In situ single asperity wear at the nanometre scale

Y. Liao1 and L. Marks*2

The interface of two contacting materials experiences complex physical and possibly chemical reactions when one slides with respect to another. While tribology, a subject studying sliding contact, has been comprehensively elucidated for a variety of materials ranging from metals, carbides, inorganic materials and polymers, direct imaging data of the processes taken place at the nanometre or atomic scale have been greatly lacking. Recent proliferation of precise manipulation of a scanning nano-probe has provided a great tool to image sliding of single asperities, and single asperity nanotribology has been a rapidly developing area which provides model systems to investigate the fundamentals of sliding contacts and surface science. By implementing a nanoprobe in a higher resolution transmission electron microscope or a scanning electron microscope, the materials deformation of sliding single asperities have been revealed in real time, leading to insightful understandings of wear and friction. This article reviews recent reports on in situ transmission electron microscopy tribological investigations with an emphasis on materials degradation in mechanical and tribochemical reactions at the nanometre scale and at the surface.

Keywords: Tribology, Wear, Friction, In situ TEM, Single asperity

Introduction

How to provide sufficient energy to maintain and improve the quality of life in the developing countries as well as the ever increasing needs of developed countries, while avoiding undesirable consequences such as global warming is one of the critical scientific challenges of the twenty-first century. To quote Samuel Bodman, U.S. Secretary of Energy:

... the largest source of immediately-available “new” energy is the energy that we waste every day.

One of the most pervasive wastes of energy is friction, by some estimates between 2% and 6% of the GDP of developed countries. In passenger cars, one-third of the fuel energy is used to overcome friction in the engine, transmission, tyres and brakes. Similar to the potential savings due to reduction in the thermal losses of buildings or improving the efficiency of light sources, reducing frictional losses would go a long way to mitigate the looming energy crisis.

While friction has been appreciated as of critical importance dating back at least as far as the ancient Egyptians, for instance the carving on the tomb of Saqqara 2400 BC showing a man pouring a lubricating liquid to help move a statue of Ti, in many respects our current understanding of tribology, (introduced in the Jost report from the Greek word, ‘tribos’, meaning ‘rubbing’ or ‘to rub’) which includes the sources of friction as well as wear and chemical changes associated with sliding is comparatively limited. It is widely recognised that tribology is a multiscale problem, similar to designing better steels. This means that we need to understand the fundamental materials science relationship between structure and properties at all size scales, ranging from atomic through nanoscale to the micro and macro scales, and it is only when we have this information that it will become possible to make revolutionary rather than incremental improvements.

Wear of tribological components accounts for the costly breakdown and maintenance of applications ranging from orthopaedic implants to automotive engines. Volume loss of sliding contacts is a complicated process depending on both materials intrinsic properties, notably hardness and fracture toughness and extrinsic factors such as contact geometry and environment. Tribological studies of two surfaces sliding against each other usually place an emphasis on friction coefficient and wear. At the macroscopic scale, plasticity of the materials, stress distribution, along with environment and sliding speed, have been intensively investigated using conventional experimental techniques and fruitful results have been achieved in the past research. It is known that macroscopic wear can be induced by different modes such as abrasive, adhesive, fatigue, fretting, erosive and corrosive wear, resulting in different degrees of volume loss. From the mechanical perspective, the Archard
In situ single asperity wear at the nanometre scale

Liao and Marks

Microscopic wear and in situ scanning electron microscope

Wear is material loss from contacting surfaces in relative motion. Wear and friction are related to rupturing the bonding of surface atoms, although a general, simple correlation does not exist. The fundamentals of sliding surfaces were unclear until the surface material properties and interaction could be quantified in the past century. A number of wear mechanisms have been identified both macroscopically and microscopically, such as adhesive wear, abrasive wear, corrosive wear, erosive wear, fretting wear and fatigue wear. In the Archard wear criterion, the real area of contact is determined by the normal stress and material hardness. The initial deformation of a sliding contact is elastic, and the deformation evolves to plastic when the elastic limit is exceeded.

