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Abstract

A 2-beam model is used to simulate precession electron diffraction (PED) intensities. It is shown that this model can be inverted with

minimal knowledge of the underlying crystal structure, permitting structure factor amplitudes to be deduced directly from measured

intensities within the 2-beam approximation. This approach may be used in conjunction with direct methods to obtain correct,

kinematically interpretable structure indications for data sets from relatively thin crystals (less than approximately 400 Å), and an

experimental example based on (Ga,In)2SnO5 is presented. The failure of this approach at large thickness is illustrated by an additional

data set for MFI zeolite. The 2-beam approximation provides a simple model for PED intensities, and inversion using this model shows

advantages over a kinematical approximation. It is however too rough approximation to be of general use and ultimately it is to be hoped

that more accurate models with similar ease of use can be derived to treat PED data.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the use of transmission electron
diffraction (TED) for crystal structure analysis is hampered
by the difficulty of interpreting intensities because of the
effects of dynamical diffraction. Only in the limited case of
extremely thin crystals is it strictly valid to use the
kinematical approximation that the diffraction amplitudes
(the square roots of the intensities) are the Fourier
coefficients of the projected unit cell’s structure, or
structure factors. In the more general case the intensities
in experimental data are the result of coherent multiple
scattering, and reflections which are kinematically forbid-
den may become quite strong while those which are
kinematically strong may be weak. Attempts to invert or
undo the effects of multiple scattering to obtain directly
interpretable structural information by restoring either the
exit wave or the structure factors have so far met with
e front matter r 2006 Elsevier B.V. All rights reserved.
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limited practical success in terms of structure solutions of
unknown phases [1–3].
While direct and rigorous inversion of multiple scatter-

ing has not proven successful in practical application, there
are some approximations which, combined with careful
experimentation, can yield usable data. The first of these is
the kinematical approximation mentioned above, which
has been used with electron diffraction data in a number of
cases to solve crystal structures, particularly in cases of
biological structures obtainable as very thin molecular
crystals [4,5]. While this approach is attractive due to its
simplicity and may succeed in light-element structures, it
tends to fail for structures with elements heavier than
oxygen and so it is not very useful for researchers in
materials science or inorganic chemistry. Another ap-
proach is the 1 s channeling approximation [6–8], by which
it has been shown that in some cases there is a simple
relationship between diffraction intensities in a zone axis
pattern and the projected crystal structure, specifically the
diffraction amplitudes may represent the Fourier coeffi-
cients of a distribution with peaks at one or more subsets of
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Fig. 1. Schematic depiction of the precession technique. Beam tilt coils

above the sample scan the incident beam along the surface of a cone with

semi-angle j (varying Y as a function of time). Reflections rotate along

circles in the back focal plane (level of descan coils). The descan coils

compensate for circular rotation and result in stationary measurable point

reflections in the diffraction plane.

W. Sinkler et al. / Ultramicroscopy 107 (2007) 543–550544
the atom positions [9]. In some other cases the S1 and S2

distributions may be statistically obeyed [10,11], even
though they may not be rigorously correct. However the
condition for using 1 s channeling is that the projected
structure consist of well-separated atom columns (in effect
requiring some foreknowledge of the structure) and the
subset of positions indicated in the data cannot be
predicted without accurate knowledge of the sample
thickness and detailed knowledge of the densities of the
atoms in the columns.

Precession electron diffraction (PED) represents an
experimental approach to obtaining more tractable diffrac-
tion intensities using electrons. PED was first described
and performed by Vincent and Midgley in 1994 [12]. It
grew out of the fact that higher-order Laue zone (HOLZ)
reflections in large angle convergent beam electron diffrac-
tion (CBED) are near kinematical because of the relative
absence of close multiple scattering vectors for these
generally weak high-angle reflections [13]. In the precession
technique the incident beam used typically has a small
convergence, and is precessed or rotated around the surface
of a cone centered on a zone axis direction (see Fig. 1).
Because the beam avoids the exact zone axis direction
(which is generally the most dynamical condition) the
perturbations due to multiple scattering are expected
to be less severe. An added benefit is that the precession
will swing the Ewald sphere through the reciprocal
lattice points thus allowing integrated intensities to be
measured, and also reducing the sensitivity to minor
tilt misorientations. These benefits have led to in-
creasing application of PED in electron crystallography
[14–20].

