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ABSTRACT: I describe an algorithm for simultaneous fixed-point
optimization (mixing) of the density and atomic positions in
Density Functional Theory calculations which is approximately
twice as fast as conventional methods, is robust, and requires
minimal to no user intervention or input. The underlying numerical
algorithm differs from ones previously proposed in a number of
aspects and is an autoadaptive hybrid of standard Broyden
methods. To understand how the algorithm works in terms of
the underlying quantum mechanics, the concept of algorithmic
greed for different Broyden methods is introduced, leading to the
conclusion that if a linear model holds that the first Broyden
method is optimal, the second if a linear model is a poor
approximation. How this relates to the algorithm is discussed in terms of electronic phase transitions during a self-consistent run
which results in discontinuous changes in the Jacobian. This leads to the need for a nongreedy algorithm when the charge density
crosses phase boundaries, as well as a greedy algorithm within a given phase. An ansatz for selecting the algorithm structure is
introduced based upon requiring the extrapolated component of the curvature condition to have projected positive eigenvalues.
The general convergence of the fixed-point methods is briefly discussed in terms of the dielectric response and elastic waves using
known results for quasi-Newton methods. The analysis indicates that both should show sublinear dependence with system size,
depending more upon the number of different chemical environments than upon the number of atoms, consistent with the
performance of the algorithm and prior literature. This is followed by details of algorithm ranging from preconditioning to trust
region control. A number of results are shown, finishing up with a discussion of some of the many open questions.

1. INTRODUCTION

At the present time, a relatively large fraction of the world’s
supercomputer time is used for density-functional (DFT)
calculations. While these are often static calculations with fixed
atomic positions, the more demanding ones involve relaxing the
atomic positions. This is typically done with a double-loop
approach: in the inner loop, the density is iterated toward self-
consistency; in the outer, the atoms are moved. Numerous
algorithms exist for both loops. One interesting feature of the
inner-loop is that it is relatively fast; problems with 103 to 106

or more variables for the density converge in 20−100 iterations.
(If they did not then DFT would not be a useful technique.)
Somewhat different is the Car−Parrinello method1 where the
wave functions and atoms can be simultaneously varied.
In principle, it is inefficient to have two loops; much more

efficient would be to simultaneously vary the density and
atomic positions. The double loops are avoided in the Car−
Parrinello method (e.g.,1−5), but this is a kinetic model with
fictitious masses and a solution of Newton’s laws of motion
involving wave functions. Somewhat similar methods exist but
also with wave functions where either the total energy as a
function of wave function occupancy or form is treated
variationaly (e.g., refs 3,6−16) or by a least-squares (L2)
method (e.g., ref 17). However, there are technical disadvan-
tages in terms of speed and storage with wave functions
compared to a density only approach. An alternative approach

involving simultaneous changes of the density and atoms was
suggested by Bendt and Zunger in 1983,18 which various
groups tried but failed to convert into a successful numerical
algorithmit only converged for very simple systems.19

The purpose of this article is to describe a viable fixed-point
optimization approach fusing the loops that is based upon a
derivative free quasi-Newton (QN) approach. The method
works not just for simple demonstration problems but for
complicated ones, is robust and rather faster than a double
loop, shows linear or sublinear scaling in general with the
number of electrons and atoms, and has already been used in a
number of papers.20−31 The algorithm does not directly involve
the energy of the system, the true forces, or fictitious masses, so
while it has some similarities to Car−Parrinello and molecular
methods it uses a vector that does not necessarily have any
mathematically exact connection to the forces. The algorithm is
an optimizer because from the Kohn−Sham equations the
fixed-point solution is the variational minimum.
The structure of this paper is to start with a brief outline of

the QN algorithm, and then a brief analysis in terms of
algorithmic greed. While this is algorithm mathematics, by itself
it does not explain what is important, and for this a deeper
analysis is needed. It is pointed out that during the fixed-point
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optimization and even for a standard fixed-point solution for
the electron densities, the system traverses different electronic
phases which have different dielectric responses and hence
Jacobians. Therefore the Jacobian can change discontinuously,
which influences how greedy the algorithm can be. This leads
to a need to mitigate the greed of Broyden’s first method and
explains the need for a less greedy adaptive algorithm as well as
regularization and trust-region control. These then lead to a
method for choosing a fixed-point Broyden family member
based upon the ansatz that the extrapolated eigenvalues are real
and position since this is a necessary condition at the variational
minimum.
I next provide a brief analysis of the eigenspectrum of the

Jacobian, indicating how this connects to the convergence,
primarily via the elastic wave spectrum and the eigenvalues of
the dielectric matrix. This explains why the algorithm scales
linearly or sublinearly with system size, and as a rule the
number of self-consistent cycles to convergence only scales
weakly with the number of atoms. Some details are then
provided about the specifics of preconditioning, scaling,
regularization, and trust-region control, which follow from
numerical, algorithmic, and physical considerations. After a
brief presentation of some typical results, the paper concludes
with a discussion of the numerous open issues, as well as some
suggestions for future developments.
For brevity, this article does not attempt to compare the new

algorithm to all other QN methods beyond a standard
benchmark optimizer, analyze the more formal mathematics
of algorithm convergence and related issues, analyze the
convergence of the new approach with different flavors of DFT,
or compare it to different strategies such as the Car−Parrinello
method, which can solve the same problem by a different route.
All these are important topics but are left to future work, and
some are mentioned at the end.

2. ALGORITHM DESCRIPTION
Consider some density ρ(r,R) as a function of position r and a
vector of Nav variable atomic positions R = (R1, R2, ...RM) for Na
inequivalent atoms. For this density, the solutions of the
equations of Kohn−Sham density-functional theory32,33 can be
written as

ϕ ε ϕ̂ + =H V( )p i i i0 (1)

∑ρ ε μ ϕ= + − | |−F r R kT r( ( , )) (1 exp(( )/ )) ( )
i

i i
1 2

(2)

with eigenvectors (orbitals) ϕi and eigensolutions (energies) εi
where Ĥ0 is the noninteracting single-particle Hamiltonian, Vp
the effective local potential for ρ(r,R), μ the chemical potential,
k Boltzmann’s constant, and T the temperature. The term
F(ρ(r,R)) will be referred to throughout as the SCF mapping.
In conventional methods, we seek a fixed-point of F(ρ(r,R)) as
the solution for a given density and atomic positions, i.e.

ρ ρ ρ− = =F r R r R D r R( ( , )) ( , ) ( ( , )) 0 (3)

where D(ρ(r,R)) is the density residual. This form is specific to
pure DFT calculations where the only active variables are the
density; the forms for orbital-based density methods are
different and would involve either a density matrix or the wave
functions as the active variables. In addition to the density
condition, for a complete solution we seek the minimum of the
total energy of the system, i.e., for a total energy E(ρ(r,R))

(including electronic entropy33), the derivative as a function of
the atomic positions:

ρ ρ∂ ∂ = =E r R R g r R( ( , ))/ ( ( , )) 0i i (4)

The standard method is to solve eq 3 for some fixed R, change
the atomic positions using a minimization algorithm to move
toward the solution of eq 4, reconverge the density fixed-point
subproblem, and iterate. Rather than solving these serially, they
can be merged; i.e., we seek the fixed-point solution of