Sliding contact may lead to large plastic deformation in the surface and sub-surface material. It is generally agreed that in metallic and ceramic materials, the plastic shear strain at the surface could be over 10, decreasing rapidly into the subsurface. As evident by a number of TEM observations of worn surface, the large plastic deformation is mediated by dislocations even for brittle materials in their bulk form. For instance, in their cross-section TEM study of silicon single crystal (111) or (001) surface, Puttick et al. observed dislocations generated 100–400 nm beneath the surface. The dislocations are either dislocations loops or dislocation arrays. The deformation can penetrate into tens of microns in abrasive wear as shown in the microscopic work by Sticker and Brooker. The dislocations and dislocation arrays commonly further evolve into dislocation cell structure. The large strain also result in nanocrystalline structure at the surface typically ranging from 10 to 50 nm through either fracture or dislocation cell formation.

Different materials degradation mechanisms such as adhesion, delamination and fatigue, are considered in wear models. However, sliding interface is complicated by very high local stress distribution, chemical reaction, materials transfer and wear debris as third body. These factors are complex in nature and interrelated.

Micro or even nanometre scale sliding has long been recognised as fundamental to wear and friction. A thorough understanding of the underlying mechanism of nanoscale single asperity wear requires well-defined contact geometries. Gane’s pioneering work on indentation in 1970 on gold specimens in a scanning electron microscope (SEM) demonstrated that materials deformation at the nanoscale can be very different from that in the bulk form. Since then researchers have employed electron microscopes to observe real-time micro-probes in sliding contact. In the 1980s, Kato et al. implemented a tribometer with a probe sliding on a disc in an SEM to record single asperity wear in real time. Hokkirigawa et al. reported wear apparatus with a pin on flat miniature system implemented in an SEM. The load could be either a dead weight as shown in Fig. 1a, or applied by spring coils. In situ SEM sliding systems are versatile for a wide variety of materials such as metals and
diamond, and the typical size of the asperity and thus the wear tracks were about 20 μm. The sliding speed is typically tens of micro-meter per second. Figure 1b shows grooves in a flat bearing steel specimen trailed by a diamond pin under a normal load of <0.5 N. Other than the ridge built on the side, there were no distinct wear particles. Under a higher load of 0.5–1.5 N, a wedge was produced in front of the sliding pin. With increasing sliding cycles, thin plate-like wear debris, i.e. shear tongue, was produced in front of the sliding pin. Upon increasing the load to ~2 N, the pin cut the surface abruptly into long wear particle.77 The degree of penetration was dependent on not only the hardness, but also the angle between the surfaces. Different wear modes were microscopically recorded in these repeating sliding experiments and are well related to the macroscopic wear diagrams74 developed using continuum theories.

In situ TEM sliding techniques

Although *in situ* SEM studies provide fruitful experimental data on sliding contact, a SEM only images the surface and often only at relatively low resolution. The time resolution of *in situ* SEM study is limited by the scanning speed of electron beam and a higher scanning speed is usually only possible at the cost of spatial resolution. The magnitude of the motion distance as well as the size of the mechanical probe in a typical *in situ* SEM wear test is ~20 μm, while the surface roughness of a polished metal surface is usually in the tens of nanometres to sub-micrometer size range. A smaller tribological system and higher resolution imaging techniques are essential for examining wear at the nanometre scale. TEM is a powerful tool for probing smaller features. Compared to SEM, TEM can resolve features of nanometre to angstroms size in routine use. A TEM image is formed using a parallel beam so is a full-frame image, and is typically tens of micro-meter to angstroms size in routine use. A TEM image is thus time resolution is primarily limited by the sampling rate of the camera. For electron imaging and spectroscopy techniques TEM, the readers are referred to the books in references80,84 for details. TEM probes structure change not only at the surface, but also in the sub-surface as high-energy electrons travel through a very thin material, providing extremely desired information for tribological studies. Combined with electron dispersive spectroscopy (EDS), electron energy loss spectroscopy (EELS) and diffraction techniques TEM enables local structural and chemical analysis in real time.

The first *in situ* contact micro/nanoprobe in an SEM and/or TEM dates back to 1968–1970 when Gane75 and Gane and Bowden37,73 designed a contact probe for an AEI Scientific Instrument E.M. 6 TEM. Gane and Bowden37,73 exploited a piezo-bimorph actuator, as shown in Fig. 2a, to apply load from 2 μN to 10 mN, and a silicone oil dashpot to dampen the mechanical vibration amplitude to around 5 nm. The development of *in situ* TEM techniques for tribology, however, was sporadic until late 1980s when Spence et al.54,88,90 incorporated a scanning tunnelling probe within a TEM which enabled simultaneous high-resolution observation of moving objects in transmission mode. This major progresses were soon followed by other groups with various design of side-entry TEM holder implemented with scanning probe or atomic force tips.91–99 A variety of *in situ* nanoindentation tests were also designed with high-stiffness indenter and accurate normal force measurement.98,99 Tokushi et al. implemented STM type tips in time-resolved HREM, and successfully demonstrated the one atomic layer removal during a sliding event.100 The authors observed stick-slip motion in gold–gold sliding system and attributed the stick-slip to the formation of grain boundary at the surface.