In spite of the reduction of the effects of multiple
scattering, recent work clearly shows that the precession
intensities cannot generally be treated as approximately
kinematical [15]. The question then is whether the
precession intensities can be treated using approximations,
in any way which will make them reliably useful for
structure analysis, where reliable might mean obtaining
usable structure indications from routine direct methods
90% of the time for patterns taken with care on a thin
area but not requiring extraordinary skill or sample
preparation efforts. One approximation which was sug-
gested early in the literature on precession is a 2-beam
approach [12,21], reasonable because the effect of preces-
sion is to reduce the number of simultaneously excited
beams and the limit of this is the 2-beam case in which
the g ¼ 0 beam and one diffracted beam are excited. It has
also been pointed out that if 2-beam theory can be applied
and if one assumes that the integration is complete, a
treatment for powder diffraction developed by Blackman
[22] would be applicable to PED [14]. The current work
explores the question of whether a 2-beam approximation
can be used to give an approximate inversion of experi-
mental data without the need for a forward calculation.
We demonstrate that at least for a reasonably thin sample
it can.
2. Two-beam forward calculation applied to precession g

A short recap of the relevant 2-beam theory is
appropriate. In the case of excitation of a single Bragg
reflection, the 2-beam intensity jfg(t)j

2 for the beam at
reciprocal lattice vector g is given by [23]

jfgðtÞj
2 ¼ 1� jf0ðtÞj

2 ¼
p
xg

� �2
sin2ptseff

ðpseff Þ
2

(1)

where xg is the extinction distance (given by pVc/(lFg), with
Vc the unit cell volume) for the reflection at reciprocal
lattice vector g, t is the sample thickness, f0(t) is the
amplitude of the beam at g ¼ 0 and seff is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ 1=x2g
q

, where s is the excitation error. In the case of

PED, illustrated in Fig. 1, the electron beam is swung
about a cone with semi-angle j as the angle Y is varied
from 0 to 2p. For an instantaneous value of Y it can be
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shown (e.g. [21]) that the excitation error s for the beam at
g is given by

s ¼ �
g2

2k
þ gj cos y, (2)

where k ¼ 1/l and g is jgj, the spatial frequency. In the
2-beam approximation (assuming that the convergence is
small and has negligible effect), the precession intensity is
thus given by

I2beamðgÞ ¼
1

2p
p
xg

� �2 Z 2p

0

sin2ptseff ðy; Þ

ðpseff ðyÞÞ
2

dy (3)

In the limit where the semi-angle becomes infinitely large
this will approach the Blackman formula, and approxima-
tions to Eq. (3) were developed by Gjønnes [21]. A more
comprehensive analysis of the limits for which these
approximations hold for fully dynamical diffraction will
be published elsewhere [24]. Here we seek to establish that
the full numerical form of Eq. (3) is a reasonable
approximation by comparing it to the results of a full
dynamical multislice approach (for details of the multislice
see Ref. [25]). The comparison is shown in Fig. 2, which
plots the 2-beam intensities from numerical integration of
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Fig. 2. Plot of simulated 2-beam PED intensities against multislice simulate

j ¼ 36mrad. Multislice calculations were performed in all cases with 1000 sa

Values for R shown were calculated using Eq. (4).
Eq. (3) against the multislice intensities for a variety of
thicknesses for (Ga,In)2SnO4 [26] in [0 1 0] orientation. As
can be seen, use of the 2-beam approximation provides
reasonable scaling with the multislice simulations up to a
thickness of approximately 200 Å. By using an agreement
factor describing the scatter in plots such as shown in
Fig. 2, it is possible to quantify the extent of agreement
between a 2-beam approximation and the full dynamical
multislice PED calculations. For this purpose, we define an
R-factor as

R ¼

P
gjIg;MS � aI 0gjP

gIg;MS
. (4)

In which Ig,MS is the multislice calculated intensity for
the beam at g and I 0g is the fitted intensity (for example the

2-beam intensity), and a is a constant adjusted to minimize
R. A plot of this R-factor versus thickness for several
different precession tilt semi-angles is shown in Fig. 3a for
the case of 2-beam calculated PED intensities from Eq. (3).
As a comparison, kinematical simulated precession in-
tensities were also calculated as a function of thickness by
replacing seff with s in Eq. (3). Note these kinematical PED
intensities implicitly include the adjustments for precession
c
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mpling steps, to 1.5 Å�1 resolution. Plots are for a range of thicknesses.