ρ ρ ρ− = − =D r R g r R G r R( ( ( , )), ( ( , )) ( ( , )) 0 (5)

with G(ρ(r,R)) the generalized residual vector. For a DFT code
where the basis set is not atom position dependent, the
gradients are the negative of the Hellmann−Feynman forces.
For a LAPW-based method, additional corrections for the basis
set are needed, commonly called Pulay corrections.34−36 These
are calculated with the Kohn−Sham density of F(ρ(r,R)),
whereas the Hellmann−Feynman calculations use ρ(r,R).
Hence the gradients g(ρ(r,R)) in eqs 4 and 5 are not the
Born−Oppenheimer surface gradients; they are instead vectors
which share a common fixed-point. (The Born−Oppenheimer
surface is defined as the energy as a function of R for D(ρ(r,R))
= 0.) In some respects; it would be better to refer to these as
“pseudo-gradients” to emphasize this.
The residual G(ρ(r,R)) is not a true gradient, although it will

appear in some of the equations where one would appear in an
optimization problem. There is no reason a priori why
−G(ρ(r,R)) should be a decent direction for the energy or
the density residual. The most that can be said is that when it is
zero the total energy as a function of both the density and
atomic positions is a variational local minimum.
Dropping the (r,R) notation for brevity, and using ρn and Rn

to describe the density and positions, respectively, for iteration
‘n’ as well as Gn, this suggests a standard Newton algorithm:

ρ ρ= −+ +R R H G( , ) ( , )n n n n n n1 1 (6)

where Hn is the inverse of the Jacobian for the change in
density/pseudogradients with density/atomic positions. (The
use of “H” here is conventional, unfortunately confusable with a
Hamiltonian.) This is a “linear model,” as higher-order terms in
the Taylor series are neglected. The computational cost of
calculating Hn is prohibitive, so instead it is approximated using
a QN method. Introducing the new variables:

= −y G Gj n n j, (7)

ρ ρ= −s R R( , ) ( , )j n n n j j, (8)

and the matrices Sn = [sn−k,n,sn−k+1,n,...sn−1,n] and Yn =
[yn−k,n,yn−k+1,n,...yn−1,n], we require that Hn or its inverse, the
Jacobian Bn, satisfy the multisecant equations:

= =H Y S B S Yorn n n n n n (9)

for which there is a general rank-one solution

σ σ= + − −H I S Y Y W W( )( )n n n n n n
T T1

(10)

with W being any vector of size Ne + Nav. Here, σn is what will
be called the algorithm greed. As discussed in earlier work,37,38

this determines how large a step the algorithm will take in
directions about which there is no earlier information. While in
principle both Sn and Yn can include all previous densities, in
practice only a small number, between 6 and 10, is needed, with
8 being the current default; more discussion is given later.
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Different forms for W and slightly different methods of
constructing the mathematics lead to variations on the above;
all the common methods used for DFT can be described in this
fashion as discussed previously.37,38 The two most common are
to take W = Sn, a multisecant form of Broyden’s first method
(MSB1), often called “good Broyden,” whereas takingW = Yn is
a multisecant form of his second method (MSB2), sometimes
called “bad Broyden.” In the original paper by Broyden,39

where nonmultisecant methods were introduced, his first
method (B1) worked; his second (B2) did not. Since a
number of papers soon afterward reached the same conclusion,
B2 was largely dismissed, although more recent work has
questioned whether it really fails in all cases. Since the most
recent information overwrites earlier information, a sequential
method is a greedy algorithm (see later for a discussion of
algorithm greed); a multisecant approach treats all previous
steps on an equal basis. All DFT methods in common use
involve some variant of the MSB2 method for reasons which
will become clearer later.
For the problem of interest here, choosing W = Yn does not

completely fail but often stagnates without fully converging the
atomic positions. This appears to be similar to what was found
with previous attempts to implement the Bendt and Zunger
approach.18,19 While there is a large amount of mathematical
literature on the equivalent rank-two updates for QN
optimization and how they behave for different types of
problems, less has been published for nonlinear equation
solvers, the main focus being on choosing a method that gives
the best conditioning.40,41 An interesting hypothesis by
Martinez42 is that which method is optimal depends upon
the error in the secant equation for B1 or B2.
The discussion above suggests a linear combination of MSB1

and MSB2, i.e.

α= +W Y Sn n (11)

This algorithm, which will be referred to as “Multisecant Rank
One” (MSR1), tends to MSB1 if the absolute values of the
determinants α|det(Sn

TYn))| > |det(Yn
TYn)| and to MSB2 if the

inequality is reversed. This algorithm is one member of the
“fixed-point Broyden family” and should share the convergence
properties of similar algorithms (e.g., refs 40, 41, 43−54).
To complete the algorithm, the critical question is what

should α be? For this, some analysis is needed, and as a prelude
I will first show (section 2.1) that 0 < α < ∞, and for a linear
model with exact arithmetic, α → ∞ is optimal. Then I will
show that due to electronic phase transitions this is too greedy
(section 2.2), followed by an ansatz for choosing α based upon
positive projected eigenvectors for the extrapolated component
of the inverse Jacobian (section 2.3). This exploits the fact that
at the solution the Jacobian has only positive eigenvectors since
it originates from a variational minimum. The next section
finishes with a brief analysis of the convergence before moving
on to some specific algorithm details in section 3.
2.1. Analysis I: Algorithm Greed and Accuracy of the

Linear Model. All the variants discussed here and elsewhere in
the DFT literature are linear approximations, solutions to a
quadratic local optimization problem.37,38 MSB1 is the
minimum-norm solution for

=B S Yn n n (12)

while MSB2 is the minimum-norm for the inverse equation

=H Y Sn n n (13)

MSB1 yields the smallest B and the best new density based
upon the previous history; MSB2 yields the smallest H and the
smallest residual. In terms of algorithms, MSB1 is a greedy
algorithm; MSB2 is not. A definition of “greedy algorithms” is
appropriate:55

A greedy algorithm always makes the choice that looks best
at the moment. That is, it makes a locally optimal choice in
the hope that this choice will lead to a globally optimal
solution.
MSB2 only uses the information stored in Yn and makes no

assumptions beyond this. In contrast, MSB1 projects the next
direction onto the prior history of steps in Sn. Hence it includes
components of the residual normal to the prior history of Yn.
Greedy algorithms work well if the problem has what is

called “optimal substructure” (e.g., ref 55); i.e., the problem can
be broken down into a combination of optimal solutions to a
number of subproblems. A completely linear problem has this
property; it can be decomposed into subproblems correspond-
ing to solving along the set of vectors specified by the
eigenvectors of B (or H) or alternatively a Krylov subspace
using the matrix B (or H).
From this, it follows that algorithm greed is good or bad

depending upon the linearity of the problem. Note that this
connects to the hypothesis of Martinez42 mentioned earlier,
albeit in a different way.
Next, consider the effects of nonlinearities. For MSB1, the

largest relative errors will be in the smallest absolute value
eigenvalues of B. Hence the worse determined eigenvalues of
B−1, which is used to determine the next step, are the largest
ones. From standard error analysis if the determinant
(det(Sn

TYn)) is small, the errors will be large. (For
completeness, while rank-deficient behavior of Sn

TYn is formally
an issue, it can be avoided by using a regularization technique,
as described later.) In contrast, with MSB2 the largest relative
errors will be in the smallest absolute value eigenvalues of H.
Hence if the problem is well described by the linear model,

we want to use MSB1 (α→∞), whereas if it is not, we want to
tend toward MSB2 (α = 0). What yields nonlinearities in a
DFT problem?

