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Electron diffraction is a unique tool for analysing the crystal structures of very

small crystals. In particular, precession electron diffraction has been shown to be

a useful method for ab initio structure solution. In this work it is demonstrated

that precession electron diffraction data can also be successfully used for

structure refinement, if the dynamical theory of diffraction is used for the

calculation of diffracted intensities. The method is demonstrated on data from

three materials – silicon, orthopyroxene (Mg,Fe)2Si2O6 and gallium–indium tin

oxide (Ga,In)4Sn2O10. In particular, it is shown that atomic occupancies of

mixed crystallographic sites can be refined to an accuracy approaching X-ray

or neutron diffraction methods. In comparison with conventional electron

diffraction data, the refinement against precession diffraction data yields

significantly lower figures of merit, higher accuracy of refined parameters, much

broader radii of convergence, especially for the thickness and orientation of the

sample, and significantly reduced correlations between the structure parameters.

The full dynamical refinement is compared with refinement using kinematical

and two-beam approximations, and is shown to be superior to the latter two.

1. Introduction

Electron microscopy, spectroscopy and diffraction are indis-

pensable tools for the characterization of crystalline materials.

They can provide local information from crystals as small as a

few nanometres. With the advent of aberration-corrected

transmission electron microscopes, the direct imaging provides

ever-improving atomic resolution images of crystal structures.

However, while one can correct the imaging aberrations

optically, one cannot correct for dynamical diffraction effects.

Within an electron microscope, electron diffraction remains

the most accurate and versatile method of obtaining accurate

structural information at the atomic level, although imaging

experiments are in some cases starting to approach compar-

able accuracies. Consequently there have been many attempts

to use electron diffraction as a quantitative tool, dating back to

the earliest days when microscopes had very limited resolu-

tions for imaging but were good diffraction cameras. Much of

the early work is discussed in the books by Vainshtein (1964),

Cowley (1992), Spence & Zuo (1992) and Dorset (1995). In

many cases fully quantitative analyses proved difficult because

of the complications of dynamical diffraction. In some cases

this has been approached directly as for convergent-beam

electron diffraction (CBED) or low-energy electron diffrac-

tion (LEED); indeed LEED has for many years been the

dominant technique for solving surface structures. More often

diffraction data have been used in a qualitative or only semi-

quantitative fashion, for instance in the solution of the Si (111)

7 � 7 surface (Takayanagi et al., 1985; Gilmore et al., 1997),

nanotubes (Iijima, 1991; Zhang et al., 1993) or for super-

structures and incommensurate structures (e.g. Steeds et al.,

1985), where it is necessary to obtain diffraction data from

only local regions.

An important method for structure analysis of nanocrystals

is quantitative modeling of CBED data. CBED is an excellent

technique for refining accurate low-angle structure factors and

for gaining insight into the charge-density distribution in the

crystal (Zuo & Spence, 1991; Spence, 1993; Zuo et al., 1993;

Cheng et al., 1996; Nuchter et al., 1998; Cao et al., 2009).

Several papers have investigated the refinement of structural

parameters using this technique (Tsuda & Tanaka, 1999;

Tsuda et al., 2002, 2010; Ogata et al., 2004; Feng et al., 2005),

often in connection with the refinement of a few low-order

structure factors. The works are, however, so far limited to

relatively simple structures.

There has recently been a resurgence of interest in quan-

titative analysis of high-energy electron diffraction data due to

the introduction of the precession electron diffraction (PED)

technique (Vincent & Midgley, 1994). Key to this was the

demonstration by Gjønnes and collaborators (Berg et al., 1998;
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Gjønnes et al., 2003) that PED data could be used within direct

methods rather well, and also used at least partially to refine a

structure. While it was apparent from the early days that PED

remained somewhat dynamical and needed a full dynamical

calculation for quantitative results (Own, 2005; Own et al.,

2006), numerous groups have reported reasonable results with

approximate kinematical refinements (Mugnaioli et al., 2009;

Hadermann et al., 2010; Birkel et al., 2010; Rozhdestvenskaya

et al., 2010; White et al., 2010; Gemmi et al., 2010, 2012;

Palatinus et al., 2011; Klein, 2011). The reason for this is that

PED is pseudo-kinematical with reflections with large struc-

ture factors tending to have large intensities, what has been

referred to as intensity ordering (Marks & Sinkler, 2003). In a

sense, successes to date are similar to the earliest days of X-ray

diffraction when both direct methods and refinements could

be performed using approximate decompositions of the

intensities into those which were ‘strong’, ‘intermediate’ or

‘weak’.

Several groups have worked on full dynamical refinement

of non-precessed spot electron diffraction patterns and there

are several computer programs available for this purpose:

Numis (Marks et al., 1993), EDM (Kilaas et al., 2005), MSLS

(Jansen et al., 1998), ASTRA (Dudka, 2007), eSlice (Oleyn-

ikov, 2011). To our knowledge, however, so far only one

dynamical structure refinement against PED data has been

reported (Dudka et al., 2008). The refinement was performed

against one zone-axis pattern of silicon [110], and very few

details about the refinement characteristics, reliability and

reproducibility were reported. The purpose of this paper is to

demonstrate that PED data can be used successfully for

accurate structure refinement. We provide results on three

different materials and several data sets measured with three

different microscopes. We analyze the sensitivity of the results

to the choice of the parameters of the algorithms. The differ-

ences between the full dynamical refinement, a simplified two-

beam dynamical refinement and the simplest approximation of

kinematical diffraction are analyzed, and the results are

compared with refinement against non-precessed electron

diffraction data.

2. Samples and experimental data

2.1. Silicon

Silicon is often used as a standard for testing new methods

in materials science. Its advantages are a very small unit cell

and few parameters. For our experiment we used a silicon

standard sample MAG*I*CAL (Electron Microscopy

Sciences), which provides a wedged sample of silicon cut

perpendicular to the [110] zone axis. The angle of the wedge is

very small and small areas of the sample can be considered as

essentially parallel slabs. The data were collected on a Philips

CM120 transmission electron microscope equipped with a 14-

bit wide-angle charge-coupled device (CCD) camera OSIS

Veleta and NanoMEGAS Digistar precession device. The

accelerating voltage was 120 kV. Data were collected at four

different spots with different thicknesses, and at each spot the

intensities were measured with precession angles ’ of 0, 1, 2

and 3�. On the first spot the diffraction was measured in the

selected-area (SA) mode, with the radius of the SA aperture

300 nm and with negligible beam divergence (<0.2 mrad); the

remaining three spots were measured in a microdiffraction

mode, with the spot size 100 nm and beam convergence angle

1.35 mrad.

2.2. Orthopyroxene

Orthopyroxene is an Fe–Mg-bearing silicate mineral from

the group of pyroxenes, with a structure formed by chains of

SiO4 tetrahedra linked together by FeO6 octahedra (Fig. 1).

Pyroxenes are important rock-forming minerals which often

contain sites with mixed occupancies. The distribution of

cations in these sites can be used as a geothermometer

(Stimpfl et al., 1999). Because the mineral often forms very

small grains, electron diffraction is an attractive method for

their analysis, provided it allows the determination of the

occupancies with sufficient accuracy. The possibility of using

PED data for this purpose was demonstrated in a dedicated

paper (Jacob et al., 2013) using grid-search methods. In this

work we use the same data sets for structure refinements.

We measured data from two samples: an ordered one

(natural, non-treated) and a disordered one (heat-treated).

Samples were monocrystals of natural (MgxFe1�x)2Si2O6

orthopyroxenes (a few hundred microns in size) from granu-

lite rocks of the Wilson Terrane, North Victoria Land,

Antarctica (Tarantino et al., 2002). The average crystal

composition as obtained by electron microprobe corresponds

to x close to 0.7. In order to obtain disordered structures,

crystals of the same origin were heated for 48 h at 1273 K. For

details of the treatment see Jacob et al. (2013). Both samples

were analyzed on a single-crystal X-ray diffractometer

following the experimental procedure described in Tarantino

et al. (2002). Then a thin slab of the sample with thickness
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Figure 1
Structure of orthopyroxene viewed along c. Double chains of Fe/Mg-
containing octahedra alternate with simple chains of SiO4 tetrahedra. All
octahedra contain sites with mixed Fe/Mg occupancy. Two independent
octahedra are labeled with atomic labels that are referred to in the text
and tables.
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around 40–50 nm was cut from the crystals perpendicular to

the [001] direction using a focused ion beam. TEM (trans-

mission electron microscopy) observations were performed

on an FEI Tecnai G2 20 operated at 200 kV and equipped with

a NanoMEGAS Digistar precession device. SA electron

diffraction patterns were obtained using a defocused parallel

beam (beam convergence angle <0.3 mrad) and a circular

aperture selecting an illuminated area of about 250 nm in

diameter. Microdiffraction patterns were obtained using a

probe of about 10–40 nm in diameter produced by a 10 mm

condenser aperture, with beam convergence approximately

1.7 mrad. Several diffraction patterns were collected from

different positions on the sample using precession angles ’ of

0, 1.6 (treated sample only), 2.4 and 2.8�. Small-spot illumi-

nation was used to collect the data sets oplt1Ap2.4,

oplt1Ap2.8 and oplt1Bp2.8 (see x2.4 for an explanation of the

numbering of the data sets). All other data sets were collected

using SA electron diffraction.

2.3. Gallium–indium tin oxide

Gallium–indium tin oxide (GITO) forms an interesting

channel structure formed by Sn-containing octahedra and Ga-

containing tetrahedra alternating with two octahedra with

mixed gallium/indium occupancy (Fig. 2). The structure was

solved from a combination of high-resolution transmission

electron microscopy (HRTEM) imaging and an electron

diffraction pattern of the [010] zone axis, and later refined

against neutron powder diffraction data (Sinkler et al., 1998;

Edwards et al., 2000). We used electron diffraction data from a

sample with composition (Ga2:8In1:2)Sn2O10. The sample was

prepared by crushing the raw material to a fine powder and

dispersing it on a TEM grid. The oriented diffraction pattern

of the [010] zone was collected at an accelerating voltage of

200 kV using a Jeol 2000FX transmission electron microscope

equipped with a Gatan Ultrascan 1000 CCD camera. The data

were collected using small-spot illumination with an almost

parallel beam (beam convergence <0.3 mrad) and spot

diameter of about 100 nm. One data set was collected with

precession angle ’ = 1.375� and one without precession.

