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Comment on ‘‘friction between incommensurate crystals’’
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We present results from an independent analysis of friction that more generally
addresses all crystalline materials by an extension of coincident site lattice theory
and dislocation drag. Calculations for graphitic friction are carried out and agree
in magnitude with experimental friction forces. More interestingly, static,
dynamic and anisotropic friction forces, incommensurability effects and super-
lubricity are explained by a more rigorous analysis of the dislocation structure at
a sliding interface.

In a recent paper, Friedel and de Gennes [1] elegantly framed the problem of friction
between atomically flat and impurity-free crystalline surfaces. This topic has recently
received much theoretical interest, largely because of the highly sensitive
experimental capabilities developed to measure friction in controlled environments
[2–5]. Extremely low friction forces have been measured, and although these low
forces are not exclusively measured between crystalline materials, they occur between
crystalline bodies only at incommensurate orientations. We believe that Friedel and
de Gennes [1] have successfully identified some of the key components missing in
many theoretical studies on solid friction: the motion of and interaction between
intrinsic interfacial dislocations when a shear stress (e.g. sliding) is applied. They
correctly identify a number of physical phenomena related to a finite-sized flat
crystalline contact, including dislocation arrays (misfit dislocations found in
bicrystals), surface waves (Rayleigh–Love) and phonon drag processes. They
conclude that superlubrication is not a surprise in the weak-coupling regime, but
that significant complications exist, including dislocation and electronic bonding
structure.

We have independently performed a similar analysis [6], but in a more general
context not just limited to materials such as graphite and MoS2. We believe it is
important to go beyond the analysis of Friedel and de Gennes [1], in particular to
extend it to include several well established literature fields.

(i) Grain boundary dislocations need to be considered within the well
established coincident site lattice (CSL) model.

*Corresponding author. Email: l-marks@northwestern.edu

Philosophical Magazine Letters

ISSN 0950-0839 print/ISSN 1362-3036 online � 2007 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/09500830701280923



(ii) The difference between what they refer to as strong and weak coupling is

really the question of whether or not the interfacial dislocations are

extended or localized.
(iii) It is very important to differentiate between static friction, which is the

resistance to motion at infinitesimally small velocities, and dynamic friction

and any full analysis should consider both.
(iv) The question of friction with an incommensurate system is intimately linked

to the well established Aubry transition, where there are some very recent

experimental observations [5] directly demonstrating very low friction in

some cases.

In more detail, in their paper Friedel and de Gennes [1] use what they refer to as

‘ladders of dislocations’ to accommodate the misfit at a grain boundary. We will

argue that one should instead use conventional CSL theory [7–9] to model the grain

boundary structure. An interface between two hexagonal planes results in a

dislocation network of hexagonally symmetric in-plane screw dislocations [10, 11].

Frank’s formula solves for the inter-dislocation spacing, and instead of having two

orthogonally oriented sets of dislocations we have three in-plane sets for the

hexagonal case that are oriented 120� from each other. Details of the structure of

dislocations in the basal plane of graphite have been studied by transmission electron

microscopy techniques [12]. Dislocations that have a Burgers component in the

direction of sliding will experience drag, leading to anisotropic forces as a function of

sliding direction (see figure 1).
Friedel and de Gennes [1] also argue that for rigid layers, instead of discrete full

or partial dislocations one can think about a larger set of infinitesimally small

dislocations. Whereas this is reasonable in some senses as a mathematical limit, what

they are really referring to is the question of whether the dislocation core is extended

or not. It is well known that as a screw dislocation width (core) is expanded, its

Peierls stress is dramatically reduced [13], in this case leading to lower static friction

forces.

Figure 1. Forces on a screw dislocation in response to a shear.
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Turning to the question of viscous friction, Friedel and de Gennes [1] use a

relatively simple model based upon that of Sokoloff. We believe that this needs to be

generalized. Following Alshits [14], one can write for the force resisting the motion of

dislocations,

F ¼ �pb coth
�pb

Bvd

� �
ð1Þ

where B is a viscous damping term which can be expanded in a number of different

contributions as

B ¼ Bw þ Bf l þ Be ð2Þ

where Bf l is the flutter term [15], Bw is the phonon wind term [16] and Be is the

electron drag coefficient [17]. This force on dislocations closely matches friction

behaviour in a number of ways. In the limit to zero velocity, equation (1) approaches

the Peierls stress of the material, in effect a static friction. It also contains a

continuous transition from radiative (Peierls-type) friction to viscous friction

(see figure 2), as seen recently in friction measurements between polymers over a

large range of velocities [18].
Graphite sliding on graphite has been observed to give low friction forces for

incommensurate orientations. A calculation of friction forces was carried out using

the above model applied to the sliding conditions in the experiment by Dienwiebel

et al. [3]. For a load of 18 nN, sliding velocity of 20 nm s�1 and tip radius of 80 nm,

and using a measured shear stress value of graphite [19], we arrive at a �1 kinetic

Figure 2. Functional form of friction via dislocation drag as a function of sliding velocity
(arbitrary units), indicating the transition from a Peierls dominated regime to viscous friction.
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friction range of �¼ 0.001–0.026 for dislocation spacing limits of 5 and 25 nm. The

experimental kinetic friction coefficient for commensurate contact conditions

was 0.017, in agreement with our calculated range. Performing a fit of equation

(1) (see figure 3), accounting for all experimental and contact parameters including

sliding velocity, partial dislocation structure and materials constants, we can give

an estimate of the effective viscous drag coefficient and Peierls stress for the contact.