2.2. Analysis II: Electronic Phase Transitions. Analysis
of the performance of the two main variants of Broyden’s
methods requires care. The literature is very large when one
includes areas beyond DFT. There is general consensus on the
mathematical details, although there are some disagreements
and rediscoveries. Both approaches have been shown to be
superlinearly convergent for a linear approximation and locally
superlinearly convergent (see refs 37, 38, 42, 56, 57, and
references therein).
As already mentioned, all other methods found in the DFT

literature can be expressed as slightly different minimum-norm
solutions,37,38 as can the Direct Inversion of the Iterative
Subspace (DIIS) approach.58 Assuming that there is no
intentional or unintentional regularization, with exact arith-
metic they are all essentially the same and for a linear problem
should be equivalent. However, any moderately conscientious
reading of the literature reveals that they are not in practice.
When the two were specifically compared37,38 with the Wien2k
APW+lo code,59 MSB2 was more stable than MSB1.
This leads to the conclusion that the mathematics of a linear

model by itself is not enough, and one has to consider the
properties (quantum mechanics) of the underlying problem.
A key result is that the Hamiltonian of the underlying

problem can change discontinuously due to electronic phase

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4001685 | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXC



transitions. One way to monitor this is to analyze how the
residual changes in the next step as a function of a simple Pratt
step, i.e. (ρ1,R0) = (1 − σ)(ρ0R0) + σF(ρ0,R0) as a function of σ.
Results are shown for a number of representative small
problems in Figure 1, all using the conventional PBE

functional60 with room-temperature for the electronic temper-
ature and starting from relativistic atomic densities.61 The cases
are (1) an isolated Fe atom in a cubic cell of size 28 atomic
units (au) run without spin-polarization starting a configuration
of Ar 3d6.54s1.5, (2) bulk MgO with the published X-ray lattice
parameters, (3) a 7-layer (total) Ni (111) 1 × 1 surface, run
spin polarized in a 4.757008 × 4.757008 × 34.956725 au
hexagonal cell, and a 11 × 11 × 1 k-mesh, and (4) a simplified
version of a BN monolayer on Rh,63,64 run without spin
polarization, started from atomic densities, a 7-layer (111) Rh
bulk with a monolayer of BN on either side in a 5.11238 ×
5.11238 × 45.04544 au hexagonal cell, and a (deliberately
small) 4 × 4 × 1 k-mesh.
The clearest example is the Fe atom where there are three

different electronic phases as a function of the step size as
shown in Figure 2: (a) for small steps, an electronic
configuration Ar 3d84s0, (b) for larger steps, an electronic
configuration of Ar 3d64s2, and (c) for intermediate steps, a
mixed phase (coexistence of a and b) with an electronic
configuration Ar 3d8−x4sx.
In the other cases where there are discontinuities in the

gradient, there are also electronic phase transitions of different
types. The difference in the gradient on either side of the phase
transitions is because the dielectric properties are different; as
will be discussed later, the exact Jacobian can be represented in
terms of the dielectric matrix. These phases have energies much
higher than the ground state, so they are different from what
one observes in real physical systems but are “real” as far as the
DFT algorithm is concerned. Increasing the electronic
temperature (see ref 65 and references therein) broadens the
region over which the mixed phase, such as b in Figure 2,

occurs, explaining the common heuristic of increasing the
electronic temperature to improve convergence.
At the other extreme is bulk MgO, a very well-behaved

problem without significant phase transitions.
The other two examples show features intermediate between

these extremes. Interesting is the Rh/BN case where there are a
number of small jumps and changes in the gradient. These are
not artifacts; they are small phase transitions which do not
change the behavior as dramatically as for the Fe atom. The
nickel surface also has these.
One might hypothesize that one should therefore only take

small steps along the unpredicted direction, but this is not
correct. For the isolated Fe atom case, the gradient for small
steps is small, so this will lead to large predicted QN steps
both B and H are simplex gradients (e.g., ref 66). As shown in
Figure 1, it is better to use an “optimum” step, and going
slightly larger than the optimum is safer than going too small.
This rationalizes the need to control the algorithm greed σ
using a trust-region strategy. Note that the concept of reducing
the algorithm greed if the convergence is poor as often found in
the unwritten DFT literature can be inappropriate.

2.3. Ansatz for α. From the previous two sections, α → ∞
is optimal for a linear problem with exact arithmetic; α = 0 is
the safe choice when electronic phase transitions exist. The
simplest choice (used in an earlier version of MSR1) is α = 1.
While this can work, often it oscillates about the solution or
spirals around it. To avoid this, the algorithm uses an ansatz for
the Hessian borrowed from the optimization literature, as well
as concepts from fixed-point stability theory. Forcing the
Hessian to be positive definite in an optimization ensures that
the steps are descent directions. From stability theory,
oscillatory or spiral behavior is associated with negative or
imaginary values, respectively, for the eigenvalues of the
Jacobian.
We know that the fixed-point solution is a variational

minimum so at the solution has real, positive eigenvalues. The
component of the inverse Jacobian with respect to Yn is fixed by

Figure 1. Plot of the residual in the second step as a function of the
size of a simple Pratt step in the first step, for a number of different
problems as described in the text. The jumps in the derivatives are real
and are attributed to changes in the electronic phase.

Figure 2. Electronic configuration of F(ρ) in the second step as a
function of the size of the first Pratt step for an Fe atom, with the 4s
occupancy within the muffin-tins in black (×10) and the 3d in red.
There are two pure phases as marked, as well as a mixed phase regime.
Not all the density is within the muffin tins, so the occupancies are not
the integer values of 3d84s0 or 3d64s2.
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the curvature condition (eq 9), but there is an extrapolated
component orthogonal to Yn corresponding to the matrix

= − −T S S Y Y Y Y( )( )n
T

n
T

n
T

n n
T

n n
T1

(14)

This is the extrapolated component of the eigenvector of the
part of the inverse Jacobian Sn(Yn

TW)−1WT that originates from
the prior history. We choose the eigenvalues of this projected
component to be purely real and positive, i.e. find the largest α
such that all ξ scalars that satisfy

ξ=−S Y W W T S( )n n
T T

n n
1

(15)

are real and positive. Since the matrix WTTn has real, positive
eigenvalues, this reduces to choosing α such that Yn

TW has real,
positive eigenvalues. This can occur for a range of values, the
optimum choice is the largest possible value, i.e., the most
greedy one. This is implemented using a bracketing search with
an upper limit of α = 3.
The extent to which this ansatz is appropriate for general

fixed-point problems which are not variational minima is not
obvious, a topic for further work, as is the question of whether
this ansatz is the best choice in all possible cases. For the
problems of interest here, it removes the oscillatory and spiral
behavior and also improves the stability.
2.4. Analysis III: Convergence. As mentioned above,

superlinear convergence (i.e., the exponential decay rate
increases near the solution) of B1 and B2 has already been
proved for a linear model (see refs 37, 38, 42, 56, and 57 and
references therein), so we can extrapolate to superlinear
convergence for MSB1, MSB2, and MSR1. However, the
convergence proofs in the literature do not fully define the
properties. One useful connection recently investigated in some
detail67 is that between MSB2 and DIIS within a linear model
and the older Generalized Minimal Residual Method GMRES
(e.g., ref 56) technique for solving linear equations. It is also
worth noting that one can also connect to the conjugant-
gradient (CG) method, as well as the concept of Krylov spaces.
In the related area of optimization, it has been shown that with
an exact line-search all Broyden-type methods become
equivalent to CG (e.g., ref 57).
It follows that in a well-behaved case the convergence of the

algorithms will approach those of GMRES and CG. I will state
here the general convergence results without proof; the
interested reader is referred to refs 56, 57, 68, and 69 and
references therein for specific analyses: (a) In the linear case,
the algorithm will converge in at most k-iterations, where k is
the number of eigenvalues of the Jacobian. (b) The
convergence of the algorithm depends upon the number of
clusters of eigenvalues as well as the width of the clusters. In the
limit of an infinitely small width of the clusters, it will converge
in k iterations where k is the number of clusters. In the more
general case, it will converge more slowly as the width of the
clusters increases, but in most cases the number of clusters is
more important than the width (with standard generalization
caveats). From this, we may deduce that the eigenspectrum of
the Jacobian controls the convergence rate.
Consider first the atomic component of the Jacobian. The