2.4. Data processing

All experimental diffraction patterns were processed using

the program PETS (Palatinus, 2011). The output of the

program is a list of reflections with their indices, intensities on

an arbitrary scale and estimated standard deviations (e.s.d.’s)

of the intensities �ðIÞ. To estimate the e.s.d.’s, Poisson statistics

were assumed for the diffraction signal, and the background of

the images was analyzed to estimate the contribution of the

detector noise to the variance of individual pixel counts.

Details of the data-processing procedure are described in

Appendix A. Intensities were extracted up to gmax ¼ 1:4 Å�1.

Examples of diffraction patterns are shown in Fig. 3.

The basic crystallographic information about all three

samples is summarized in Table 1. Throughout this paper the

data sets are labeled with a code of the sample (si: silicon;

opht: treated orthopyroxene sample; oplt: natural orthopyr-

oxene sample; gito: gallium–indium tin oxide) followed by the

number of the spot and indication of the precession angle. As

an example, si3p2.0 is the silicon data set from the spot

number 3 taken with ’ = 2.0�. For the natural orthopyroxene,

several data sets were collected from some spots. These data

sets are distinguished by a capital letter following the spot

number, e.g. oplt1Bp2.4.

3. Computational aspects

3.1. Calculation of dynamical intensities

The diffraction of electrons by a crystal is described by the

dynamical theory of diffraction. The diffracted intensities are
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Figure 2
Structure of gallium indium tin oxide (GITO) viewed along b. Chains of
corner-sharing GaO4 tetrahedra (light blue) alternate with chains of
edge-sgaring SnO6 octahedra (grey) and with double chains of edge-
sharing octahedra (dark red) that contain mixed In/Ga sites. Two
independent octahedra are labeled with atomic labels that are referred to
in the text and tables.

Table 1
Basic crystallographic information about the samples.

Silicon Orthopyroxene GITO

Composition Si (Fe,Mg)SiO3 Ga(Ga,In)SnO5

a (Å) 5.431 18.268 11.689
b (Å) 5.431 8.868 3.167
c (Å) 5.431 5.202 10.731
� (�) 90 90 90
� (�) 90 90 99.00
� (�) 90 90 90
VUC (Å3) 160.15 842.73 392.36
Space group Fd3m Pbca P2=m
Reference Többens et al.

(2001)
Jacob et al.

(2013)
Edwards et al.

(2000)
Measured zone [011] [001] [010]
No. of reflections

(g< 1:4 Å�1)
58 484 694
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commonly calculated by one of two methods. In the multislice

method (Cowley & Moodie, 1957; Self & O’Keefe, 1988), a

numerical integration of the scattering and propagation of the

electron wave is performed. The second method is the method

of Bloch waves due to Bethe (1928) and Humphreys (1979),

which is based on a solution of the Schrödinger equation for

high-energy electrons. The approaches have been shown to be

equivalent if the calculations are performed to sufficient

accuracy. The multislice method is generally faster for the

typical thicknesses of TEM samples and larger unit cells.

Nevertheless, in this work we opt for the Bloch-wave form-

alism. The main reason is that the Bloch-wave method

provides closed-form expressions for the intensities and can

thus be treated analytically. In particular, it is possible to find

analytical derivatives of the intensities with respect to the

structure parameters. Moreover, it has been shown (Sinkler &

Marks, 2010) that the properties of the mathematical expres-

sion of the method allow for a simultaneous calculation of

the intensities at several orientations of the incident beam,

allowing also for a significant speed up of the calculation of the
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Figure 3
Selected experimental diffraction patterns. Intensities are shown on logarithmic scale to emphasize the weak background. (a) si3p1.0, (b) opht2p1.6, (c)
oplt1Ap2.8, (d) gito1p1.4.
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PED intensities. The present work is focused on a ‘proof of

principle’ of the refinement procedure and it does not aim at

the optimization of the computing time. Therefore it does not

exploit any of these advanced possibilities offered by the

Bloch-wave method. However, it will serve as a reference for

future work, which will focus on the optimization of the

computing time.

As a reference for the implementation of the Bloch-wave

method we used the formalism described in Hirsch et al. (1977)

(see also Spence & Zuo, 1992, x3.2). Because it is central for

this work, we briefly repeat here the basic procedure. In the

first step the structure matrix A is constructed:

aii ¼ 2KSgi ; i ¼ 1;Nbeams;

aij ¼ Ugi�gj
; i; j ¼ 1;Nbeams; i 6¼ j: ð1Þ

Here K is the length of the wavevector of the incident beam

corrected for the mean inner potential in the crystal, Sg is the

excitation error of the beam g, i.e. the signed distance of the

reciprocal-lattice node from the Ewald sphere measured along

the surface normal, and Ug are quantities defined as

Ug ¼ 2meVg=h
2, where Vg is the Fourier component of the

electrostatic potential in the crystal.

Next, the eigenvector equation AC ¼ C½�� is solved to

obtain the matrix C of the eigenvectors and the diagonal

matrix [k] of the eigenvalues of the matrix A. Then the scat-

tering matrix S is constructed as S ¼ C½s�C�1. In this expres-

sion ½s� is a diagonal matrix with elements

�jj ¼ exp
�it�jj

Kþ gj
� � � n

" #
; ð2Þ

where n is the normal to the sample surface pointing towards

the source of electrons and t is the sample thickness. If we set

up the structure matrix A such that g1 ¼ 0, then the intensities

of the beams are found as the moduli squared of the elements

in the first column of the scattering matrix:

Ihi ¼ jsi1j2: ð3Þ
This equation neglects the contribution to the intensity Ihi
from different Bloch waves with the same projection of the

wavevector on the surface normal. For example, if the surface

normal is parallel to the zone [001], beams with fixed indices h

and k and variable l will all superimpose and interfere

coherently. Thus, the correct expression for the measured

intensity of beam hi is given by

Ihi ¼
P
j

sj1

�����
�����

2

; ð4Þ

where the summation runs over all indices j such that the

projections of hj and hi on the surface plane are equal. This

effect is very small for structures with small unit cells, where

the higher-order reflections have very large excitation errors

and consequently contribute very little to the scattering. For

the examples considered in this work, the excitation errors

needed for including the higher-order beams in the sum were

much larger than the limits used in the calculation and this

effect could therefore be ignored. However, it might be

necessary to consider it for more complex structures with

larger unit cells.

The computation procedure is controlled by five crystal-

and orientation-related parameters (experimental parameters

for brevity) and by the parameters influencing the selection

of the beams forming the matrix A (in short, computation

parameters). The five experimental parameters are the

thickness, the orientation of the incident beam (or of the

center of the precession circuit) with respect to the crystal

lattice (two parameters) and the orientation of the surface

normal with respect to the crystal lattice (two parameters).

The contribution of a particular beam to the diffracted

intensities increases, in general, with increasing amplitude of

its structure factor and with decreasing excitation error Sg. The

amplitudes of the structure factors decrease rapidly with the

length of the associated reciprocal-lattice vector. The selection

of the beams for the calculation can thus be governed by two

computation parameters: the maximal excitation error Smax
g

and the maximum length of the diffraction vector gmax. For a

given orientation of the crystal and of the surface normal,

these two parameters uniquely define the selection of the

beams. To save computing time, part of the beams can be

excluded from the diagonalization and treated using Bethe

potentials (Zuo & Weickenmeier, 1995). This is undoubtedly

an efficient way of improving the accuracy of the calculation

while saving computing time. However, in this work we did not

make use of perturbation theory and all beams were included

in the diagonalized matrix. We also assumed that the sample

surface is perpendicular to the zone axis and we are implicitly

using the column approximation. Furthermore, we neglected

absorption effects on the diffracted intensities to reduce the

computing time. It is likely that including absorption effects

would further improve the fit, but our test calculations (x5)

indicate that the improvement would probably not be

dramatic.

The tradition in electron diffraction has been to collect

oriented patterns of some principal plane, i.e. with the incident

beam parallel to some zone axis with low indices. Deviations

from the exact orientation are described as the tilt of the

incident beam with respect to the zone axis. Often this is a

useful concept, but it is by no means required by the formalism

outlined above. A more general approach is to assume an

arbitrary orientation of the crystal defined by the orientation

matrix with respect to the microscope’s coordinate system.

The excitation error of every beam can be calculated using the

orientation matrix and the surface normal alone, and the

concept of zone axis is not necessary anymore. As a result, this

implementation can be used to calculate intensities on an

oriented plane and of a completely arbitrary orientation on

the same footing. No distinction has to be made between

reflections belonging to the zero-order Laue zone (ZOLZ)

and higher-order Laue zones (HOLZs).

In PED the beam performs a precessing motion. The inte-

grated diffracted intensities should be calculated as an integral

over the intensities diffracted at every possible orientation of

the incident beam. The integration is performed numerically

Acta Cryst. (2013). A69, 171–188 Lukáš Palatinus et al. � Structure refinement from PED 175
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as a sum of the intensities calculated at a finite number of

orientations Nor along the precession circuit. The finer is the

sampling, the more accurate is the result. Nor is thus an

additional computation parameter of the method in the case of

PED.

3.2. Refinement procedure

For the least-squares refinement procedure we employed

the standard Gauss–Newton algorithm with parameter shifts

determined by line search. This simple approach is sufficient

for small residual problems, where the initial point is close to

the solution, although there are of course better and more

robust methods in the mathematics literature for more

complicated problems. The derivatives were calculated by

central finite differences. The figures of merit traditionally

used to assess the match between the calculated and experi-

mental data are the R values. In this work we use three well

established types of R values, that we list here for reference:

wR2 ¼
P

wg Io
g � Ic

g

� �2P
wgðIo

g Þ2

" #1=2

; ð5Þ

R2 ¼
P

Io
g � Ic

g

�� ��P jIo
g j

; ð6Þ

R1 ¼
P ðIo

g Þ1=2 � ðIc
gÞ1=2

�� ��PðIo
g Þ1=2

: ð7Þ

In the above formulae Io
g and Ic

g are the observed and calcu-

lated intensities of the beam g, respectively, wg ¼ ��2ðIo
g Þ, and

the summations run over all reflections from the experimental

data set. The first R value, wR2, is proportional to the square

root of the minimized function in the least-squares procedure.