By using a 600 Å2 sliding flake, fits to both peaks yield an average value of

0.0012� 0.0001N sm�1 for B. Since the sliding conditions are within the viscous

drag regime, the fits are somewhat insensitive to the value of the Peierls stress, but an

order of magnitude fit places it at 1 Pa. We acknowledge that in this analysis,

a simple estimate was used to account for the finite size effects of the graphite flake

by solving for a fraction of a dislocation. This is not generally correct, and remains

an active field of research, particularly in the investigation of dislocation-mediated

deformation of nanograined materials. Experiments have shown [20] that

nanoparticles forming twist boundaries with a crystalline substrate rotate to form

commensurate contact in a thermally activated process, whereas molecular dynamics

simulations [21] have indicated that for particles smaller than 5 nm this phenomenon

occurs athermally. A significant amount of additional work must be carried out to

complete the analysis of smaller contacts, identifying the precise structure of

dislocations at nanometre-sized grain boundaries, but we believe that this order of

magnitude estimate is nonetheless useful; the principals of the model do not change,

only the specific dislocation structure. We note that Dienwiebel’s experiment [3]

represents the most sensitive and thorough set of experimental data for any system

in regards to friction anisotropy at the nanoscale. However, in order to more

Figure 3. Fit to Dienwiebel friction data (graphite–graphite sliding) using the analytical
expression for dislocation drag. The fit to the viscous drag coefficient gives a mean value of
0.0012� 0.0001N sm�1.
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accurately fit the anisotropy peak widths to an analytical model for dislocation
friction, at least an order of magnitude improvement in force resolution must be
made to the experimental data. This can be achieved in part by increasing the normal
load, taking care not to increase to the point where the flake detaches from the
tungsten tip.

It is worth mentioning that for hexagonal CSL orientations there are in other
special twist orientations (see figure 4) between 0� and 60�, including �7 at 38.21�,
�13 at 27.79�, �19 at 46.82� and �21 at 21.78�. Although much weaker than the
commensurate six-fold symmetry, we expect that these peaks could be experimentally
resolved. Dissociated dislocations [22] at these orientations will lead to a friction
value at least an order of magnitude weaker than commensurate contact. The
measurements by Dienwiebel et al. [3] show a slight bump at the �21 orientation, but
the expected friction value is within the associated experimental error. A significant
peak is resolved at 50� 2�, and could reasonably represent the �19 boundary.
It would be worthwhile to perform this experiment with better force and angular
resolution, if necessary at higher normal loads and contact areas.

Lastly, in terms of incommensurate systems, it is important to recognize that this
has been analyzed in detail within the context of the Frenkel–Kontorovva model.
The classic case is the Aubry transition; below a certain coupling constant the
interfacial dislocations completely dissociate leading to a nominally zero static
friction [23]. In terms of equation (1) this corresponds to vanishing of the Peierls
stress associated with the motion of these dislocations. Note, however, that this
does not mean that there will be zero dynamic friction because there will still be drag
effects due to the motion of the elastic deformation field including surface waves.

A recent study by Park et al. [5] has shown strongly anisotropic friction forces on
the surface of a decagonal Al–Ni–Co quasicrystal. This unique surface attains
periodicity in one direction, whereas in another it is quasiperiodic, following the
stacking sequence of Fibbonacci. It was found that friction increases by a factor of
eight in the periodic direction as compared to the quasiperiodic direction. We believe

Figure 4. Hexagonal CSL showing a 6� misorientation (a) forming a hexagonal network of
misfit cores and the �7 boundary (38.21�) (b).
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this experiment has convincingly isolated the issue of the role of periodicity on

friction, and can be explained by the behaviour of dislocations. By maintaining a

constant contact orientation, the sliding direction was changed, meaning that the

initial interfacial dislocation structure was essentially unchanged. Only the motion of

interfacial dislocations behaves differently. When sliding in the periodic direction,

regularly spaced dislocations with Burgers vectors along the direction of motion

experience a drag force. When sliding is performed in the quasiperiodic direction,

the dissociated aperiodically spaced dislocations are now the only remaining

contributors to drag, resulting in a greatly reduced friction force.
Friction between crystalline bodies is a complex issue that has only recently

become amenable to direct experimental investigation. We point out that a relatively

simple analysis of the structure and motion of interfacial dislocations can account for

observed friction phenomena. We believe the motion of dislocations at interfaces

plays a large role in the dissipative forces associated with friction, and encourage

further experimentation to uncover anisotropic, velocity, temperature and structure

(incommensurability) dependencies.
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