eigenspectrum is that of elastic waves (phonons/vibrations with
the same mass for all atoms), and the clusters can be
interpreted as the bands of the elastic eigenvalues. For a single
unit cell, only the Γ point of the first Brillouin zone is relevant.
For a larger structure considered as a superstructure of a single
unit cell, rather than the complexity of the eigenspectrum

scaling with the number of unit cells forming the super-
structure, the clusters (bands) will be folded back. The number
of clusters of eigenvalues will depend upon the number of
chemically distinct environments, while the width will depend
upon the number of atoms. Hence the convergence rate
depends at most linearly upon the size of a problem if the
number of chemically different environments does not change
and can have a sublinear dependence. That the convergence is
not simply a function of the number of atoms and does not
scale to some high power of this number can be seen by
inspecting, for instance, the prior results of Baker11 or Moss
and Li17 and plotting the number of iterations to convergence
versus the number of atoms/variables as well as the results
shown later.
Next, consider the electronic component. Using conventional

dielectric theory for the effect of an external charge ρext and the
charge it induces ρind, we can write

ρ ρ ρ= − ≡s R R( , ) ( , )j n n n j j ext, (16)

ρ ρ= − ≡ −y G Gj n n j ind ext, (17)

So the exact Jacobians be written as

ε ε ε′ = − ′ ′ = ′ − ′B I H I1/ ; /( )q q q q q q q q q q, , , , , (18)

Where ε(q,q′) is the dielectric response in reciprocal space with
q, q′ reciprocal lattice vectors. Note that this is equivalent to the
use of a form

∫
∫

ε
ε ρ

ρ
=′

′ k k r R k

k r R k

( ) ( , , ) d

( , , ) dq q
q q

,
,

(19)

where the integral over “k” is for the first Brillouin zone, and
ρ(k,r,R) is the SCF mapping for each k-point in the zone, taken
here for simplicity at the fixed-point solution. Assuming a linear
mapping from reciprocal space to the specific basis-set of the
DFT calculation using just the density, which is true for the
Wien2k code and many others (but perhaps not all), the
spectrum of the eigenvalues of B (or its inverse H) directly
maps to that of the basis-set used, and those of B are those of
the negative of the inverse dielectric response shifted by +1.
The eigenvalues are related to the dielectric band

structure.70−76 For a few insulators, this has been calculated,
and similar to the electronic band structure, there are only a
limited number of bands, as would be expected since simple
density-functional perturbation theory can be used (see ref 77
and references therein). For metals, it is more complicated
since there are degenerate states, so the number of eigenvalue
clusters will be larger. However, in neither case will the number
of clusters be close to the number of variables in the basis set,
and for the most deeply bound states the dielectric band
structure will be very flat; i.e., the cluster will be narrow.
A number of inferences therefore follow which are consistent

with existing empirical data from DFT calculations discussed in
existing code documentation: (1) Metals will in general
converge slower than insulators, because there are more
clusters and/or the width of the clusters is larger. (2) Using
what is called “Temperature Smearing,” i.e., a large temperature
in the Fermi−Dirac occupancy or Gaussian smearing (see ref
65 and references therein), will improve convergence since it
will mix orbitals which would otherwise be part of different
clusters, thereby reducing the number of clusters. This is related
to the broadening of the mixed electronic phase described

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4001685 | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXE



earlier. (3) When the problem is close to a minimum for the
atomic positions, the mixing will be faster since the number of
different chemical environments and hence local dielectric
responses is reduced compared to a case far from equilibrium
with strange atomic positions.
The convergence of the density subproblem will scale as the

number of clusters of the dielectric response (CE), which will
scale more as the number of active states below or near the
Fermi energy, which is a much smaller number than Ne (see for
instance Table 1), that of the atomic positions as the number of
clusters of the force matrix or energy Hessian (CF).
What about the method described here? This is going to

depend upon the eigenvalues of a general dielectric response
which includes the effect of varying the atomic positions as well
as the electronic response, and there does not appear to be any
analysis of this to date. The total number of clusters can be
bounded as

< <C C C C Cmax( , )E F E F
(20)

This compares to a serial method which will converge with a
rate that will scale as the product CECF. A reasonable hypothesis
is that the fused problem will scale as the number of different
environments. This suggests that the algorithm will scale
sublinearly with problem size which is consistent with
experience to date and the results shown later, albeit hard to
prove beyond reasonable doubt. Much more important than
size is the quantum mechanical problem; not all hard problems
are large and not all large problems are hard, as demonstrated
by the results shown later.

3. ALGORITHM DETAILS
From the previous sections it is apparent that the unpredicted
component needs to be controlled; one needs to safeguard for
changes in the Jacobian, and different parts of the basis-set need
to be appropriately scaled so the eigenvalues are compressed to
the smallest number of narrow clusters. With a gradient-based
optimization problem, how to do this is well documented, but
for the fixed-point problem there has been little analysis. Some
parts are relatively straightforward, for instance preconditioning
to compress the eigenspectrum. Others, such as how to scale
different parts of the basis set, are not obvious.
It is important to recognize that with straight density

functional methods there is no reliable metric of exactly how far
a given density is from the solution without incurring excessive
additional computational cost; the algorithm does not know the

correct energy when the density is not self-consistent, which
elements of the basis set matter the most, or how large are the
non-self-consistent force terms.
For step sizes, it is always tempting to take as large a step as

possible. However, since this information is used for
subsequent iterations, this approach can lead to problems.
Very small steps are also bad, as discussed in section 2.2the
algorithm can starve to death. What is needed is to mitigate the
greed, not too much and not too little. The strategy here is that
the trust region limits should only be occasionally active (<5%
of iterations, ideally none) and are present for safety in case
something unexpected occurs.
The specific details for the unpredicted step size and trust

region given below have been approximately tuned for the
Wien2k code using a range of problems and are not accessible
to routine users; with other codes, similar but different tuning
parameters will need to be developed. The Wien2k code uses
(e.g., ref 78) an all electron APW-lo method with atomic
spheres (muffin-tins) within which the density is represented as
a product of a logarithmic radial density (CLM) multiplied by
spherical harmonics, plus an interstitial region where a Fourier
series is used (PW). To solve the SCF mapping, either a full
diagonalization of the Hamiltonian or an iterative one79 (e.g.,
Figure 10) is used. The parameters below have been adjusted to
the extent possible to work independently of whether the user
starts from densities for isolated ions, that for a converged
density with fixed atomic positions or anywhere in between.
There are some metrics which can be borrowed from

optimization theory and will play an important role later so will
be introduced first, as well as a running average form:
Bounded Running Average. This is defined as

= −
+

=

−

− −

Ave a m C
Ave a m C

C C a

Ave a C C C a

( , , )
{ ( , 1, )

max(1/ , min( , )}/2

( , 0, ) max[1/ , min{ , }]

n

n

n

n m n m

1
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where m is the number of prior history steps used. This is used
to minimize oscillations of the parameters.
Multisecant Shanno-Phua Scaling. Borrowing from methods

for choosing the initial Hessian scaling,80 I will define the
multisecant form as the value of σn

SP which minimizes the
Froebius norm, normF (the square root sum of the squares of
the elements, also the square root of the sum of the singular
values squared):

Table 1. Summary Data for the Models Shown with the Total Numbers of Atoms, Inequivalent Atoms Na, Atomic Position
Variables Nav, the Matrix Size of the Hamiltonian, the Number of Density Variables Ne, the Number of Semi-Core and Valence
States below the Fermi Energy, the Largest Change in the Position of Any of the Atoms As Well As the Approximate Number of
SCF Cycles to Convergence with MSR1 as well as BFGS, both SCF and Outer-Loop Iterations