R2 is an R value on diffracted intensities, while R1 is calculated

on diffracted amplitudes. R1 is the value traditionally used

in X-ray crystallography to assess the quality of the match

between experimental and calculated data sets.

The only parameters that did not yield a smooth depen-

dence of the minimized function on the variation of the

parameters were the two parameters defining the orientation

of the crystal with respect to the center of the precession

circuit (Fig. 4). The dependence is relatively well behaved,

with one clear minimum. However, the function is not smooth

in detail. This can be easily understood. If the orientation

changes, the excitation error of all reflections changes too and,

therefore, the matrix A can contain a different set of reflec-

tions. Consequently, the calculated intensities can undergo

abrupt changes during continuous tilting of the crystal. The

changes are small if the set of reflections included in A is

sufficiently large, but for all realistic sets of reflections they are

sufficient to prevent a smooth dependence of the minimized

function on the orientation parameters. It is thus necessary to

perform some kind of grid search to find the best orientation.

Because of the generally well defined minimum it is not

necessary to perform a full grid search. Instead we adopted the

following protocol, which is similar to a simplex method. The

tilt is described by two Euler angles: ’ (rotation around the z

axis) and 	 (rotation around the new x axis). Thus, ’ defines

the direction of the tilt and 	 its amplitude. The zero values of

the two angles correspond to the original orientation of the

crystal as defined by the orientation matrix. The new orien-

tation is searched at values 	 ¼ 	search, ’ = n � 60�,

n ¼ 0; . . . ; 5, i.e. in a hexagon around the original orientation.

At each orientation the value of wR2 is calculated. If any of

the new orientations yields a lower value of wR2, the crystal

orientation is updated and the search is repeated from the new

orientation with the same 	search. Otherwise 	search is divided by

two and the search is repeated from the same orientation on a

finer grid. The procedure is repeated until a predefined

minimum value of 	min
search is reached. The values of 	min

search and

	max
search are functions of the precession angle. For small or zero

precession angle, the minimum in the function is very narrow
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Figure 4
wR2 as a function of the tilt from an ideal zone-axis orientation calculated
on the data sets si2p0.0, si2p1.0, si2p2.0 and si2p3.0. (a) Surface plot. (b)
Section of the surface plot passing through zero and through the
minimum of the surface for ’ = 0.
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and deep. It is therefore necessary to do a very fine search

(small 	min
search) to find the real minimum. On the other hand, for

large precession angles the minimum is broad. It is possible to

converge to the correct minimum even from a relatively poor

initial guess, and it is not necessary to sample the function too

finely. For large precession angles, 	min
search and 	max

search can thus be

relatively large. Based on the plots in Fig. 4 we decided to use

the following empirical formula for 	min
search as a function of the

precession angle:

	min
search ¼ 0:02 þ 0:02’; ð8Þ

with 	min
search and the precession angle ’ expressed in degrees.

	max
search is set to 8 � 	min

search, so that 	search attains four consecu-

tively smaller values during the search.

The complete refinement protocol is thus the following:

(i) Perform an initial orientation grid search and a search

for the optimum thickness.

(ii) Refine the selected parameters until convergence. For

the purposes of this work the refinement was considered

converged if the maximal parameter change divided by its

e.s.d. was below 0.1.

(iii) Perform a new orientation search.

(iv) If the orientation search found a better orientation,

update the orientation and return to point (ii). Otherwise stop

the refinement procedure.

We note that a similar approach, notably the separation of

the orientation and thickness optimization from other para-

meters, was also used in the context of the refinement of

CBED diffraction patterns (Zuo, 1993) or for dynamical

refinement of surface diffraction data (Marks et al., 1993).

3.3. Alternative refinement models

In the current crystallographic literature the structures

determined from PED data are sometimes refined using the

kinematical approximation. In this approximation the inten-

sities are considered to be proportional to the square of the

structure-factor amplitude:

Ikin
g / jUgj2: ð9Þ

This approximation is inadequate, but often yields stable

refinement. However, the accuracy of the refined parameters

cannot be estimated because the underlying model is not

appropriate and, therefore, the estimated standard deviations

derived from the least-squares procedure are not reliable. We

performed a kinematical refinement on all data sets and we

compare the results with the full dynamical calculations.

Another possible model is the two-beam refinement

proposed by Sinkler et al. (2007). This technique can be

considered as an intermediate step between the kinematical

model and the full dynamical model. In the two-beam model

the intensity of each reflection is calculated using dynamical

diffraction theory, but neglecting the contribution of all other

beams except for the incident beam. The intensity in the two-

beam approximation can be calculated as (Hirsch et al., 1977;

Spence & Zuo, 1992)

Itb
g ¼ jUgj2

sin2 ½�t=ðK � nÞ�ðK2S2
g þ jUgj2Þ1=2

� �
K2S2

g þ jUgj2
: ð10Þ

It was shown in the work of Sinkler et al. (2007) that the two-

beam model yields better agreement with simulated dynamical

diffraction data than the kinematical model. We compare the

two-beam refinement with other refinement models using

experimental data.

3.4. Software

All calculations in this work have been performed using a

dedicated piece of software written for this purpose. The core

of the software is the Bloch-wave calculation. This part was

written with the help of the code bethe n by Wharton Sinkler

(unpublished software, used as a basis for the article Sinkler &

Marks, 2010) and the results were cross-checked with this

code. Furthermore, the correctness of the implementation was

cross-checked also against the computing system JEMS

(Stadelmann, 2004). The intensities calculated for the ortho-

pyroxene structure were also compared with the results of the

multislice calculations using the program Numis (Marks et al.,

1993). For ’ ¼ 36 mrad (2.06�) and thickness 520.2 Å (100

unit cells), an R2 value of 0.50% was obtained. We attribute

the remaining discrepancy to the different ways the two

calculations handle the HOLZ effects and to the limited

number of beams that can be included in the Bloch-wave

calculation. All the calculations in this work used the analy-

tical fit to atomic scattering factors due to Weickenmeier &

Kohl (1991).

4. Results

4.1. Choice of the computation parameters

Before the actual structure refinement against individual

data sets, it was necessary to analyze the influence of the

parameter selection on the result and determine the optimal

values of the computation parameters for the final refinement.

The parameters to be determined are Smax
g , gmax and Nor. One

way of assessing the influence of the parameters on the

calculated intensities is to calculate a series of simulated data

sets with various settings and compare them with the best

available estimate of the ‘true’ intensities. To estimate the

effect of the choice of Nor, we calculated a set of intensities for

silicon for ’ = 1.0 and 3.0�, and thicknesses of 40 and 110 nm.

Nor ranged from 48 to 576, and 576 was already sufficiently fine

to be taken as a good approximation to the true values, to

which other calculations can be related. Fig. 5 shows a plot of

R2 values between individual data sets and the data sets

calculated with Nor ¼ 576. It can be seen that for a small

precession angle and/or small thickness, fairly low Nor values

around 200 or less are sufficient for accurate calculation, while

for a thick sample and large precession angle values over 500

are necessary.

The influence of the parameters Smax
g and gmax on the

diffracted intensities were analyzed in the past (Zuo &

Weickenmeier, 1995) on simulated data of MgO and GaP.
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Here we checked these parameters in a similar way, but on

more complex structures and against both simulated and

experimental data. Calculations on silicon with two thick-

nesses, on the orthopyroxene structure and on GITO were

performed. The ‘true’ intensities were approximated by

intensities calculated with Smax
g ¼ 0:075 Å�1 and gmax =

3.5 Å�1. The contour plots of wR2 values of various parameter

choices are shown in the top rows of Figs. 6 and 7. It follows

from the images that obtaining quantitative agreement (say

wR2 below 0.5%) requires very high Smax
g , around 0.06 Å�1 for

silicon, 0.04 Å�1 for the orthopyroxene calculation and at least

0.07 Å�1 for GITO. The value gmax is sensitive to the thickness

and presence of heavy atoms. A value around 2.0 Å�1 is

satisfactory for the thin silicon sample and orthopyroxene,

while 2.5 Å�1 is a minimum for the thick silicon sample and 3.5

is necessary for GITO.

Adopting directly the values estimated in the previous

paragraph would lead to very large calculations and conse-

quently to unfeasibly long computing times. It should be

noted, however, that the wR2 values of the simulations against

‘true’ data do not transfer directly into the same increase of

wR2 of experimental data against the simulation. Denoting

wR2 of a simulation against the truth by Rst, wR2 of the

experimental data against the truth as Ret and wR2 of the

experimental data against the simulation as Res, it can be

shown by simple algebraic manipulations of equation (4) that

if the deviations of experimental and simulated intensities

from the truth are mutually uncorrelated, then

Res ’ ðR2
et þ R2

stÞ1=2: ð11Þ
Consequently, using for example computation parameters

resulting in Rst ¼ 0:3Ret will increase Res roughly by a factor of

0.05. The bottom rows of Figs. 6 and 7 demonstrate the effect.

These figures show wR2 values of the simulations against

experimental data. Clearly, the onset of the plateau of essen-

tially constant values is at much smaller parameters than

between simulations and the truth. The evaluation of the

optimal parameters is complicated by the influence of the

experimental noise and uncertainty about the exact structure

parameters. This is most notable for the plot for GITO, where

there is a clear minimum on the graph for Smax
g around

0:02 Å�1, and for higher values wR2 slightly increases. For

orthopyroxene we can see an oscillation of wR2 values with

the first minimum at Smax
g ¼ 0:01 Å�1 followed by two small
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Figure 5
Convergence of Bloch-wave calculations for silicon [110] with increasing
Nor. Horizontal axis: Nor, vertical axis: R2 with respect to the largest
calculation with Nor ¼ 576.

Figure 6
Convergence of Bloch-wave calculations for silicon [110] as a function of
gmax and Smax

g . Horizontal axis: Smax
g , vertical axis: gmax. Color code and

contours: wR2 with respect to the calculation with Smax
g ¼ 0:075 Å�1 and

gmax ¼ 3:5 Å�1 (upper row) and with respect to experimental data (lower
row).

