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Abstract An analytic geometric model of phonon–dis-

location interaction is employed to simulate the shielding

of phonon wind drag in moving dislocation arrays. In the

model, we use assumptions that overestimate the shielding

effect to calculate an upper bound for the deviation of drag

on arrays from drag on single dislocations. For the system

of a one-dimensional array of gliding dislocations in cop-

per, we calculate that 6–25 % of the phonon drag is

shielded by neighbor dislocations in the array. The model

can be extended to other materials and dislocation distri-

butions, but we show that for typical FCC crystals, calcu-

lating drag forces using a single dislocation is still a valid

approximation.

Keywords Nanotribology � Friction mechanisms �
Stress analysis

1 Background

As the scale of interest in materials design has become

smaller, understanding the fundamentals of nanotribology

has become more and more important. Not only do we

need to understand and measure tribological properties but

also we need to recognize the atomic-scale interactions that

form the basis for friction and wear, so we can better

control performance. Complicating this are scale-depen-

dent changes in material behavior that often differ from the

bulk, as well as new deformation mechanisms that may

come into play at the nanoscale. Grain boundaries are one

example of a nanoscale structure with significant implica-

tions for macroscale performance. Indeed, deformation

by grain boundary rotation, recrystallization, and grain

boundary sliding all play a role in the performance of

crystalline materials. Modeling these phenomena is there-

fore an important part of our overall understanding.

Dislocations have long been used as a framework for

understanding crystalline materials, particularly under

applied stress. It has been found that the properties and

interactions of dislocations have a significant effect on

macroscale behavior, and dislocation theory has well-

established predictive power. This dislocation framework

can be extended beyond plastic deformation to include the

modeling of more general friction and wear phenomena,

which can give us new tools and insights useful for ana-

lyzing complicated tribological systems [1–3]. We have

shown that it is feasible to express friction at a crystalline

interface in terms of misfit dislocation drag [4], and that

plowing friction in certain temperature–pressure regimes

can be associated with power-law dislocation creep [5]. In

both of these cases, and dislocation theory in general, the

forces on a single dislocation are considered. In this article,

we want to consider more closely the motion of an array of

dislocations.

Stable arrays of dislocations form when nearby dislo-

cations are attracted into an energy-lowering configuration.

Many such equilibrium distributions of dislocations are

possible, including tilt and twist boundaries, but non-

equilibrium configurations are also seen, for instance, Read

and Shockley [6] showed that any low-angle grain

boundary can be thought of as an array of dislocations.

Arrays of dislocations are therefore involved in material

deformation, in an accommodating way such as glide on a

slip plane or grain boundary rotation [7–10], or as barriers
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such as in the cases of dislocation pile-up [11–13]. The

motion of such arrays is therefore important to understand

the deformation, and by extension, the tribological behav-

ior of the crystal. We concentrate here on the effects of

phonons on that motion.

The viscous interaction between phonons and the stress

fields of dislocations is well understood and a significant

contributor to the drag force on moving dislocations in

crystalline solids [14–17]. Phonons can be generally

thought of as elastic waves with a frequency and energy,

with a density of states throughout k-space. Like other

collective oscillations, phonons can be considered quasi-

particles carrying a pseudomomentum �hk, where k is the

reciprocal lattice vectors and �h is Planck’s constant. When

they fall within the appropriate energy range, phonons can

be scattered inelastically by dislocations. During a scat-

tering event, a phonon can transfer part of its momentum

to a dislocation; therefore, a moving dislocation will

encounter a net loss in momentum in a viscous manner, due

to the anisotropy of incident phonons. Particularly at low

temperatures where thermally activated dissipation mech-

anisms are limited, this phonon wind effect can be an

important component of dislocation drag, and by extension,

frictional losses.

Like other forms of macroscale viscous drag, we

hypothesize that the drag force due to the phonon wind

should be partially shielded when incident on a moving

array of dislocations. In particular, first-order shielding

effects should cause the array as a whole to experience

proportionally less drag than a single dislocation in isola-

tion. We use a geometric model to estimate the magnitude

of the shielding effects and determine the validity of the

ubiquitous single-dislocation approximation.

2 Model

We consider a one-dimensional array of dislocations in

copper gliding on a slip plane, as shown in Fig. 1a. The

amount of shielding is geometrically determined, and

depends on the scattering cross-section r of a dislocation to

an incident phonon wavetrain, as well as the spacing

s between dislocations.

We consider the dislocations in two dimensions as cir-

cles with radius equal to the scattering cross-section for the

phonon scattering interaction. We assume that phonon

scattering events prevent 100 % of the phonon momentum

from being transmitted farther along that vector.

The greatest amount of shielding will be from the

nearest neighbor, so we can consider a two-dislocation

system as shown in Fig. 1b. From the coordinate system of

a dislocation, we consider incident phonons that have a

component coming from the direction of motion v~ in the

figure. That is to say, we take into account all phonons

incident between h = -90� and 90�, as measured from the

vertical. We consider the angles shielded a at each angle h
on the forward-facing half-circle of the dislocation. Taking

the ratio of the shielded to unshielded angles, we integrate

to yield the amount of phonon momentum shielded as a

percentage of the total momentum.