Figure name atoms
ineq atoms

Na

atomic variables
Nav

matrix
size

density size
Ne states

max change
(au)

SCF
MSR1

SCF/Iter
BFGS

3 Ni(OH)2 5 3 2 601 5644 15 0.20 27 108/8
4 MgO (111)+H2O 52 21 42 6344 28842 176 2.12 241 414/23
6 Al106Fe2 108 42 92 5945 82643 491 0.48 76 148/8
7 TiO2 (001) 2 × 2 40 16 35 6518 25361 163 0.53 156 349/13
8 SrTiO3 (001) 2 × 1 108 44 96 16106 65752 400 2.87 480 645/40
9 MgO (111) octapole 44 12 20 10029 17046 176 1.09 92 170/13

68 18 32 10185 21732 272 1.19 109 158/10
92 24 44 10341 26418 358 1.27 138 152/10
116 30 56 10497 31104 464 1.35 151 189/14

10 C2N2H8 24 6 18 5764 16085 26 3.20 575 575/45
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σ = −norm xS Y Y Ymax(0.05, min ( ))n
SP

x F n
T

n n
T

n (22)

Multisecant Step Size. This is an estimate of the relative total
step size σn

Step as the ratio of the largest singular values (spectral
norm) of Sn divided by that for Yn
The next section details the components of the algorithm in

the order they are used.
3.1. Initial Steps. For the very first Pratt step, a heuristic

based upon tests is used:

σ σ σ= + −dQmax( (0.25 exp( )), )0 max 0 min (23)

with dQn being the multiplicity weighted RMS change of the
density within the muffin tins for iteration n; a typical value is
σ0 = 0.035. Rather than just accepting this, in the next iteration
it is tested using σ0

SP. If this implies that a larger step should be
used, a second expanded Pratt step was taken up to an
additional twice σ0. Alternatively, if |G| increased, a second Pratt
step of half the distance is used.
3.2. Rescaling of the Total Charge Density. For just

densities, since both ρn and F(ρn) have the correct integrated
density, no rescaling is needed. However, when the atomic
positions change, the total density is not preserved in a LAPW
method. This is not a serious issue, but it is slightly better to
correct it. Since the core electrons are almost completely
confined within the muffin-tins, the most appropriate approach
is to apply a correction to just the valence electrons,
approximating the core electrons as frozen. This correction, a
simple rescaling, is done after the next QN density has been
calculated, although in principle it could be added as a
constraint.
3.3. Choice of the Number of Steps. The default number

of history steps is 8, which is approximately optimal. If the
algorithm is not behaving well, for instance due to numerical
noise near the minimum or when transitioning an electronic
phase transition, increasing this number adds stability. The
simple heuristic of increasing the number of iterations by 1 up
to a maximum of 16 is used if dQn > 2dQn−1 and decreasing it
by 1 to a minimum of 8 if dQn < dQn−1 while retaining a record
for the next iteration of the number of memory steps to use.
3.4. Preconditioning. An issue for a LAPW-based method

is scaling of the plane-wave components versus the logarithmic
sampling within the muffin-tins, plus the pseudogradients and
atomic positions, as well as a density-matrix term for Hubbard
U methods or similar. In addition, Wien2k makes maximum use
of symmetry so the multiplicity of different components of the
plane wave representation and of the atoms should be taken
into account.
First, unlike other parts of the problem, the atomic positions

and gradients are in different units. Natural units for them are
atomic units and mRy/atomic units and have been used. Small
adjustments might be better for particular problems, but QN
methods are weakly sensitive to small scaling changes.
Second, we want to precondition the variables such that the

effects of multiplicity are removed. This leads to a
preconditioning matrix acting on the variables of

Θ =

···
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where mi is the multiplicity of the given variable, for instance
the number of symmetry equivalent atoms or reciprocal lattice
vectors.
Next, writing Dn

i (ρn) for the component of the density
residual projected onto the ‘i’ distinctly different component of
the basis set, then similar to previous work the algorithm solves
for the weights ω in

∑
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This leads to a second preconditioning matrix acting on the full
basis set of form

ω ω

ω ω

Ω =
···
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where IPW is an identity matrix for the interstitial components,
and Ig is that for the atomic positions and gradients and (if
appropriate) the density matrix or on-site exact-exchange
terms.81,82 For algorithmic reasons, rather than allowing the
scaling parameters to be completely free, the maximum change
for any cycle relative to the previous one was bounded between
1/1.5 and 1.5 to avoid oscillatory behavior.
Following this, the different steps of the history were scaled

as in earlier work:

Ψ =

|| || ···
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3.5. Regularization. Equations 10−12 contain the inverse

α+ =− −Y Y Y S A( )n
T

n n
T

n n
1 1

(28)

Some singular values of A could be small, which could lead to
instabilities. Following a similar concept to earlier work, we
replace this by a conventional Tikonov regularized inverse,83−86

i.e., use

λ+ −A A I A( )n
T

n n
2 1

(29)

and use a single-valued decomposition to avoid calculating the
inverse. There exist methods such as a generalized cross-
validation approach,87 which can estimate the value of λ, but in
tests this too strongly damps small eigenvalues. The best
method currently is to use a value of ∼10−6 times the spectral
norm of Yn

TYn.
3.6. Control of the Unpredicted Step. The total step can

be split into two parts:

= −

= − −

−

−

p S Y W W G p

I Y Y W W G

( ) and
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n
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n n
T T

n
U

n n
T T

1

1
(30)

where pn
P is the predicted part of the step based upon the prior

information, and σnpn
U is the unpredicted part about which

nothing is known. Similar to previous work, an implicit trust-
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region was used to control the unpredicted step via the
generalized residual by a combination of three terms. The first
control limits the total change for any given step as

σ σ=+ +Cmax(1.0/1.5, min(1.5, ))n n n1 1 (31)

where Cn+1 is the bounded running average of previous
improvements

= | | | | ++ +C Ave R R m( / , 1, 2)n n n1 1 (32)

Next, σn
SP is used to prevent the greed from becoming either too

small or too large based upon the prior history by

σ σ σ σ σ

σ σ σ σ

= <

= >
+ + +

+ +

max(1.5 , /3) if /3

max( /1.5, 3 ) if 3
n n n

SP
n n

SP

n n
SP

n n
SP

1 1 1

1 1 (33)

This forces larger greed when the total step size is large, which
is needed for soft modes, while also decreasing it for small step
sizes. As a final constraint, the range was limited as

σ σ σ σ≤ ≤ *+ min(1, )n n
Step

min 1 max (34)

where σmax is a user input, by default 0.2, and

σ σ σ= dQmin( , max(0.005, 0.75 / ))base basemin (35)

with σbase=0.01 by default. This allows the algorithm greed to be
reduced down to 0.005 for very large density residuals but not
otherwise go too small; it is not that critical and could be
omitted.
The combination of eqs 30−35 allows the algorithm greed to

be automatically decreased when it is not making good
progress, and increased when it is. The incorporation of the
two metrics is important for adequate treatment of soft modes
and without this the algorithm can stagnate. As illustrated
earlier in Figure 1, in general it is better to slightly overestimate
than underestimate the greed.
3.7. Trust-Region Control. The linear QN model is only

reasonably valid for steps smaller than some absolute
magnitude, what is called a trust-region, and the magnitude
of the largest reasonable step, the trust-region radius. Existing
trust-region methods are based upon limiting the total step, i.e.,
the combination of the predicted and unpredicted steps in eq
30. While this is appropriate when G is a true gradient, there is
no guarantee that it is even close to one here. The approach
taken is to first limit the predicted step, and only limit the
unpredicted if this fails. The algorithm uses a conventional
trust-region model of