Figure 7
Convergence of Bloch-wave calculations for gito1p1.4 and opht1p2.8 as a
function of gmax and Smax

g . Horizontal axis: Smax
g , vertical axis: gmax. Color

code and contours: wR2 with respect to the calculation with
Smax
g ¼ 0:075 Å�1 and gmax ¼ 3:5 Å�1 (upper row) and with respect to

experimental data (lower row). Color scale for the opht1p2.8 data set as
in Fig. 6.
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maxima. Despite these phenomena it can be concluded that

Smax
g ¼ 0:03 Å�1 is satisfactory for the silicon data sets and

Smax
g ¼ 0:02 Å�1 should be a good compromise between

accuracy and speed for orthopyroxene.

The last question to be answered is, what is the influence of

the parameter choice on the refined structure parameters, i.e.

how does the choice of the parameters affect the accuracy of

the refinement? To investigate this effect, we have selected

five data sets: si2p1.0, si3p2.0, opht1p2.4, oplt2p2.4 and

gito1p1.4, and performed structure refinements on these data

sets with a series of gmax and Smax
g values. The details of the

refinement are given below in the sections describing the

refinements on individual samples. The results are summarized

in Tables 2, 3, 4, 5, 6 and some of them are illustrated

graphically in Fig. 8. One can see that the choice of

gmax ¼ 2:5 Å�1 is perfectly fine for all test cases, and for

all but si3p3.0, which is the thickest of all measured

samples, 2.0 would also be a suitable choice. The selection

of Smax
g is more complicated. For silicon Smax

g ¼ 0:025 Å�1

seems a good choice. For the data set opht1p2.4 there is a

clear minimum of the wR2 values for Smax
g ¼ 0:01 Å�1,

which is then equaled only for Smax
g ¼ 0:03 Å�1. Its origin

is unclear, but it corresponds to the similar minimum in

Fig. 7. As this minimum is not reproduced in the R2 and

R1 values, and it does not appear in the data set oplt2p2.4

(Table 5), we conclude that it probably results from a

coincidentally good match with a few strong reflections.

Neglecting this minimum, the R values decrease slowly

but steadily up to Smax
g ¼ 0:03 Å�1 for orthopyroxene and

GITO. The variation of the refined parameters is at the

level of up to 1.5 e.s.d.’s – but usually less – between

Smax
g ¼ 0:02 and 0:03 Å�1. This suggests that a high value

for Smax
g would be preferential, but a value as low as

0:02 Å�1 provides satisfactory results. To limit the

computing time to manageable levels, we opted for

Smax
g ¼ 0:02 Å�1 and gmax ¼ 2:0 Å�1 in the refinements of

the orthopyroxene data sets. For the silicon data sets

Smax
g ¼ 0:03 Å�1 and gmax ¼ 2:5 Å�1 were used.

Crucial for the successful refinement is the dependence

of the minimized function on the orientation of the zone

axis. As described in x3.1, the orientation cannot be reli-

ably refined and must be determined by a grid search. Fig.

4 shows the dependence of wR2 as a function of the tilt of

the zone axis from the exact position parallel to the

incident beam for several silicon data sets. It shows clearly

the decreasing sensitivity of the refinement on the exact

orientation with increasing precession angle. A large

precession angle thus permits one to find the correct

orientation even if the initial guess of the orientation is off

by more than 1�.

4.2. Silicon

The data sets from the silicon sample cover a wide

range of precession angles and thicknesses. It was there-

fore possible to use these data sets to investigate

systematically various parameters of the calculations and

their impact on the figures of merit and refined parameters.

The structure contains only one refinable parameter, the

isotropic atomic displacement parameter U(Si). In addition to

U(Si), the sample orientation, the thickness and the scale

factor between calculated and experimental intensities were

optimized.

We performed the refinement on all 16 data sets, that is four

data sets with different precession angles from each of the four

spots, with Smax
g ¼ 0:03 Å�1 and gmax ¼ 2:5 Å�1. The results

are summarized in Table 7. The table reveals a wealth of

information on the behavior of the refinement from PED data.

The values of wR2 and R2 decrease without exception when

going from ’ = 1.0� to ’ = 3.0�, and the same is valid with a

single exception for R1. Interestingly, the wR2 and R2 values
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Table 2
Results of test refinements on the silicon data set si2p1.0 with various
parameters of the Bloch-wave calculation.

Default parameter values: Smax
g ¼ 0:03 Å�1, gmax ¼ 2:5 Å�1, Nor ¼ 150. Nmin

beams and
Nmax

beams are the minimum and maximum number of beams that occurred in the
structure matrix A during the Nor individual calculations.

Varied
parameter

wR2
(%)

R2
(%)

R1
(%)

Thickness
(Å)

U(Si)
(Å2) Nmin

beams Nmax
beams

Variable Smax
g

0.010 14.96 10.15 12.57 47.73 (124) 0.0056 (27) 24 32
0.015 14.66 9.91 8.93 48.39 (125) 0.0122 (28) 33 44
0.020 14.66 10.61 9.34 48.13 (117) 0.0129 (24) 44 51
0.025 14.59 9.99 8.93 48.73 (122) 0.0159 (26) 52 63
0.030 14.63 10.10 8.94 49.03 (122) 0.0170 (26) 64 73
0.035 14.68 10.22 8.96 49.21 (122) 0.0178 (25) 74 84
0.040 14.76 10.99 9.26 48.56 (117) 0.0162 (23) 82 93
Variable gmax

1.5 15.00 10.38 9.38 50.00 (136) 0.0170 (28) 49 56
2.0 14.63 10.10 8.94 49.06 (123) 0.0171 (26) 64 72
2.5 14.63 10.10 8.94 49.03 (122) 0.0170 (26) 64 73
3.0 14.63 10.10 8.94 49.03 (122) 0.0170 (26) 64 73
3.5 14.67 10.18 8.96 49.01 (123) 0.0169 (26) 74 92
4.0 14.64 10.05 8.93 49.48 (125) 0.0173 (26) 118 131

Table 3
Results of test refinements on the silicon data set si3p3.0 with various
parameters of the Bloch-wave calculation.

Default parameter values: Smax
g ¼ 0:03 Å�1, gmax ¼ 2:5 Å�1, Nor ¼ 500. Nmin

beams and
Nmax

beams are the minimum and maximum number of beams that occurred in the
structure matrix A during the Nor individual calculations.

Varied
parameter

wR2
(%)

R2
(%)

R1
(%)

Thickness
(Å)

U(Si)
(Å2) Nmin

beams Nmax
beams

Variable Smax
g

0.010 5.83 4.76 2.95 113.22 (74) 0.0045 (9) 18 30
0.015 5.78 4.78 2.84 117.25 (84) 0.0031 (8) 29 40
0.020 5.81 4.33 2.74 116.10 (83) 0.0040 (8) 41 56
0.025 5.27 3.71 2.44 116.25 (83) 0.0039 (7) 53 71
0.030 5.11 3.64 2.40 116.32 (80) 0.0039 (7) 64 83
0.035 5.21 3.68 2.40 116.22 (80) 0.0042 (7) 80 99
0.040 5.20 3.67 2.44 116.35 (82) 0.0046 (7) 94 109
Variable gmax

1.5 7.13 5.19 3.49 116.39 (103) 0.0073 (10) 33 39
2.0 5.35 3.82 2.57 116.23 (83) 0.0048 (7) 46 59
2.5 5.11 3.64 2.40 116.32 (80) 0.0039 (7) 64 83
3.0 5.15 3.66 2.43 116.51 (81) 0.0037 (7) 105 127
3.5 5.09 3.65 2.41 116.57 (78) 0.0036 (7) 137 159
4.0 5.09 3.66 2.42 116.62 (78) 0.0036 (7) 155 170
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Table 4
Results of test refinements on data set opht1p2.4 with various parameters of the Bloch-wave calculation.

Default parameter values: Smax
g ¼ 0:01 Å�1, gmax ¼ 2:0 Å�1, Nor ¼ 144. Nmin

beams and Nmax
beams are the minimum and maximum number of beams that occurred in the

structure matrix A during the Nor individual calculations.

Varied
parameter

wR2
(%)

R2
(%)

R1
(%)

Thickness
(Å) occ(Fe1) occ(Fe2) Nmin

beams Nmax
beams

Variable Smax
g

0.0025 9.02 10.36 11.75 47.62 (49) 0.1415 (102) 0.4432 (30) 61 110
0.0050 8.18 9.34 10.67 48.52 (45) 0.1647 (96) 0.4276 (27) 142 197
0.0075 7.35 8.66 10.21 48.15 (43) 0.1840 (83) 0.4368 (25) 233 271
0.0100 7.00 8.47 9.90 49.09 (39) 0.1652 (80) 0.4403 (24) 325 339
0.0150 7.55 8.25 9.51 52.41 (50) 0.1716 (87) 0.4163 (26) 426 602
0.0200 7.46 8.08 8.77 51.17 (44) 0.1654 (88) 0.4333 (26) 565 844
0.0250 7.23 7.95 8.75 50.75 (43) 0.1750 (86) 0.4340 (25) 727 1062
0.0300 6.92 7.57 8.60 51.23 (44) 0.1771 (82) 0.4354 (24) 873 1213
Variable gmax

1.50 7.07 8.70 9.98 49.20 (39) 0.1611 (81) 0.4351 (24) 234 248
2.00 7.00 8.47 9.90 49.09 (39) 0.1652 (80) 0.4403 (24) 325 339
2.50 7.03 8.52 9.96 49.10 (40) 0.1657 (81) 0.4405 (24) 430 446

Table 5
Results of test refinements on data set oplt2p2.4 with various parameters of the Bloch-wave calculation.

Default parameter values: Smax
g ¼ 0:01 Å�1, gmax ¼ 2:0 Å�1, Nor ¼ 144. Nmin

beams and Nmax
beams are the minimum and maximum number of beams that occurred in the

structure matrix A during the Nor individual calculations.