ARTICLE IN PRESS

Thickness [A]

0 200 400 600 800 1000

R
-f

a
ct

o
r

0.0

0.2

0.4

0.6

0.8

1.0

12 mrad
24 mrad
36 mrad
48 mrad
60 mrad
72 mrad

Thickness [A]

0 200 400 600 800 1000

R
-f

a
ct

o
r

0.0

0.2

0.4

0.6

0.8

1.0

12 mrad
24 mrad
36 mrad
48 mrad
60 mrad
72 mrad

a b

Fig. 3. Plots of R-factor vs. thickness from Eq. (4) for fit of (a) simulated PED 2-beam intensities and (b) simulated PED kinematical intensities for

(Ga,In)2SnO5 [0 1 0] zone axis pattern. For both the 2-beam and kinematical calculations, the precession geometry is accounted for via Eq. (3) (with seff set

to equal s for kinematical). The plots show the influence of both thickness and cone semi-angle j on agreement.
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geometry discussed by previous authors [12,21]. It is clear
from these plots that the 2-beam approximation, although
it is of limited accuracy, nevertheless provides a better
match with full dynamical simulations than does the
kinematical-based PED calculation.

3. Inversion of 2-beam precession intensities to structure

factors

The above section illustrates that a 2-beam approxima-
tion can provide a modest but real improvement over
kinematical theory for modeling precession intensities. The
importance of the 2-beam approximation, where it may be
valid, is that its forward calculation requires significantly
weaker knowledge of the crystal structure than a full
dynamical calculation (multislice or Bloch wave). In
particular, as was recognized by Gjønnes et al. [18], it is
not necessary to know the structure factor phases (or the
atom positions), but merely the structure factor amplitudes
(or the equivalent extinction distances xg). Assume for the
moment that the sample thickness is known or can be
estimated, and that a single extinction distance x0g in the
data set is known. It is now possible (provided knowledge
of j for the experiment) to compute the intensity of the
known beam at g0 and compare this with the experimen-
tally measured intensity to obtain a scaling factor

Cpattern ¼
I calcðg

0Þ

I expðg0Þ
. (5)

Once Cpattern has been derived all the experimental
intensities can be rescaled by multiplying with Cpattern such
that

I scaðgÞ ¼ Cpattern � I expðgÞ (6)

Using the known or estimated thickness, the value of
xg
�1 may be varied in calculating I(g) via Eq. (3) until a

match to Isca(g) is obtained. Using this approach (relying
on knowledge or reasonable estimation of two constants)
the 2-beam model may is invertible to obtain the full set of
xg and thus the structure factor amplitudes (proportional
to xg

�1).
In practice, there is an additional complication due to

non-uniqueness of xg
�1 for some intensity values. This is

illustrated in Fig. 4a, which shows a plot of the 2-beam
precession intensity as a function of xg

�1 for thicknesses of
200 and 400 Å and typical constant values of the other
pertinent parameters. For fixed acquisition parameters
(voltage, thickness and j) these curves are fully determined
for each reflection in the pattern by the value of jgj. As
expected from 2-beam theory the curves show oscillatory
behavior with local minima at roughly positions xg

�1
¼ n/t.

Beams with scaled intensities beyond the first minimum
have multiple values of xg

�1, so that it will be possible to
match the observed intensity value with multiple structure
factor values. As illustrated in Fig. 4a, this problem of
ambiguity becomes more severe as the thickness increases.
However, it should be pointed out that in the example of
(Ga,In)2SnO5 at 200 kV the minimum extinction distance
(4,0,�1) is 580 Å, (xg

�1
�0.0017) and values below 150 Å

(xg
�1 above �0.007 in Fig. 4b) will seldom if ever be

encountered. For a 200 Å thickness there would thus be no
ambiguity to xg

�1 for any reflection in the set.
Fig. 4b illustrates how the 2-beam precession intensity

varies for different values of jgj, and includes also the
equivalent roughly parabolic curves for relrods described
by a kinematical sinc function (Eq. (3) in which seff is
replaced by s). It illustrates that for weak beams in a
pattern the applied correction will be essentially a purely
geometrical correction along the lines proposed by K.
Gjønnes [21] depending only on the spatial frequency. For
stronger beams the corrected value of xg

�1 from the 2-beam
case will be larger than in the kinematical case, reflecting
the drop off of intensity with thickness due to diffraction
back into the incident beam in the 2-beam theory.
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Fig. 4. (a) 2-beam intensity as a function of 1/xg for a reflection at jgj ¼ 0.34A�1, j ¼ 36mrad, 200 kV, thicknesses of 200 and 400 Å. (b) 2-beam intensity

and kinematical intensity as function of 1/xg at constant 400 Å thickness, two different spatial frequencies 0.3 and 0.6A�1.
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Fig. 5. (a) Two-beam based restoration of 1/xg from multislice-simulated PED data for (Ga,In)2SnO5 [0 1 0] zone, 200 kV, 400 Å thickness, j ¼ 48mrad.