In the past decade, commercial TEM holders manufactured by Hysitron, Nanofactory and others have enabled *in situ* tribological experiments for various material combinations at higher resolutions and precision. Figure 2b and c shows commercial *in situ* nanoindentation/tribology TEM holders using a diamond tip and tungsten probe, respectively. In the STM-TEM tribological system shown in Fig. 2c, the test specimen is held in a 3 mm TEM grid and mounted 30° to the horizontal direction. The sliding single asperity is capable of both coarse and precise motion in three dimensions. The step resolution, when the motioned motion is driven by a piezo-motor, is typically 0.2 Å in XY and 0.025 Å in Z. The normal load is usually measured by a spring system or by displacement in TEM images based on the known spring constant of an AFM cantilever. In the cases where the normal force cannot be directly measured, the contact pressure can be calculated from the geometry of the
contact using classic contact mechanics. Nafari et al.101 designed an AFM sensor system for \textit{in situ} TEM holder which implemented a Wheatstone bridge circuit using standard micromachining techniques to measure normal force. A reference cantilever was fabricated as one of the bridge resistors to compensate temperature fluctuation. The electrons are conducted through the substrate to one of the connection pads. With careful fabrication, the noise level of this sensor is reported to be ~ 15 nN. The MEMS-sensor is $1.2 \times 1.3 \times 0.5$ mm\(^3\), enable $\sim 30^\circ$ tilt in the pole piece of a TEM. The holder can also measure normal force using the resistance change. Sato et al.102 designed a MEMS in which two opposing tips driven by electrostatic actuators can achieve both lateral and longitudinal motion with reduced vibration. In an Ag–Ag sliding test the authors observed stepwise motion similar to the atomic resolution.102 Although force measurement in 3D, particularly in the lateral direction is still elusive, the existing \textit{in situ} TEM tribological techniques have significantly deepened our capabilities of collecting nano-scale wear imaging data in the real time.

\textit{In situ} TEM samples require electron-transparency and can be prepared by multiple methods such as thin films deposition,103,104 argon ion beam cutting,100 focus ion beam (FIB) thinning,105 MEMS fabrication102 and mechanical transferring of layered structures.106 It is worth emphasising that harsh sample preparation can introduce defects and/or impurities prior to the tribological tests.107 Caution is needed in the processing of aligning the counter parts as the axis of the probe does not always align with the tilt axis of the TEM. Motion in either \textit{X} or \textit{Y} direction commonly yields displacement in the \textit{Z} direction. In practice it is useful to align both the tip and testing specimen to the eccentric height by minimising the magnitude of wobbling.

Interpreting a TEM image involves a thorough understanding of electron interaction with matter, which is not simple in many cases. Current \textit{in situ} TEM tribological tests mainly depend on mass contrast of single phase materials. This contrast is sufficient to identify the morphology and wear volume when care is taken. Owing to the limitation of single-tilt holder and small pole piece gaps, the sample is usually positioned off well-defined diffraction condition (such as two-beam condition or low-index zone axis), making diffraction contrast and high-resolution phase contrast analysis extremely difficult. Additionally, sample vibration during a sliding test results in large focal spread and further limits the resolution of materials in sliding. With the assistance of development of damping system,20,108 high-resolution images are usually obtained during the interval between sliding tests when the sample is stationary. High speed cameras, double tilt capabilities and better imaging processing techniques are desirable for understanding structural and chemical change at the atomic scale.

Most \textit{in situ} TEM sliding tests are performed in vacuum with reciprocating sliding at very slow speed, typically a few hundred nanometres per second. Thus the frictional heating is minimal for metals and other heat-conductive materials. With advanced environment cells,109 sliding tests in controlled environment can be done. Electron beam damage and contamination can be important, especially for beam sensitive materials such as hydrocarbon materials. Excessive exposure to the
electron beam should be avoided by reducing the exposure time and/or using a small condense aperture.