Varied
parameter

wR2
(%)

R2
(%)

R1
(%)

Thickness
(Å) occ(Fe1) occ(Fe2) Nmin

beams Nmax
beams

Variable Smax
g

0.0025 8.23 11.14 15.17 39.02 (49) 0.0933 (103) 0.4910 (32) 61 116
0.0050 8.95 11.45 14.27 40.22 (52) 0.1100 (113) 0.4756 (34) 136 209
0.0075 8.04 10.65 13.69 39.21 (50) 0.1527 (103) 0.4962 (32) 210 308
0.0100 7.43 9.95 13.09 40.54 (47) 0.1355 (96) 0.4997 (30) 276 412
0.0150 7.17 9.52 13.02 42.14 (48) 0.1197 (95) 0.4740 (29) 400 680
0.0200 7.08 9.13 12.66 41.97 (46) 0.1071 (93) 0.4934 (29) 536 963
0.0250 6.90 8.93 12.65 42.13 (45) 0.1180 (92) 0.4970 (28) 676 1145
0.0300 6.79 8.90 12.64 42.01 (44) 0.1218 (91) 0.4914 (27) 813 1224
Variable gmax

1.50 7.69 10.48 13.54 40.52 (48) 0.1264 (98) 0.4988 (31) 199 296
2.00 7.43 9.95 13.09 40.54 (47) 0.1355 (96) 0.4997 (30) 276 412
2.50 7.45 9.95 13.05 40.51 (47) 0.1363 (96) 0.5030 (30) 401 574

Table 6
Results of refinements on the data set gito2p1.4 with various parameters of the Bloch-wave calculation.

Default parameter values: Smax
g ¼ 0:02 Å�1, gmax ¼ 2:5 Å�1, Nor ¼ 100. Nmin

beams and Nmax
beams are the minimum and maximum number of beams that occurred in the

structure matrix A during the Nor individual calculations.

Varied
parameter

wR2
(%)

R2
(%)

R1
(%)

Thickness
(Å) occ(In1) occ(In2) Nmin

beams Nmax
beams

Variable Smax
g

0.0100 31.30 28.04 17.71 48.80 (46) 0.489 (54) 0.802 (56) 452 626
0.0125 29.18 26.34 16.75 45.82 (40) 0.768 (51) 1.044 (57) 549 780
0.0150 28.42 25.25 15.49 46.57 (39) 0.497 (45) 0.877 (50) 644 910
0.0175 27.78 24.19 14.24 47.56 (39) 0.575 (46) 0.867 (42) 745 999
0.0200 27.07 23.67 14.08 46.40 (34) 0.564 (38) 0.844 (36) 793 1063
0.0225 26.70 23.26 13.83 45.76 (33) 0.559 (37) 0.848 (34) 871 1107
0.0250 26.63 22.91 13.57 45.12 (32) 0.486 (44) 0.754 (40) 969 1153
0.0275 26.55 22.80 13.38 45.15 (32) 0.534 (39) 0.838 (31) 1025 1200
0.0300 26.58 22.69 13.22 44.94 (32) 0.518 (41) 0.828 (32) 1105 1244
Variable gmax

1.50 28.21 24.06 15.19 41.74 (32) 0.675 (44) 0.874 (46) 483 606
1.75 27.27 23.89 14.91 45.11 (37) 0.434 (41) 0.781 (40) 619 708
2.00 27.51 24.40 15.49 43.66 (35) 0.455 (42) 0.846 (41) 757 815
2.25 27.24 23.66 14.23 45.46 (36) 0.478 (42) 0.854 (38) 801 943
2.50 27.07 23.67 14.08 46.40 (34) 0.564 (38) 0.844 (36) 793 1063
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of the data sets without precession are high in three cases, but

relatively low in one case. In no case are they lower than the

corresponding data set with ’ = 3.0�. The thickness refines in

general to similar values for individual spots, but there are

exceptions. It is difficult to judge the correctness of the

thickness because we do not have an independent estimation

of this parameter, but from the table it seems that the most

significant outliers are data sets si2p1.0 and si4p1.0. The values

of U(Si) are positive in all cases, but unrealistically high for

data sets si1p0.0 and si2p1.0, and clearly too low for the data

set si4p1.0. For other data sets the values are not unrealistic,

although some of them deviate significantly from the expected

literature value of 0.007 Å2 (Yim & Paff, 1974). There seems to

be a systematic trend towards lower U(Si) from data sets with

increasing precession angles.

Tables 8 and 9 show the results of the kinematical and two-

beam refinements. The kinematical refinement results in very

large R values and often unrealistic values of U(Si). The R

values tend to decrease with increasing precession angle,

confirming the general rule that with increasing precession

angle the diffracted intensities become closer to the kinema-

tical intensities. Nevertheless, even for a high precession angle

the match is poor and the refined U(Si) unrealistic. Interest-

ingly, the R values for data sets without precession can be

lower than for some data sets with precession. This is because
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Table 7
Refinement results from the silicon data sets – dynamical refinement.

Data set wR2 (%) R2 (%) R1 (%) Thickness (Å) U(Si) (Å2)

si1p0.0 16.22 12.40 15.77 41.45 (63) 0.0143 (23)
si1p1.0 12.77 10.80 7.10 36.73 (66) 0.0106 (14)
si1p2.0 7.18 6.00 3.66 39.90 (66) 0.0090 (11)
si1p3.0 6.98 5.88 4.63 35.22 (78) 0.0039 (14)
si2p0.0 8.35 6.63 12.98 38.20 (29) 0.0026 (09)
si2p1.0 14.64 10.10 8.94 49.06 (123) 0.0171 (26)
si2p2.0 8.54 6.92 3.60 41.27 (68) 0.0069 (11)
si2p3.0 5.40 4.39 2.72 39.51 (55) 0.0048 (9)
si3p0.0 11.65 8.88 18.82 104.88 (24) 0.0053 (3)
si3p1.0 17.97 12.70 9.04 107.30 (159) 0.0054 (19)
si3p2.0 8.17 6.55 4.31 113.18 (88) 0.0054 (10)
si3p3.0 5.07 3.82 2.52 116.55 (82) 0.0033 (7)
si4p0.0 23.37 23.46 21.99 83.66 (44) 0.0068 (7)
si4p1.0 16.33 11.56 7.77 104.89 (136) 0.0007 (13)
si4p2.0 11.81 8.73 5.81 83.26 (103) 0.0068 (14)
si4p3.0 8.04 7.15 3.66 83.96 (52) 0.0027 (12)

Table 8
Refinement results from the silicon data sets – kinematical refinement.

Data set wR2 (%) R2 (%) R1 (%) U(Si) (Å2)

si1p0.0 68.42 64.74 49.10 0.1145 (418)
si1p1.0 55.22 43.34 40.25 0.0070 (72)
si1p2.0 43.44 27.52 28.99 �0.0037 (45)
si1p3.0 39.14 25.53 27.58 0.0061 (49)
si2p0.0 34.92 33.76 32.93 0.0836 (128)
si2p1.0 56.24 41.48 38.30 �0.0008 (60)
si2p2.0 45.38 32.00 30.80 �0.0049 (44)
si2p3.0 40.13 25.80 27.31 0.0048 (46)
si3p0.0 38.63 38.14 36.51 0.0926 (173)
si3p1.0 60.76 53.75 44.94 �0.0097 (58)
si3p2.0 49.35 36.63 31.54 �0.0131 (45)
si3p3.0 39.97 28.13 28.16 �0.0094 (36)
si4p0.0 36.53 36.66 51.14 0.2049 (319)
si4p1.0 63.65 56.37 46.17 �0.0099 (61)
si4p2.0 50.93 35.49 30.78 �0.0143 (45)
si4p3.0 48.62 38.26 33.16 �0.0107 (44)

Table 9
Refinement results from the silicon data sets – two-beam refinement.

Data set wR2 (%) R2 (%) R1 (%) Thickness (Å) U(Si) (Å2)

si1p0.0 37.24 33.48 40.64 35.20 (66) 0.0170 (155)
si1p1.0 51.06 37.77 33.78 29.82 (670) �0.0043 (119)
si1p2.0 43.21 28.18 28.81 37.64 (489) �0.0032 (78)
si1p3.0 38.75 24.59 26.52 40.84 (408) 0.0114 (90)
si2p0.0 36.74 36.49 45.11 45.95 (41) 0.0444 (97)
si2p1.0 52.96 39.34 37.43 34.41 (1145) �0.0026 (161)
si2p2.0 44.77 31.54 30.34 39.52 (515) �0.0027 (76)
si2p3.0 39.41 24.43 26.01 41.17 (393) 0.0086 (78)
si3p0.0 21.77 21.75 31.26 117.41 (62) �0.0284 (52)
si3p1.0 40.30 28.58 26.70 122.17 (831) �0.0189 (59)
si3p2.0 46.88 31.44 29.18 100.49 (660) 0.0004 (70)
si3p3.0 37.97 24.19 25.29 121.76 (1048) 0.0120 (66)
si4p0.0 26.91 26.21 34.71 84.50 (45) �0.0650 (54)
si4p1.0 42.57 27.54 25.65 68.99 (336) �0.0410 (50)
si4p2.0 48.98 34.36 29.83 72.63 (428) 0.0014 (59)
si4p3.0 45.94 33.63 29.32 83.37 (669) �0.0016 (55)

Figure 8
Refinement results on selected data sets with varying Smax

g . (a)
Refinement R value R1, (b) refined thickness. Dotted lines are guides
for eye.
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the high-resolution reflections are very weak in the non-

precessed data. Refining the U to a high value makes the

calculated intensities also very low and ensures a comparably

good match to the experimental intensities.

The two-beam refinement yields generally better R values

than the kinematical refinement. The difference is most

important for low precession angles and it decreases – but

does not vanish – for high precession angles. The refined U(Si)

vary much more than in the dynamical refinement, and they

can be negative, but they are closer to the correct values than

the kinematical refinement, with a notable exception of ’ =

1.0�. The refined values of the thickness also vary much more

than in the dynamical refinement, but especially for the two

largest precession angles they still represent a good guess of

the correct values, with the deviation from the corresponding

dynamical refinement under 15%.

4.3. Orthopyroxene

The structure of orthopyroxene contains ten independent

atomic positions, two of which exhibit a mixed Fe/Mg occu-

pancy. It would be unfeasible to perform full structure

refinement on all 18 available data sets. Therefore we refined

only the thickness and the two occupancy factors, and kept all

other structural parameters at their values obtained from the

refinement against X-ray diffraction data. Finally, for one

selected data set we performed a full structure refinement,

excluding only parameters that are not refinable from the 001

zone-axis data.