η

= | − |

− | + | −

− −T G S Y W W p

p p d
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n n n

T T P

P U
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where d is a maximum allowed change applied both to the
atomic positions and the total change with a Lagrange
multiplier η. We minimize T, for which the solution is (for
constant pU)

η+ =− − − −S Y W W I p S Y W W G{( ( ) ) } ( ( ) )n n
T T P

n n
T T

n
1 2 1 1

(37)

While this form is correct, it is numerically involved to include
the regularization described in the previous section. Multiplying
by (Sn(Yn

TW)−1WT)2 and requiring that pP is a linear
combination of the prior steps gives the equivalent form:

η+ + = +− −I A S S Y S c A S Y G{ }( ) ( )n n
T

n n
T

n n n
T

n
T

n
2 1

(38)

where the inverse of An is the regularized form defined above.
This was solved by a back-tracking bracketing strategy.
If only one history was present or the trust-region condition

was never satisfied because it was violated by the unpredicted
step, the algorithm automatically switched to, in order, (a) a
conventional double-dogleg strategy88 using the trust-region
model above, again only for the unpredicted step, and (b) a
Cauchy step57 with steepest-descent for the predicted step
added to the unpredicted step, and the combination scaled such
that the constraints were obeyed.
A standard trust-region method adjusts the radius, increasing

it if the algorithm is making good progress, decreasing it if not.
Here “progress” is not well-defined, so the approach has been
taken of limiting the total step as well as that of the atoms so
neither are too large.
First, for the atoms the largest atomic movement was limited

so that the muffin-tins do not overlap, and by

= | | + ∞d d Ave g mmin( , ( 4, , ) )Atoms Atoms
nmax

2
(39)

where dmax
Atoms is a user parameter, by default 0.1 au. This limits

the largest atomic displacement to the range 0.02−0.1 au.
Next, the total step as a fraction of a full Pratt step (i.e.,

|Rn+1 |) was limited by

μ ασ
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This (1) reduces or increases the total step depending upon the
unpredicted step greed, an implicit trust-region control, (2)
reduces or increases the total step depending upon the previous
stepsthis is needed for soft modes, and (3) reduces or
increases the total step depending upon to what extent the
algorithm is using MSB1 versus MSB2, appropriate since when
α is small the linear model will only be valid for a limited total
step.
The total step is limited to the range 0.2−16 times a simple

Pratt step. Typical values when α is small, i.e. the linear model
has limited validity, are dtot of 1−2, whereas when it is
optimizing soft modes, dtot is closer to 10−12.
For a well-posed problem, e.g. a MgO surface starting from

the densities of isolated atoms, the trust-region control might
be activated in the second step, and for ∼2% of the steps, it is
not important. In a few cases it can be activated more than this,
for 5−10% of the steps or very close to the final solution if
there is numerical noise.

3.8. Algorithm Summary. The same algorithm is used for
self-consistency of the density alone, and for a full fixed-point
optimization; the only difference is that the atom positions and
gradients are not part of the problem when only the density is
used, and there is no need to rescale the valence density.
(1) Choose an initial (ρ0,R0) (user input) and then σ0 from

section 3.1 and generate (ρ1,R1)= (ρ0,R0) − σ0G0 so long as the
step is not too large (if needed, use a linear trust region to
reduce the step). Rescale the valence density using section 3.2.
Set n = 1.
(2) Check if the new density represents an adequate

reduction (section 3.1). If it does, move to 3; otherwise, take
another Pratt step with either a reduced or larger algorithm
greed (section 3.6) and rescale the valence density using
section (3.2).
(3) If the convergence criteria are met, stop; otherwise

determine the number of history steps to use from section 3.3.
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(4) Generate the scaled and preconditioned matrices Sn and
Yn as well as scaled and preconditioned Gn using section 3.4.
(5) Solve for Broyden-family term α as discussed in section

2.3, and calculate the regularization term from section 3.5.
(6) Calculate the unpredicted greed from section 3.6.
(7) Calculate the next full Newton step (eqs 6 and 10). If

this violates the trust-region limits, solve the trust-region
subproblem for the step (section 3.7). Calculate the new
density.
(8) Rescale the valence density section 3.2.
(9) Calculate the new potential, and solve the Kohn−Sham

equations. Set n = n + 1 and repeat step 3.

4. RESULTS
I will show a few representative examples here. In all cases,
comparisons are made to a traditional double-loop method
where MSR1 was used for the density-only part, and for the
atomic positions, the Broyden−Fletcher−Goldfarb−Shanno
(BFGS) algorithm drmng code,43,88−91 which is available
from Netlib and is a standard against which numerous other
codes have been benchmarked. It is a reverse-communications
code written in standard Fortran 77, so it can be readily
incorporated into any DFT code. (The only modification to the
code when it was added in 2004 was a minor trap to avoid
overflows with the secant update for very small steps and a
printout of when the curvature condition failed, as this often
indicates a user-error in the model.) In all cases, an approximate
initial Hessian was used based upon a simple spring model,92

which yields a ∼30% reduction in the minimization cost
compared to a unitary matrix.
Starting from a user specified Hessian estimate and initial

trust-region radius, this BFGS algorithm updates the Cholesky
factorization of the Hessian via a safeguarded method to ensure
that it remains positive-definite. If the energy increases, the
Hessian is not updated, and a backtracking strategy is used with
a reduced trust-region radius. A similar back-tracking method is
used if the next step is inappropriate, for instance due to
overlapping muffin tin spheres. A conventional double-dogleg
procedure88 is used for the step ranging from a Cauchy57

(steepest descent) step, a double-dogleg (step from the Cauchy
point toward the unrestricted step), or full Newton steps
depending upon the trust-region radius. This radius is increased
if the total energy reduction is “good enough,” where standard
heuristics are used to compare the expected and obtained
energy reductions.
For completeness, the additional cost of calculating the

forces at every iteration in the Wien2k code is relatively small,
about 5−10% of the cost of a single iteration based upon
benchmarks, mainly due to the Pulay corrections.34−36 In
principle, the forces only need to be calculated with a
converged density with a conventional double loop. The
additional cost is small, so in all cases below, the number of
SCF iterations can be taken as an absolute measure of the
computational cost; the computational cost of including the
atomic variable is very small (<0.01%).
In all cases, default parameters were used, and no attempt has

been made to optimize any settings in Wien2k or the algorithm
itself for the different cases. The results shown are
representative of what a novice user would obtain within
numerical accuracy and reproducibility. Table 1 summarizes
many of the key parameters for the different examples shown;
see the Supporting Information for the initial positions in all
cases.

