operations; squaring the real-space approxima-

tion reinforces strong features and reduces weak ones. ~While

sharpening is a simple method of understanding elements

of Direct Methods, it should be emphasized that there is

much more, and the generalized Gerschberg–Saxton con-

straint approach mentioned earlier does not assume a spe-

cific form for the constraints.! This suggests a simple

Figure 8. Illustration of results of a complex phase extension, using ~Ga,In!2SnO5 structure, simulated data to 1 Å21

resolution for 50 Å thickness. ~a! Complex phase extension ~b! calculated c~r! 21. Atom positions are indicated by dots

~green, oxygen; blue, Sn; yellow, Ga/In; red, Ga!. All atoms are indicated in a with different species in the structure

distinguishable both by amplitude and phase.
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extension into the complex plane, for instance, using an

approach such as modifying the real-space form via

ui11~r! 5 ui ~r!6ui ~r!6, ~30!

where ui~r! is the ith approximation, or

ui11~r! 5 ui ~r! ln6ui ~r!6/^ui ~r!&. ~31!

Equation ~30! is a simple complex extension of equation

~3!; equation ~31! is an extension of the approach we have

used for surfaces ~e.g., Gilmore et al., 1997; Collazo-Davila

et al., 1998; Marks et al., 1998a, 1998b; Plass et al., 1998;

Grozea et al., 1999!. Both emphasize peaks of large 6u~r!6
and reasonable locations for atomic columns. Unfortu-

nately, neither of these approaches, with no further con-

straints, appears to work.

As an alternative, in classical direct methods, it is well

known that auxiliary phase information, for example, from

high-resolution TEM images, can provide a strong con-

straint improving the chances of obtaining solutions that

reveal details of a crystal structure. This is also true and has

been found indispensable in the case of real-valued direct

methods employing dynamical data ~Sinkler et al., 1998a!.

Adding a number of phases realistically obtainable from

images has, to date, not produced enough of an improve-

ment in the convergence of complex direct methods to be

convincing as a viable technique for exit wave reconstruc-

tion applicable to an unknown structure. The minimum

auxiliary information that was found capable of generating

exit wave reconstructions has, so far, been the inclusion of

actual complex phases for a subset of the reciprocal space

amplitudes. Using a small number of supplied complex

phases for low-resolution beams ~20 out of 305 reflections

to 1 Å21 resolution!, the direct methods solution shown in

Figure 8 was obtained from simulated data for ~Ga,In!2SnO5

at 50 Å thickness. This conclusively demonstrates the gen-

eral point that a phase extension can work for complex

reconstructions.

In spite of the difficulty to date of reconstructing a

complex exit wave using direct methods without unreason-

able assumptions concerning the extent of available infor-

mation ~fixed phases and direct beam measurements!, we

believe that optimum use of prior knowledge available in

dynamical diffraction has not yet been achieved. For in-

stance, we know that both the modulus and phase have to

be continuous ~e.g., no vortices in the phase!. Attempts

along these lines are currently in development, with the

objective of determining how they might be implemented

in a fashion that permits stable and reliable exit wave

reconstruction.
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