All 18 data sets were refined with the parameters

Smax
g ¼ 0:02 Å�1 and gmax ¼ 2:0 Å�1 (Tables 10 and 13, Fig. 9).

For the heat-treated sample, the occupancies refined from

different data sets agree mutually very well, with the

maximum difference of 5% for occ(Fe1) and 2.5% for

occ(Fe2). The refinement R values are in general at or below
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Table 10
Refinement of the data sets from the treated orthopyroxene sample,
dynamical refinement.

Data set
wR2
(%)

R2
(%)

R1
(%)

Thickness
(Å) occ(Fe1) occ(Fe2)

opht1p1.6 7.57 8.61 8.74 52.34 (34) 0.1450 (110) 0.4347 (29)
opht2p1.6 9.54 9.71 8.43 45.17 (37) 0.1870 (137) 0.4375 (36)
opht3p1.6 13.55 13.64 10.23 50.83 (49) 0.1846 (188) 0.4258 (51)
opht1p2.4 7.46 8.08 8.77 51.17 (44) 0.1654 (88) 0.4333 (26)
opht2p2.4 9.04 9.05 9.60 46.11 (46) 0.1638 (102) 0.4286 (31)
opht3p2.4 9.97 9.82 9.31 55.41 (48) 0.1832 (107) 0.4121 (31)
opht1p2.8 7.15 7.98 10.19 51.27 (37) 0.1597 (83) 0.4310 (24)
opht2p2.8 8.77 8.67 9.91 44.91 (51) 0.1366 (93) 0.4498 (30)
opht3p2.8 9.36 9.38 10.10 52.03 (45) 0.1677 (100) 0.4261 (30)
XRD,

all data
6.58 5.97 3.43 0.1567 (32) 0.4321 (31)

XRD,
hk0 only

9.01 6.36 4.08 0.1597 (37) 0.4083 (33)

Figure 9
Refined occupancies of Fe1 and Fe2 in the natural (empty symbols) and
heat-treated (full symbols) orthopyroxene samples. Diamonds represent
the refinement against the complete X-ray data set and against the hk0
reflections from the X-ray data set.

Figure 10
Io versus Ic plot of the data set opht1p2.4. The inset shows the same plot
on a logarithmic scale.

Table 11
Refinement of the data sets from the treated orthopyroxene sample,
kinematical refinement.

Data set wR2 (%) R2 (%) R1 (%) occ(Fe1) occ(Fe2)

opht1p1.6 38.84 42.79 37.63 �0.1244 (497) 0.4445 (208)
opht2p1.6 39.55 40.98 35.43 �0.0725 (458) 0.3611 (190)
opht3p1.6 41.89 41.05 36.33 �0.0617 (499) 0.3988 (211)
opht1p2.4 36.80 43.23 36.34 �0.1439 (432) 0.2038 (168)
opht2p2.4 35.67 39.82 34.01 �0.0904 (391) 0.2316 (157)
opht3p2.4 38.58 40.36 34.07 �0.1442 (418) 0.2313 (171)
opht1p2.8 35.95 42.18 35.28 �0.1324 (431) 0.2111 (167)
opht2p2.8 34.97 39.69 32.92 �0.0842 (392) 0.2531 (159)
opht3p2.8 37.20 39.81 32.92 �0.0968 (412) 0.2425 (169)
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10%, with a single exception of the data set opht3p1.6. No

significant trend can be observed with increasing precession

angle. The refined occupancies agree very well also with the

reference refinement against X-ray diffraction data.

The results are somewhat less consistent for the natural

sample. The R values are more elevated, with wR2 ranging

from 7.07 to 14.15%, and R1 typically around 15%. Also the

spread of the refined occupancies is larger, being 5.8% for

occ(Fe1) and 9% for occ(Fe2). There is also a discrepancy of a

few percent between the refined values and the reference

X-ray structure. As the experimental conditions, the data

treatment and the refinement procedure were exactly the

same for both samples, the difference has to come from the

sample itself. The sample has not been thermally treated, and

might exhibit local inhomogeneities and defects, leading to

both the elevated R values and the spread of the occupancies.

All data sets share one particular feature – the R2 values are

very similar to R1, and often they are slightly lower than R1.

This is unusual. It follows from the definition of the R values

that, statistically, R2 should be roughly two times larger than

R1. This is approximately fulfilled for most of the silicon data

sets (Table 7) and also for the data set gito1p1.4 (Table 6).

However, the analysis of the distribution of Io versus Ic in the

orthopyroxene data sets did not reveal any systematic bias

(Fig. 10). It seems that this unusual behavior is caused by the

special distribution of the intensities, where ten reflections

(three symmetry independent) dominate the distribution. A

good fit to these ten reflections then dominates R2 much more

than R1. As an example, when the ten strongest reflections are

excluded, the R2 and R1 values for the data set opht1p2.4 rise

from 8.25 to 13.59% and from 8.91 to 10.39%, respectively.

Tables 11 and 12, and 14 and 15 report the refinements with

the kinematical and two-beam model, respectively. Similarly

to silicon, the kinematical refinement results in rather poor R

values and wrong refined parameters – occ(Fe1) consistently

refines to negative values for all data sets. The two-beam

refinement brings a significant improvement of both the R

values and the parameters. The R2 values drop by 10–20%, R1

drop by 5–9%. Even more importantly, the thickness refines to

values close to the correct values, and the occupancies also

refine to much better values compared with the kinematical

refinement, although occ(Fe1) refines consistently to a too

high number.

For both samples X-ray diffraction data from the bulk

sample were available (for details see Jacob et al., 2013).

Tables 10 and 13 and Fig. 9 also contain the refined occu-

pancies from these data for reference. In addition to the

complete standard X-ray refinement we performed a refine-

ment analogous to the refinement from electron diffraction

data, with only hk0 reflections, with all parameters fixed

except for the two occupancies, with isotropic displacement

parameters and with a non-averaged reflection set. Maybe

surprisingly, the occupancies from the two X-ray refinements

show a relatively large spread. The spread is comparable to the

spread of the values from electron diffraction, although the
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Table 13
Refinement of the data sets from the natural orthopyroxene sample,
dynamical refinement.

Data set
wR2
(%)

R2
(%)

R1
(%)

Thickness
(Å) occ(Fe1) occ(Fe2)

oplt1Ap2.4 13.18 13.42 14.25 46.13 (71) 0.0490 (150) 0.5662 (53)
oplt1Bp2.4 8.29 10.29 14.24 42.03 (62) 0.0955 (115) 0.5084 (35)
oplt2p2.4 7.07 9.13 12.66 41.99 (46) 0.1074 (93) 0.4946 (29)
oplt3p2.4 13.71 16.85 18.56 33.47 (85) 0.0557 (204) 0.5154 (63)
oplt1Ap2.8 9.54 10.25 14.57 44.82 (53) 0.0743 (104) 0.5400 (36)
oplt1Bp2.8 9.20 11.13 16.11 42.61 (56) 0.0705 (107) 0.5373 (37)
oplt1Cp2.8 14.15 15.59 15.05 43.57 (92) 0.0651 (179) 0.4955 (56)
oplt2p2.8 10.14 13.16 16.89 43.15 (75) 0.0811 (131) 0.4760 (39)
oplt3p2.8 9.20 11.36 14.39 44.32 (64) 0.0844 (118) 0.5067 (37)
XRD,

all data
6.56 5.32 3.15 0.0352 (34) 0.5517 (33)

XRD,
hk0 only

7.64 4.30 3.31 0.0285 (30) 0.5243 (29)

Table 14
Refinement of the data sets from the natural orthopyroxene sample,
kinematical refinement.

Data set
wR2
(%)

R2
(%)

R1
(%) occ(Fe1) occ(Fe2)

oplt1Ap2.4 38.31 44.88 36.60 �0.1863 (427) 0.3422 (182)
oplt1Bp2.4 28.76 38.71 36.94 �0.1753 (352) 0.3368 (139)
oplt2p2.4 32.99 42.27 38.17 �0.1607 (399) 0.2661 (154)
oplt3p2.4 30.36 36.76 34.50 �0.1443 (362) 0.3663 (146)
oplt1Ap2.8 38.44 47.18 37.50 �0.1417 (437) 0.3026 (184)
oplt1Bp2.8 35.78 45.70 39.37 �0.1473 (429) 0.3048 (175)
oplt1Cp2.8 31.77 37.50 34.37 �0.1569 (365) 0.3557 (149)
oplt2p2.8 34.11 42.68 38.82 �0.1647 (413) 0.2995 (162)
oplt3p2.8 29.64 38.41 35.82 �0.1491 (357) 0.3439 (142)

Table 12
Refinement of the data sets from the treated orthopyroxene sample, two-
beam refinement.

Data set
wR2
(%)

R2
(%)

R1
(%)

Thickness
(Å) occ(Fe1) occ(Fe2)

opht1p1.6 25.83 29.82 32.02 57.08 (138) 0.4941 (286) 0.5894 (94)
opht2p1.6 27.61 26.66 29.61 57.83 (156) 0.4295 (288) 0.4958 (92)
opht3p1.6 31.15 29.34 30.83 63.61 (170) 0.4689 (317) 0.4778 (102)
opht1p2.4 23.30 24.43 30.00 45.77 (190) 0.3037 (311) 0.4352 (90)
opht2p2.4 24.12 22.99 27.86 41.21 (188) 0.2439 (308) 0.3999 (89)
opht3p2.4 27.98 25.53 28.91 52.65 (182) 0.2511 (338) 0.3909 (98)
opht1p2.8 21.85 23.77 29.80 43.66 (164) 0.2493 (310) 0.3910 (86)
opht2p2.8 22.68 22.08 26.85 36.34 (230) 0.2120 (305) 0.3909 (87)
opht3p2.8 25.59 23.78 27.95 48.64 (170) 0.2407 (319) 0.3763 (91)

Table 15
Refinement of the data sets from the natural orthopyroxene sample, two-
beam refinement.