Plot compares restored values with 1/xg calculated from structure. The+symbols are intensities which exceeded the first maximum in the plot of intensity

vs. 1/xg (see Fig. 4a) and were set to the 1/x value corresponding to the local maximum. The filled symbols are intensities lower than the first minimum

(thus have only one root). Open symbols show 2nd root for the two beams in the set having multiple roots. (b) Kinematical-based restoration of 1/xg using

the same multislice input as for a).
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The inversion of 2-beam intensities was performed on
modeled multislice intensities for the case of j ¼ 48mrad
and 400 Å thickness, and Fig. 5a shows a plot illustrating
the agreement between the restored xg

�1 and computed
ideal xg

�1. In spite of some outliers, a fairly linear tendency
is seen in Fig. 5a, indicating that the restoration of
extinction distances via a 2-beam approximation has
provided some real benefit. For comparison to this
Fig. 5b illustrates the degree to which kinematical structure
factors would be approximated by using the parabola-like
kinematical curves in Fig. 4b. This is clearly not a good
approximation at 400 Å and j ¼ 48mrad. For the two
scatter plots in Figs. 5a and b respectively, the R-factors
defined in Eq. (4) are 0.507 and 0.528, respectively.

4. Applications to experimental intensities

The inversion process was applied to experimental
precession intensities for (Ga,In)2SnO5. The data, also
presented in Ref. [25], were collected on a JEOL 2000FX
TEM with a precession device described in Ref. [27].
Köhler illumination was used with a 10 mm condenser
aperture, and the illuminated area was approximately
100 nm in diameter. The precession semi-angle j was
24mrad. The pattern was acquired with a Gatan US1000
CCD camera and intensities were quantified using a cross-
correlation technique similar to that described in Ref. [28].
Fig. 6a shows the degree of scaling between the xg

�1

restored based on 2-beam theory and the calculated values
of xg

�1. The scaling appears quite satisfactory. Fig. 6b
shows the result of an a priori direct methods calculation
from fs98 software using the restored values of xg

�1 as
input. In spite of an unrealistic buildup of potential at the
unit cell corners, the solution reveals subsidiary maxima in
good agreement with the cation positions of the true
structure, shown schematically in Fig. 6b.
An additional precession data set was acquired using a

recent installation of a precession device on a JEOL 3000F
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Fig. 6. (a) Restoration of 1/xg using 2-beam inversion based on 475 Å, j ¼ 24mrad experimental precession intensities. Open symbol represents a single

reflection in the dataset which exceeded the first maximum of intensity vs. 1/xg (see Fig. 4); since inversion would predict unrealistically large 1/xg for this

case value was set to first maximum of the appropriate plot, Fig. 4. (b) A priori direct methods solution using restored 1/xg plotted in a). (c) Schematic of

(Ga,In)2SnO5 viewed along [0 1 0]. Bonded atoms are oxygen, with cations lying in interstices. The cation positions have been restored in the direct

methods solution.
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field-emission TEM operating at 300 kV [29]. An MFI
zeolite was oriented along the [0 1 0] zone axis which is also
the direction of the primary straight pore system, and a
pattern was acquired with a cone semi-angle j of 33mrad
using Köhler illumination conditions similar to those
described above. The raw data and reduction are shown
in Fig. 7 and are compared with a map of the computed
xg
�1 using atom positions from Ref. [30]. Also shown is the

result of 2-beam inversion assuming a thickness of 1500 Å
which is the refined thickness for the pattern based
on comparisons with multislice simulations (see details in
Ref. [25]). In this case only the strongest (5 0 1) beam had
an ambiguous value of xg

�1, but the larger root corre-
sponds to an unrealistically short extinction distance
(o10 Å). The 2-beam reconstruction is shown in Fig. 7d.
Ideally, this should resemble the kinematical map (Fig. 7b),
but in fact the differences are striking. By comparison with
the experimental pattern in Fig. 7c the 2-beam based
inversion has induced an overall flattening of the pattern by
enhancing reflections at large spatial frequency relative to
those near the origin. However it has not improved the loss
of contrast between strong and weak beams which is an
effect of dynamical many-beam interactions. Several varied
attempts were made using direct methods to restore the
MFI structure based on the data shown in Fig. 7, but none
of the direct methods solutions contained reliable indica-
tions of the projected structure.