Let us first consider the right triangle with hypotenuse h

formed by points O1, P, and Q. The horizontal and vertical

sides can be calculated using the trigonometry of the circle

O2. We then use the Pythagorean Theorem and simplify:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rsinhð Þ2þ s� rcoshð Þ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ s2 � 2srcosh
p

:

ð1Þ

Next, we look at the right triangle formed by O1, P, and

a tangent point to circle O1. Again the hypotenuse is h, so

we can write the equation for a by rearranging the

trigonometric relationship:

hsina ¼ r

2a ¼ 2sin�1 r

h

� �

:

Finally, we integrate over the edge of the shielded

dislocation. The occluded portion of the half-circle,

integrating over h, is given by:

s

r

α

θ

h

v

a b

O1

O2

QP

Fig. 1 a A typical array of edge dislocations with the same Burgers

vector glide through a crystal on a slip plane. We consider phonons

incident on the array with momentum counter the direction of motion.

b Nearest neighbor dislocations in a 1D array are represented as

spheres, and reduced here to circles due to spherical symmetry. Their

spacing is s, their scattering cross-section is r, and they move with

velocity v. At every point P on the forward-facing half-circle of the

shielded dislocation O2, the angles shielded due to O1 are calculated

using h and h and integrated to yield the total percentage of the half-

circle shielded
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2

Z

p
2

0

2a
p

dh:

We subtract this from the total integral over the half-

circle, and using (1) this yields the proportion of incident

phonon momentum exposed to the shielded dislocation (2).

2

Z

p
2

0

1dh� 2

Z

p
2

0

2a
p

dh

¼ p� 4

p

Z

p
2

0

sin�1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ s2 � 2srcosh
p
� �

dh: ð2Þ

We take the dislocation Burgers vector b as that of a

typical FCC metal slip plane, and use a range of

2.5–2.88 Å, encompassing copper, aluminum, nickel,

silver, gold, and platinum [18, 19]. The relevant

scattering cross-section is taken to be twice the Burgers

vector as suggested by Hikata et al. [20]. The scattering

cross-section is also dependent on the incident phonon

angle, and for random incident angles the adjustment to

r can be calculated to be between 0.5 and 2 times [21].

Results are presented for a variety of dislocation spacings,

as this will be determined by the experiment.

When considering the incident phonon momentum, we

realize that the contribution to the drag force (in Fig. 1b,

the vertical component in the -v direction) depends on the

cosine of the angle between the phonon wavetrain and the

dislocation motion—in our system, this adds a factor of

cosh. For a typical shielding of 15� around the vertical,

however, the contribution to the drag from shielded dis-

locations is [96 %, and in the model we consider the

contribution to be 100 %, which is a slight overestimate.

3 Results and Discussion

Figure 2 shows the phonon exposure of the shielded dis-

location as a percentage of the full unshielded exposure,

calculated numerically from (2).

Under these conditions we see that for r = 2b, the

exposure is 88 % at the closest geometrically possible

spacing.

The model shows the effect of shielding as a function of

scattering cross-section and dislocation spacing. If we

consider that in actual materials, phonon momentum will

not be completely absorbed by the first interaction, we can

see that unsurprisingly, we are left with a negligible effect

in most situations. Throughout our calculations, we con-

sidered the maximum possible drag reduction, and were

still left with a small effect. This is consistent with the

typical experimental result that matches single-dislocation

theory within 10–15 %.

The three-dimensional symmetry of our system means

the proportional reduction in drag is the same as the two-

dimensional result, when all dislocations have the same

length. However, the model could be extended to take into

account more complicated arrays of dislocations in more

than two dimensions. However, because of the previously

mentioned diminishing component of shielded momentum
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Fig. 2 The percentage of

phonons that will be incident on

the shielded dislocation, as a

function of scattering cross-

section—100 % represents no

shielding effect, 0 % represents

complete shielding. Results for

a range of spacings are shown.

The relevant cross-sections are

indicated with bounding arrows,

encompassing the range

between one-half and twice the

average r = 2b
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in the drag direction with higher angles h, the nearest

neighbor dislocation in the direction of motion—as we

have considered–will be the dominant scatterer.

It is important to remember that phonons are collective

oscillations of the entire crystal lattice and therefore a long-

range phenomenon. Local disruptions in the strain field,

such as point defects, would not be expected to affect

an array of dislocations any differently than a single

dislocation.

4 Conclusion

We use a geometric model to account for the shielding

effect of nearest neighbors on the phonon wind drag

experienced by moving dislocations in a one-dimensional

array. We consider the case where scattering events shield

100 % of the phonon momentum, to calculate the theo-

retical maximum reduction in drag due to this effect. As

expected, even with our assumptions creating an overesti-

mate of the true effect, the shielding effect is relatively

small. For the relevant scattering cross-section for copper,

we can calculate the reduction in phonon momentum

incident on shielded dislocations as not exceeding 12 %,

the shielded portion of the half-circle at the closest spacing.

Considering the variability in the scattering cross-section,

we conclude that treating an array of moving dislocations

as a single dislocation results in an overestimate of at most

6–25 %, which can be considered valid. Although dislo-

cation arrays remain important structures with distinct

properties, our modeling shows that shielding effects are

not a significant factor in their drag behavior.
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