Data set
wR2
(%)

R2
(%)

R1
(%)

Thickness
(Å) occ(Fe1) occ(Fe2)

oplt1Ap2.4 27.34 30.12 31.60 45.38 (242) 0.1680 (370) 0.5036 (112)
oplt1Bp2.4 18.34 23.71 30.56 29.24 (210) 0.2309 (283) 0.5370 (83)
oplt2p2.4 17.83 21.91 29.66 31.63 (210) 0.2777 (263) 0.5214 (78)
oplt3p2.4 21.73 26.07 29.83 33.01 (207) 0.2227 (321) 0.4960 (94)
oplt1Ap2.8 25.56 28.67 30.77 33.06 (360) 0.1497 (361) 0.4596 (108)
oplt1Bp2.8 21.90 26.84 31.56 32.15 (211) 0.1598 (330) 0.4615 (97)
oplt1Cp2.8 22.95 25.48 28.96 31.79 (250) 0.2004 (329) 0.4982 (95)
oplt2p2.8 18.33 22.70 29.65 31.82 (155) 0.2026 (277) 0.4706 (78)
oplt3p2.8 19.06 22.81 28.76 31.85 (186) 0.2168 (290) 0.5098 (82)
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two X-ray refinements used the same data set, while the

electron data come from different experiments.

Data set opht1p2.4 was also used for a full structure

refinement, where all x and y coordinates of all atoms were

optimized as well as their Uiso values and occupancies of the

mixed sites. The z coordinates were fixed to the values

obtained from the X-ray refinement. Such a model contains 34

refinable parameters. First a kinematical refinement was

performed. It converged to the wR2 value of 15.80%, but the

occupancy of the atoms Fe2/Mg2 refined to unphysical values

(Table 16) and two out of ten displacement parameters refined

to a negative value. The maximum distance of the refined

atomic positions from the reference X-ray refinement was

0.302 Å, the average distance was 0.122 Å. We note that errors

of this magnitude are typical for kinematical refinements.

Then, starting from the result of the kinematical refinement, a

two-beam refinement was performed. It converged to wR2 =

15.69%, and the occupancy of Fe2/Mg2 refined to even more

unphysical values due to the strong correlation with the

isotropic displacement parameter. Five atoms had negative

displacement parameters. However, the maximum distance of

an atom from the positions in the reference X-ray structure

decreased to 0.146 Å and the average distance to 0.106 Å.

Finally, the result of the two-beam refinement was used as a

starting point for a full dynamical refinement. It turned out

that the displacement parameters and occupancies were so far

from the correct values that they prevented the convergence

of the refinement to the correct minimum. Therefore the

occupancies were reset to 0.5 and all Uiso were set to 0.01. The

coordinates were retained from the two-beam refinement.

This refinement converged smoothly to wR2 = 5.45%. The

occupancies were close to the expected values. Four displa-

cement parameters refined to negative values, but only one

differed from zero by more than two e.s.d.’s. The maximum

distance of an atom from the X-ray result was 0.093 Å, the

average distance was 0.048 Å. The three refinements are

compared in more detail in Table 16. It should be emphasized

that the full refinement against only one zone axis is presented

here only for illustration. It cannot be taken seriously, as the

amount of data is not sufficient for a robust refinement of all

parameters. The refinement converges to very similar values if

started from the X-ray structure, and the differences are thus

not due to the inability of the algorithm

to find the correct minimum.

4.4. Gallium–indium tin oxide

The structure of GITO contains 17

independent atomic positions, two of

which have mixed occupancy. We had

only one precession data set for this

sample and thus the test calculations

(Table 6) are at the same time the final

results. In these refinements only the

thickness and the occupancies were

refined, and all other structural para-

meters were kept fixed. Most para-

meters were fixed to the values from the neutron powder

diffraction refinement (Edwards et al., 2000). However, the

displacement parameters of Ga1, Ga2, In1, In2, Sn1 and Sn2

were obviously inconsistent, and they were therefore reset to a

mean value of 0.006 Å2. The results in Table 6 are within three

e.s.d.’s of the published values occ(In1) = 0.48 (4) and occ(In2)

= 0.72 (4).

The kinematical refinement resulted in very poor R values

(wR2 = 61.47, R2 = 59.32, R1 = 47.77%) and physically

meaningless occupancies [occ(In1) = �3.59 (14), occ(In2) =

1.79 (18)]. In agreement with the other samples, the two-beam

refinement resulted in better R values (wR2 = 53.56, R2 =

52.48, R1 = 44.65%) and improved refined parameters

[occ(In1) = �0.47 (9), occ(In2) = 0.69 (9)]. Nevertheless, these

R values are still very high and one of the refined occupancies

is very far from the correct value. Finally, the refinement of the

data collected without precession also resulted in very poor R

values (wR2 = 55.31, R2 = 55.76, R1 = 43.86%).

A full dynamical refinement of all structure parameters was

also attempted with the same data set. Because all atoms sit on

positions with a fixed value of the y coordinate, a complete

structure refinement is in principle possible against one zone

only. The refinement was performed with Smax
g ¼ 0:02 Å�1 and

gmax ¼ 2:0 Å�1. The principal results of the refinement are

summarized in Table 17. It is visible from the table that the

refinement is not satisfactory, with atomic shifts up to

0.44 Å from the reference structure. The occupancies of In1/

In2 also differ from the reference values, although they refine

to physically meaningful values. However, an inspection of the

two-beam and kinematical refinement shows that the latter

two are completely unstable, with atomic shifts exceeding 1 or

even 2 Å, with unphysical displacement parameters and

occupancies. Compared to the kinematical and two-beam

refinements, the full dynamical refinement yields much better

agreement with the reference structure (Edwards et al., 2000).

5. Discussion

The analysis of the three samples allows us to make several

general statements. To state first the obvious, our results show

that the precession electron diffraction data are suitable for

accurate structure refinement, unlike the refinement using the
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Table 16
Refinement of all permitted structure parameters of the orthopyroxene structure against the data
set opht1p2.4.

Maximum and average distance mean the distances from the reference structure refined against X-ray
diffraction data.

Kinematical Two-beam Dynamical

wR2, R2, R1 (%) 15.80, 20.63, 30.61 15.69, 19.49, 28.54 5.45, 7.48, 11.25
Maximum Uiso (Å2) 0.0886 0.1794 0.0581
Minimum Uiso (Å2) �0.0099 �0.0164 �0.0085
Maximum distance (Å) 0.302 0.146 0.093
Total average distance (Å) 0.122 0.106 0.048
Average distance of cations (Å) 0.044 0.108 0.050
Average distance of O atoms (Å) 0.175 0.105 0.047
occ(Fe1) 0.571 0.413 0.134
occ(Fe2) 1.094 1.278 0.436
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kinematical or two-beam approximation, which should be

considered as first, preliminary steps towards the full dyna-

mical refinement. Our results also show that for moderate or

large thicknesses the refinement against diffraction data

collected without precession is clearly inferior to the refine-

ment with precession. The difference is obvious already in the

silicon data, which come from a very simple structure and a

perfect crystal, and it becomes critical in the other two data

sets coming from less perfect and more complex crystals, for

which out of three data sets collected without precession only

one (non-treated orthopyroxene data) yielded a reasonable

match, the other two resulting in very poor refinement. The

difference can be explained by the much lower sensitivity of

the precessed intensities to the variation of thickness and

orientation. Thus, a slightly bent or inhomogeneously thick

crystal will yield a poor match with non-precessed data, while

the match will still be acceptable for the precessed data. For

the precessed data sets the results indicate that larger

precession angles provide better fits and better quality of the

refinement. This trend is especially clear in the silicon data,

while it is less obvious in the orthopyroxene data. For the

GITO sample we had only one data set with ’ = 1.375� and

thus no conclusions can be made. Nevertheless, the low

precession angle might be one of the reasons for the relatively

high R values compared with the other samples.

The use of larger precession angles also has other advan-

tages than the lower R values. It has often been stated that

precession provides a reduced sensitivity to crystal misor-

ientation from the zone-axis position. However, little or no

quantitative analyses of this phenomenon have been

presented. Here this question is approached quantitatively. As

Fig. 4 clearly shows, the sensitivity of the fit to the variation of

the orientation is strongly reduced with increasing precession

angle. The same is true for the thickness. This allows for a

smooth refinement even from relatively inaccurate starting

parameters. In contrast, small precession angles (especially 0�,

but also 1� to a certain extent) result in a much more

complicated refinement landscape, and inaccurate choice of

the starting parameters may lead to false minima in the

refinement. Another advantage of higher precession angles is

lower correlations between the refined parameters. This again

is most obvious in the comprehensive silicon data set, where

refinements with ’ = 0� and ’ = 1� resulted in large correlation

coefficients between U(Si) and the

thickness, reaching over 0.9 in some

cases, while the same correlation coef-

ficient stayed well below 0.5 for ’ = 2�

and ’ = 3�.

Analysis of four samples of three

different structures permits us also to

suggest some general rules for the best

parameters of the Bloch-wave calcula-

tion. The selection of the beams to be

included in the structure matrix is

driven by gmax and Smax
g . In all our data

sets the choice gmax ¼ 2:5 Å�1 ensured

a good match and even gmax ¼ 2:0 Å�1

was sufficient in most cases. The choice of Smax
g is more diffi-

cult. For orthopyroxene and GITO it seems that going to

higher Smax
g values than those listed in Tables 4, 5 and 6 might

yield even better results. However, the computational

complexity grows almost as the third power of Smax
g , and thus

the calculations quickly become extremely time consuming.

Obviously, one should use as high a value for Smax
g as possible,

given the available time and computing power. However,

Smax
g ¼ 0:02 Å�1 yielded results very similar to the results

obtained with higher Smax
g , and this value can be considered a

good compromise between the accuracy and speed of calcu-

lations.

The choice of Nor does not depend too much on the parti-

cular structure, but it does depend on both the thickness and

the value of ’. Inspection of Fig. 5 shows that, at least in the

particular case of the silicon data sets, the dependence on both

parameters is very roughly linear.