5. Discussion

PED provides several distinct advantages compared with
standard TED or selected area electron diffraction. These
advantages include better reproducibility because of
integration of intensities and reduced sensitivity to tilt
misalignment, as well as a less chaotic dependence of the
intensities on thickness. Nevertheless, direct interpretability
of the recorded intensities in terms of the underlying
structure still presents serious challenges.
This paper has shown that an inversion process based on

the 2-beam approximation has advantages over one using a
simple kinematical approximation. Although the accuracy
of the inversion is limited, particularly for thicker crystals,
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a b
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Fig. 7. (a) Experimental pattern, MFI [0 1 0] taken at 33mrad, 300 kV. Vertical in pattern is the (h00) row. Note forbidden reflections for p2gg are present.

(b) Computed map of 1/xg (radii of circles proportional to 1/xg). (c) Quantification of (a), radii are square roots of intensities. (d) Two-beam based

inversion of experimental intensities based on 1500 Å thickness (radii of circles are proportional to restored 1/xg).
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the comparison between a 2-beam approximation and
multislice calculations for (Ga,In)2SnO5 shows that in cases
of relatively thin samples (o400 Å) and at large precession
angles something resembling the multislice intensities is
obtained with a 2-beam forward calculation. Because of its
simplicity, the 2-beam model can (with some assumptions)
be inverted to obtain xg

�1 or the equivalent structure
factors. For the condition of sufficiently thin sample, 2-
beam theory may help to make PED more reliably
applicable to crystallographic problems.

In its essence, the 2-beam inversion can best be under-
stood based on Fig. 4. In relatively common cases where a
second root is unlikely the correction amounts to a
rescaling of the intensities using an S-shaped function
(the I(t) vs. xg

�1 up to the first maximum in Fig. 4). This
scaling is not completely straightforward, because the
shape of the ‘S’ varies with spatial frequency, and gets
shallower at larger spatial frequencies, also shown in Fig. 4.
The essence of why this works involves how it effects
strong and weak beams differently at a given spatial
frequency: the strong beams near the top of the ‘S’ will be
disproportionately emphasized (receive larger restored
xg
�1) and the weak beams will be reduced. This is thus
effectively a spatial-frequency-dependent contrast enhancer
of reflections, and it agrees with the general observation in
precession electron diffraction that the intensities within a
given spatial-frequency band are flatter and more equal
than they are observed to be in kinematical simulations.
In the example given above for MFI zeolite, the 2-beam

inversion is not sufficient to provide a usable set of xg
�1

from precession intensities for this relatively thick crystal.
However, it is not a foregone conclusion that nothing like a
simple robust model of precession intensities exists which
may make precession intensities from even thick samples
more interpretable than they currently appear to be. This is
reasonable primarily because of the existence of relatively
simple rules of thumb as to how precession amplitudes
differ from the corresponding kinematical structure fac-
tors. The primary attributes can be ascertained by
comparison of Figs. 7b and 7c above, and may be
summarized as (1) a damping of intensities away from
the pattern’s center and (2) an overall loss of contrast
between weak and strong reflections within a given spatial
frequency band. Beyond this there is a tendency for
the intensities within a systematic row to all be
strong whenever the first order beam in the row is strong
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(also seen in Fig. 7b in the diagonal rows of (h0h)
reflections). One starting point for robust modeling of
PED data may be the Bethe dynamical potentials described
in Refs. [18,31]; however, since the construction of the
Bethe potentials requires knowledge of both structure
amplitudes and their phases this approach needs to be
modified to be made less model-dependent. The precession
technique clearly provides a simpler and more reproducible
form of electron diffraction. With the increasing avail-
ability of precession devices it may be hoped that further
experimentation buttressed with careful theoretical work
may be capable of arriving at an improved simple model
for precession intensities, which, similar to the 2-beam
approach presented here requires only weak knowledge in
order to invert to reliable structure factor amplitudes.
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