Note that in the MSR1 results the forces and energy shown
are not the true ones (they are for the BFGS calculations), and
as mentioned earlier the term pseudogradient and similarly
pseudoenergy would be more appropriate. Both converge to
the true values at the fixed-point but are otherwise only
representative, and the energy as shown is not variational.
However, both are useful metrics and in practice tend to
converge in a representative fashion.
The first example, shown in Figure 3, is Ni(OH)2 run spin-

polarized using an on-site exact-exchange hybrid81,82 for the Ni

d states, starting from the X-ray structure and lattice parameters
and neutral atoms. This is a relatively simple problem with only
two atomic free variables and, since it is a large band gap
insulator, a simple dielectric matrix. The calculation converges
the density and forces in 27 iterations, the largest displacement
being movement of the H atom by about 0.2 au; it takes 8
atomic iterations with BFGS, a total of 108 SCF mappings. This
is about the same as a calculation for bulk Mg(OH)2. The
various metrics shown in the figure all scale exponentially with
the number of iterations with a form of approximately
exp(−0.337n) where n is the number of iterations, i.e. linear
convergence with a rate of convergence of ∼0.7. Note that this
is the conventional definition of convergence of an optimization
algorithm.
The second in Figure 4 is a more complicated representation

of a hydroxylated surface of MgO (111) (see ref 93 for details).
The calculations were done using the PBE functional and an
initial 10 iterations with just the density, then using iterative
diagonalization.79 This is a much longer calculation and
converges relatively slowly (convergence rate 0.9792) due to
soft modes for the surface hydroxyl groups. The largest
displacement of an atom from the original position was 2.12 au.
The MSR1 algorithm was about 2 times faster than BFGS,
which had a convergence rate of 0.9842; per iteration the
fractional reduction in the energy is twice as large. It should be
mentioned that the forces apparently converge quicker than the
energy, which is correct remembering that these are not the

Figure 3. Plot of the convergence of the RMS density residual within
the muffin tins, the energy above the minimum in eV, and the RMS
force in Ry/au (so they have similar scales) for bulk Ni(OH)2 with an
on-site exact-exchange hybrid as well as for the double-loop BFGS
method. Earlier iteration values of the energy are not shown, as the
numbers are meaningless when the density residual is very large.
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true forces for self-consistent densities. The algorithm is
effectively minimizing the L2 of the generalized residual G,
which has many more density terms than the pseudoforces. It is
therefore natural for the algorithm to take a trajectory
intermediate between the Born−Oppenheimer surface and
the surface of zero-force (and inconsistent densities) as
illustrated in Figure 5.

Another example in Figure 6 is a 22.81 × 32.26 × 32.26 au
structure with Amm2 symmetry containing 42 unique atoms,
108 total, of which two are Fe and the rest Al. This is a
supercell where two of the nearest neighbor Al atoms in the
initial perfect fcc lattice have been replaced by Fe. It was run
spin-polarized with a k-mesh of 3 × 3 × 3, starting from atomic
densities with the Al nonmagnetic and the Fe in a configuration
of Ar 3d74s1 with an initial unbalanced spin of 2. The two Fe
atoms change positions somewhat, the distance between them
increasing from 9.79 to 11.21 au, while nine of the 11 Al atoms
around each move closer from 9.79 to 9.37 (one atom) or 5.04
(10 atoms) au, with the largest displacement of any atom being
about 0.48 au.

Additional examples are shown in Figures 7−10 all run
without spin-polarization using the PBE functional with
additional details in Table 1:

•Figure 7 is a reduced (i.e., metallic) reconstructed TiO2
(001) surface taken from ref 94 in a 17.5 × 52.6 × 12.3 au unit
cell with B2/m symmetry, a 4 × 1 × 4 k-point mesh and room-
temperature Fermi−Dirac occupancies.
•Figure 8 is a 2 × 1 SrTiO3 (001) 2 × 1 surface with

chemisorbed water taken from ref 95 with a 14.9 × 56.7 × 14.9
au unit cell and P2/m symmetry, run using iterative
diagonalization with a 2 × 1 × 2 k-point mesh.
•Figure 9 is a 2 × 2 MgO (111) octapolar terminated surface

(see ref 93) with different numbers of inequivalent atoms (i.e.,
layers) as marked on the figure and started from bulk atomic

Figure 4. Comparison of the energy in Ry with respect to the
minimum for the MSR1 algorithm in red and a conventional double
loop in black, for a 52 atom MgO (111) surface with chemisorbed
water.

Figure 5. Illustration of the Born−Oppenheimer and zero-force
surfaces.

Figure 6. Plot showing the convergence of the RMS force in Ry/au
and energy in Ry both for the Al106Fe2 model as well as for the energy
with a conventional double loop.

Figure 7. Comparison of the energy in Ry with respect to the
minimum for the MSR1 algorithm in red and a conventional double
loop in black, for a reconstructed TiO2 (001) surface with an oxygen
vacancy.
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positions, all with a 11.34 × 11.34 × 117.16 au unit cell and
P3̅m1 symmetry with a 4 × 4 × 1 k-point mesh in all cases.
•Figure 10 is the exception, an apparently simple C2N2H8

molecule in a P21/c 13.46 × 17.63 × 9.17 au unit cell obtained
by taking bulk polyethylene, cutting out four carbons, replacing
the outer two with nitrogen, and removing two hydrogens.
Results are shown with both full and iterative diagonalization
using a 4 × 3 × 6 k-point mesh.
As general comments on Figures 7−10: (1) With the

exception of Figure 10, MSR1 is approximately twice as fast as
BFGS. (2) They are all noisier than the simpler examples
shown earlier, and in some cases the BFGS code takes too large
a step and the (variationaly correct) energy increases, which
should not be a surprise and is not a problem. (3) Superlinear
convergence for MSR1 is clearly observed in Figures 7, 8, for
some cases Figure 9, and Figure 10. (4) Superlinear
convergence for BFGS is observable in Figures 9 and 10. (5)

In Figure 8, BFGS finds a higher minimum, whereas MSR1
finds a lower one. Since these methods are all local (not global)
minimizers and there is a stochastic component, this can always
occur. (6) As shown for the comparison in Figure 10, the
iterative diagonalization is less accurate, which slows down the
convergence more noticeably for MSR1. The overall computa-
tional cost of the iterative diagonalization is sufficiently
advantageous that this does not matter. (7) The number of
iterations to convergence does not have a simple dependence
upon the number of atoms or the number of occupied states
which can also be seen from Table 1 and the specific
comparisons in Figure 9, and discussed in section 2.3.

5. DISCUSSION
The algorithm was first released in a simpler form (without the
trust-region control and with α = 1) in April 2011. That form
worked very well for insulators but had some problems with d-
electron metals. The addition of a trust-region control for the
total step size solved many of the instabilities, and they have
been reduced further by forcing the projected component of
the eigenvectors to have positive, real eigenvalues (section 2.3).
The version with α = 1 and trust-region control was released as
part of the main Wien2k package in July 2012. It has already
been used in a number of papers.20−31 The more advanced
version with the ansatz for control of α is scheduled for release
in 2013 and has been in use at a number of locations for some
time. It handles soft modes much better than the earlier
versions which could need restarting.
No algorithm is perfect. In general use, MSR1 is robust and

offers speed improvements of roughly a factor of 2 compared to
the double-loop BFGS, sometimes more and occasionally less.
Comparable speed improvements can be expected with a plane-
wave code, perhaps better since there are fewer complications
with the scaling and conditioning of the basis-set.
It has been used for many more cases than those shown, and

some generalizations may be useful with the standard caveat
that there are exceptions to all generalizations. One class of
problems where the algorithm can be better is where there is a
large change in the electronic configuration when the atomic

Figure 8. Comparison of the energy in Ry with respect to the
minimum for the MSR1 algorithm in red and a conventional double
loop in black, for a SrTiO3 (001) 2 × 1 surface with chemisorbed
water.

Figure 9. Comparison of the energy in Ry with respect to the
minimum for the MSR1 algorithm and a conventional BFGS double
loop, for a range of oxygen-terminated octapolar 2 × 2 MgO (111)
surfaces with different numbers of inequivalent atoms as marked.