Comparing the standard deviations of the refined para-

meters with the refinement against X-ray data for the ortho-

pyroxene sample and neutron data for the GITO sample, we

see that the orthopyroxene refinement yields about three to

five times larger e.s.d.’s for occ(Fe1) compared to the

equivalent X-ray refinement, and very similar e.s.d.’s for the

occ(Fe2). Interestingly, the refinement of only the hk0

reflections from the X-ray data sets yields occupancies that

differ up to 8.7 e.s.d.’s from the reference values refined

against all data. This confirms the well known fact that even

high-quality X-ray data are not void of systematic bias and

that the e.s.d.’s should be taken only as an indication of the

true error rather than an absolute measure. A similar effect

was observed by Merli et al. (2002), who used leverage analysis

to study the effect of selectively removing certain classes of

reflections on the structure refinement of pyroxenes. For

GITO, the e.s.d.’s of the occupancies obtained from the elec-

tron diffraction data are close to the refinement from neutron

powder data. It can be concluded that in our tests the

refinement of occupancies against PED data yielded results

that can bear comparison with the refinement against X-ray or

neutron diffraction data.

The full structure refinements performed on one ortho-

pyroxene data set and on the GITO data set show that such

refinement is possible, and that the dynamical refinement

yields positions with an accuracy superior to the accuracy of
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Table 17
Refinement of all parameters of the structure GITO against the data set gito1p1.4.

Maximum and average distance mean the distances from the reference structure refined against neutron
diffraction data.

Kinematical Two-beam Dynamical

wR2, R2, R1 (%) 34.61, 29.38, 21.93 30.60, 27.01, 20.27 21.42, 17.84, 11.55
Maximum Uiso (Å2) 0.2980 0.3685 0.0507
Minimum Uiso (Å2) �0.0340 �0.0367 �0.0241
Maximum distance (Å) 2.748 1.299 0.449
Total average distance (Å) 1.043 0.536 0.164
Average distance of cations (Å) 0.665 0.216 0.077
Average distance of O atoms (Å) 1.232 0.696 0.207
occ(In1) �2.071 (82) 2.952 (162) 0.283 (46)
occ(In2) �0.193 (137) 1.752 (88) 0.984 (46)
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the kinematical or two-beam refinement, especially for light

atoms. Nevertheless, the full refinement of the GITO structure

is not satisfactory, despite its considerable improvement over

the kinematical and two-beam refinement. We see several

possible explanations for this result. First, the data were

collected on a sample crushed to a fine powder, and it is thus

possible that the crystal was not homogeneously thick across

the illuminated area. Second, the precession angle was only

1.375�. The results on silicon show that low precession angles

give worse results than higher angles. And third, it might be

necessary to include absorption effects in this structure

containing heavy atoms.

The data sets analyzed in this work were obtained by both

selected-area electron diffraction (SAED) and with small-spot

illumination. If SAED is used, reflections at higher diffraction

angles come from other places on the sample than low-angle

reflections, due to the spherical aberration of the objective

lens. For quantitative work, it is therefore strongly recom-

mended to use small-spot illumination, where this problem

does not occur. Surprisingly, in our analysis, there is no

obvious difference between the two illumination modes, in

either of the two samples. A possible explanation is that both

the silicon and orthopyroxene samples were large flat samples,

and the fact that different reflections come from different

places on the sample does not play an important role.

The aim of this work is to demonstrate the feasibility of the

approach and to lay foundations for further development of

the method. To keep the workload manageable, some aspects

had to be neglected. One important aspect is the neglect of

possible thickness variation in the illuminated sample. Both in

the wedged sample of silicon and in the cleaved grain of GITO

this variation may be non-negligible, and it should be included

in a full analysis. Probably the most important simplification is

the omission of absorption. To estimate its importance, we

have calculated two simulated data sets using the multislice

method implemented in the program Numis (Marks et al.,

1993), one for orthopyroxene and one for GITO. In each case,

one simulation was performed without absorption and

another with absorption effects included, assuming U0/U =

0.05. The R2 value between the two data sets was R2 = 1.47%

for orthopyroxene and R2 = 6.00% for GITO. In light of the

discussion in x4.1, it can be expected that the impact of the

absorption will be negligible for the light-atom structures of

silicon and orthopyroxene, and probably small, but obser-

vable, for GITO. Nevertheless, it is clearly preferable to

include the absorption effects in the calculations to avoid any

systematic bias that might be introduced if absorption is

omitted.

Other possible effects that might influence the quality of the

fit is the experimental setup, notably the quality of the align-

ment of the precession device, beam convergence and the

inclusion of the inelastic scattering. The precession device is

aligned before every experiment and care should be taken

especially to align the beam pivot point, i.e. to ensure the

vertex of the precessing cone is exactly on the sample, and the

circularity of the precession circuit. In our experience, if care is

taken, the circularity of the precession circuit can be aligned

very well, with deviations from perfect circularity being less

than 1% of the used precession angle. The beam convergence

is very small for the SAED data (<0.3 mrad) and probably

does not play an important role for the fit. For microdiffrac-

tion data, the convergence angle can be non-negligible (up

to 1.7 mrad in some of the orthopyroxene data) and the

convergence might need to be taken into account in the

refinement. However, in our tests, there was no significant

difference between results obtained with SAED and micro-

diffraction data, indicating that even the beam convergence is

not a very important factor, if not too large. The effect of

inelastic scattering was not studied, as all the data sets were

collected without energy filtering. It can be expected that

inclusion of inelastic scattering will have an observable effect

on the quality of the fit, although the effect will probably be

small, at least for thin samples (Jansen et al., 2004).

6. Conclusions and outlook

We have demonstrated on three materials that precession

electron diffraction data can be successfully used for accurate

determination of structural parameters. The three refined

structures range from a simple structure of silicon to the more

complex structures of orthopyroxene (ten independent atoms,

VUC ¼ 843 Å3) and gallium–indium tin oxide (17 independent

atoms, VUC ¼ 392 Å3). The thickness of the samples varies

from circa 30 to 110 nm. The accuracy of the refined para-

meters can bear comparison with the structure refinement

against X-ray or neutron diffraction data if the data-to-

parameter ratio is not too low. We demonstrated that the

precession diffraction data are superior to diffraction data

collected without precession at least in four aspects: signifi-

cantly lower figures of merit, higher accuracy of the refined

parameters, much broader radii of convergence, especially for

thickness and orientation of the sample, and significantly

reduced correlations between the parameters.

We did not put any effort into optimizing the speed of

calculations. This issue will be crucial for the routine appli-

cation of the method. There are several possibilities for

improving the speed. The most important is the replacement

of the numerical derivatives with analytical formulae. Further

possibilities include exploiting the ‘Brillouin-zone folding’

method (Sinkler & Marks, 2010), and the use of parallel

computing, GPU programming and algorithms for operations

with sparse matrices. We believe that by combining these

methods we will shorten the computing time to the extent that

a complete refinement of a moderately large structure will be

possible within hours.

In future we want to focus on all aspects neglected in this

work, with the primary focus on the speed of the calculations.

An implementation of the refinement against PED data in the

crystallographic computing system Jana2006 (Petřı́ček et al.,

2006) is currently in progress. Once finished, the crystal-

lographic community will have at hand a tool for refinement

from electron diffraction data with all the wealth of features

that have been developed over the decades for X-ray and

neutron structure refinements.
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APPENDIX A
Integration of reflection intensities and estimation of
their estimated standard deviations

A full and correct determination of net integrated intensities

and their estimated standard deviations �ðIÞ from a recorded

diffraction pattern is a complicated issue. Already the CCD

detector commonly used to record intensities introduces a

number of effects that are non-trivial to quantify (Leslie, 1999;

Phillips et al., 2000; Waterman & Evans, 2010). The integrated

intensities and their e.s.d.’s also depend on the integration

scheme, peak shape and background model. However, in our

case (and in most cases of well aligned electron diffraction

patterns from good-quality crystals) the peak shape is well

behaved, it does not change too much from reflection to

reflection, and the background is smooth, without sharp

features (Fig. 3). In such a case, a good estimation of the

integrated intensities and a reasonable approximation to their

�ðIÞ’s may be obtained with a simplified method. The method

we adopted relies on the approximation that the �ð pÞ of the

counts p on each pixel has two main contributions: the

diffraction signal itself, which is assumed to have a Poisson

distribution, and the added noise from the detector. The latter,

as it is a combination of many independent effects, can be

assumed to have a Gaussian distribution. The counts p in each

pixel thus have a variance given by the sum of the variance of

the detector noise �2
dð pÞ and of the diffraction signal �2

s ð pÞ:

�2ð pÞ ¼ �2
dð pÞ þ �2

s ð pÞ: ð12Þ

The detector also contributes to the signal itself (dark current

or bias), but this contribution is subtracted during the data

processing, and the mean contribution to p from the detector

after the dark-current subtraction is zero. Thus, we have

h pi ¼ h psi. Assuming a Poisson distribution, �2
s ð pÞ ¼ p. What

remains to be estimated is the variance of detector noise

�2
dð pÞ. Assuming that this variance is constant across the

detector [�2
dð pÞ ¼ �2

d], we can estimate �2
d by analyzing the

variance of pixel distribution far away from the diffraction

signal, where the contribution of the scattered electrons can be

assumed to be close to zero. Once this variance is determined,

�2ð pÞ can be calculated as �2ð pÞ ¼ �2
d þ p.

The reflection intensity is calculated as a sum of pixels in the

reflection spot minus the background,

I ¼ P
Ns

pi � ðNp=NbÞ
P
Nb

pi: ð13Þ

Here the first sum runs over all Ns pixels considered by the

integration program to belong to the spot, and the second sum

runs over Nb pixels in the vicinity of the spot that are used to

estimate the background. In the present case, the shape of

diffraction spots was very similar across the diffraction

pattern, and the spot area was estimated as a circle of a

constant diameter centered at the peak position. The back-

ground was estimated from an annulus of pixels around the

spot. The error propagation law then leads to the expression

for �2ðIÞ [using the above expression for �2ð piÞ]

�2ðIÞ ¼ P
Ns

ð pi þ �2
dÞ þ ðNp=NbÞ

P
Nb

ð pi þ �2
dÞ: ð14Þ
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Merli, M., Cámara, F., Domeneghetti, C. & Tazzoli, V. (2002). Eur. J.
Mineral. 14, 773–784.

Mugnaioli, E., Gorelik, T. & Kolb, U. (2009). Ultramicroscopy, 109,
758–765.
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