Figure 10. Comparison of the energy in Ry with respect to the
minimum for the MSR1 algorithm and a conventional BFGS double
loop for a C2N2H8 molecule started relatively far from equilibrium
using both full diagonalization as well as iterative diagonalization.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4001685 | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXK



positions change, for instance transition from a metal to an
insulator. When this occurs, the Hessian with respect to the
atom positions will change substantially, so information from
when it was a metal will be less relevant. Conventional BFGS
(or a limited-memory version) will only slowly accommodate
to this over a number of full self-consistency calculations,
whereas the algorithm herein will after a few iterations.
How the physical problem is posed matters. A calculation

started from unusual densities or atomic positions will have to
traverse odd electronic phases to reach a minimum, or even to
achieve self-consistency of the density. Increasing the effective
temperature and adjusting the k-point sampling are standard
ways of improving the convergence. While it is not uncommon
to use rather large effective temperatures (e.g., 0.2 eV
equivalent to a temperature of ∼2400 K, see for instance ref
65 and references therein), the author’s experience with MSR1
and Wien2k is that using room temperature or at most 500−
600 K is more than adequate, and higher temperatures than this
can be worse. Most cases where self-consistency is hard to
achieve, albeit not necessarily all, can be traced to user errors in
how the model for the DFT experiment has been set up. It is
worth stressing that the convexity of the quantum mechanical
and numerical problem is under the users’ control in most
cases, and improving it is often more important than anything
else. A simple example of this is the slower convergence of the
iterative method in Figure 10, although it is faster in terms of
net CPU time.
There is certainly room for improvement. The current

bounds used for the trust-region controls in section 3.6−3.7
may be too complicated although they have qualitatively the
right dependencies; they do avoid a need for user input. No
preconditioning of the gradients or transformation to internal
coordinates is currently used, and previous work has indicated
that something as simple as a spring-model can be very
effective92 or possibly some approximation to the dielectric
matrix, for instance just the diagonal term.72,96 As a caveat, the
use of a spring model preconditioner has been tested by the
author within MSR1 and did not appear to help. Going in the
opposite direction, it would be very useful to be able to
estimate the elastic mode eigenvalues and vectors from the
prior history. While in principle this information is available, to
date reasonable attempts by the author to extract this
information from the MSR1 step history have failed.
There is also some more investigation which could be useful.

The dielectric band structure has been calculated for a few
simple insulators, but it is hard to find useful information for
metals. It would also be useful if analyses existed not just for the
electronic component but for the complete dielectric response
including atomic positions.
A few important comments for readers interested in

implementing MSR1 in other DFT variants follow. Experience
in the four years since MSB2 was first introduced is that the
mixer is an excellent debugger of code (and operating systems)
and quite sensitive to noise. In some cases, changes in the
underlying Wien2k code have led to parts being faster, but
introduced noise. Sometimes the net effect for the self-
consistent calculation was to make it slower. The current
version of Wien2k is much more stable than the version when
MSB2 was first introduced, and as a consequence the
regularization used is smaller than it was. The regularization
of MSR1 is different, and much smaller than that for MSB2.
The parameters given herein are not those which will give the
faster results in all cases, rather ones which are robust for

general use. With other codes, the exact values will need to be
determined from tests; something as simple as bulk Mg(OH)2
should be easy; more demanding are d-electron metals. The
experience of the author is that it is best to avoid heuristic
controls as much as possible, and let the implicit trust-region
control for the unpredicted step and the explicit trust-region
control for the total step magnitudes take control, and be as
noninvasive as possible.
Numerical accuracy is an issue; QN methods are sensitive to

this. Wien2k can be more accurate than pseudopotential codes
but also contains many density contributions which change
little. There are also many numerical algorithm issues such as
aliasing of the spherical harmonic components of the exchange-
correlation potential within the muffin tins as well as how
numerical differentiation is done, all of which can have
unexpected consequences. Even with double-precision arith-
metic, it can be difficult to achieve convergence to better than
0.1 mRy/au in the forces and 1.0 mau in the positions
particularly for heavy elements and large cells.97

A second set of comments more for the new user; this
algorithm is different. Sometimes the atoms move away from
the initial positions as the forces and density residual
simultaneously reduce and then move back toward where
they started from. This is quite reasonable since the elastic/
dielectric response of the system is changing and there may be
phase transitions in the electronic subsystem. This does raise
interesting questions as to whether it is better to start the
optimization from a somewhat self-consistent electronic
configuration and to what extent one should stay close to the
Born−Oppenheimer surface. For mathematical reasons, hug-
ging the Born−Oppenheimer surface is inefficient, and it is
better to run as unconstrained as possible relying upon the
variational convergence of the density and atoms. In many
cases, this is an issue of what the user is most comfortable with.
In addition, the final convergence is also different and is
sometimes only to the relative accuracy of the approximations
used in the calculation (e.g., reciprocal space sampling) rather
than the apparently precise convergence of standard double-
loop methods which can appear to give energies accurate to
meV or even μeV.
In summary, this note outlined an algorithm for simultaneous

fixed-point optimization of the electron density and atomic
positions. The algorithm is stable, roughly twice as fast as
conventional double-loop methods. The behavior of the
algorithm can be understood in terms of electronic phase
transitions as the density and atomic positions change, and how
these and other nonlinearities couple into the accuracy of a
linear fit of the underlying quantum mechanics as well as
choices for algorithmic greed. The algorithm used is an adaptive
variant which can exploit the greed of MSB1 under favorable
circumstances, but will switch to MSB2 when this is not
favorable. Key additional elements of the algorithm are the use
of an extrapolated component of the Jacobian with real, positive
eigenvalues, control of the unpredicted step, regularization, and
trust-region control of the overall step.
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■ NOMENCLATURE
α, parameter for Broyden-family control between “good” and
“bad” multisecant Broyden forms; Ave(an,m,C), bounded
running average, used when controlling the step size to avoid
fluctuations; B, Jacobian, a (Ne + Nav)x(Ne + Nav) matrix; B1,
sequential version of Broyden’s first method; B2, sequential
version of Broyden’s second method; εq,q′, dielectric matrix for
reciprocal lattice vectors q and q′; D(ρ(r,R)), residual of the
density only, a vector with Ne components; Det(A),
abbreviation for the determinant of the matrix A; F(ρ(r,R)),
SCF mapping, i.e. density after solving Kohn−Sham
equationsa vector with Ne elements; Ψ, scaling matrix of
size (Ne + Nav)x(Ne + Nav); g, pseudogradient of energy with
respect to atomic positionsconverges to the true gradient for
a self-consistent densitya vector of Nav components; G,
generalized residuala vector with Ne + Nav components; H,
inverse Jacobian (Ne + Nav)x(Ne + Nav) matrix; I, identity
matrix; λ, Tikonov regularization parameter; m, multiplicity of a
given density value or atomic position; M, number of history
steps used in the multisecant method; MSB1, multisecant
version of B1; MSB2, multisecant version of B2; MSR1,
adaptive multisecant algorithm, multisecant rank one; Ne,
number of elements of the density; Na, number of atomsset
to zero for algorithms which only mix the density; Nav, number
of free atomic variables, Nav ≤ 3Na; r, 3D position vector; R, 3D
vector of atomic positions, size Nav; ρ(r,R), density as a
function of position r and atomic positions Ra vector with Ne
elements; s, step for both density and atomic positionsa
vector with Ne + Nav components; S, matrix of prior s, of size
(Ne + Nav)xM; Θ, Ω, preconditioning matrices of size (Ne +
Nav)x(Ne + Nav); σ, algorithm greedused to be called mixing
factorcontrols the unpredicted step; σSP, multisecant Shanno-
Phua step size, used in the step control; σStep, total step size
estimate for the previous history; W, vector of size Ne + Nav for
satisfying the secant equations: its form changes with algorithm;
ω, weights for different parts of the Ne + Nav vector; y, change
of Gavector with Ne + Nva components; Y, matrix of prior y,
of size (Ne + Nav)xM
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