Wear and tribofilm transfer of layered structure

Layered structures such as graphitic materials and molybdenum disulphide are some of the most important solid lubricants and have attracted substantial research interest to understand their sliding behaviour. As one of the allotropes of carbon, graphite is composed of hexagonal sheets where the carbon atoms are covalently bonded in plane. Graphite has been widely used for lubricants as the interlayers bonded by weak van der Waals force and can readily slide. In AFM or frictional force microscopy (FFM) experiments, atomic scale single asperities showed extremely low friction coefficient of 0.001 when sliding on graphite or MoS$_2$. These asperities often experience periodic, discontinuous movement, i.e. stick-slip. Dienwiebel et al. developed an FFM with ultra-high lateral force resolution as precise as 15 pN, and slid a silicon tip again a highly ordered pyrolytic graphite (HOPG) specimen at different angles. As shown in Fig. 3, friction force peaks were recorded to be 61 ± 2° apart, corresponding to the 60° rotation symmetry. The friction dropped to nearly zero friction force for the intermediate angles showing evidence of incommensurate interfacial sliding. The authors suggested that a graphite flake had been transferred to the tip. When the flake was crystallographically aligned to the substrate the friction peak occurred. The dynamic process of tribofilms transfer, however, remained largely unknown.

Merkle and Marks rubbed a tungsten probe on HOPG flakes using an in situ STM-TEM holder. HREM images after 100 passes show clear evidence of 5–35 layers of ordered graphitic basal planes with defects in the wear track in the HOPG. Closer inspect of the tungsten counterpart indicated that graphite layer transfer had taken place. Figure 4 shows the HREM image of the tungsten tip surface where a ∼2.5-nm thick graphite flake was present. This is a direct imaging of graphite transfer film in real time, confirming the prediction that a graphite–graphite contact can be established during sliding and thus provides highly lubricious interface.

In a recent report by Casillas et al. graphite flakes sliding against silicon was examined using an AFM-TEM holder and a JEOL 2010F TEM. HOPG flakes were attached to a 0.5-mm gold wire by repeated peeling similar to the way of obtaining graphene. The normal pressure was calculated based on the displacement of the cantilever and the tip size to be 150–500 MPa. Figure 4 shows typical time sequences of sliding on graphite, in which a single layer of graphite was transferred to the silicon tip. The top layer of graphite was deformed and frequently buckled ∼3 nm, equivalent to ∼20 atoms, ahead of the sliding tip. These buckles fractured, resulting in small flakes which were subsequently transferred to the silicon tip. Similar single layer transfer was also observed in in situ tests on MoS$_2$, while MoS$_2$ transferred layers were typically 5–20 nm in size, longer than the small graphitic transfer layers. The difference presumably originated from the bending modulus and strength. Single sheet to graphite can be readily deformed, bent or even crumpled, while the S/Mo/S sandwich structure is bonded by covalence bonds within the layer thus the single layer is more resistant to bending.

A few layers of MoS$_2$ have also been manipulated by a tungsten nano-probe in situ in a TEM using a STM-TEM holder. Oviedo et al. reported in situ TEM sliding test of a few layers of MoS$_2$ sheet against a tungsten probe with 6–8 nm native oxide layer. By applying ∼10 V bias, nine layers MoS$_2$ nanoflakes adhered to the
probe driven by a piezo-electric motor. Figure 5a shows that a monolayer of MoS2 was sheared from the MoS2 surface, and subsequently transferred to the tungsten probe. The sliding was then mediated by relative motion between MoS2 sheets. Figure 5b shows energy barriers to sliding a MoS2 layer in [100] direction calculated using density functional theory. The barrier is \(\sim 0.14 \text{ eV} \) without an external electric field. The barrier initially increased to \(\sim 0.2 \text{ eV} \) with 5 V/nm polarisation, and dropped to \(-0.25 \text{ eV} \) after the first barrier. Oviedo et al.126 measured the shear strength of single layer MoS2 to be 25.3 ± 0.6 MPa in the TEM column with a low vacuum of 2 × 10-5 Pa. This result is consistent with the macroscopic shear strength of 24.8 ± 0.5 MPa which was determined by Singer et al. for sputtered MoS2 films.127 Inorganic fullerene (IF) MoS2 and tungsten disulphide (WS2) nanospheres have been extensively studied as friction modifier due to their excellent friction resistance and thermal stability.116,128-131 The lubricity of these nanoparticles is suggested to originate from exfoliated layers or particle rolling.130-132 Lahouij et al.133 slid IF-MoS2 nanospheres between a silicon edge and an AFM tip. The AFM tip was truncated using a FIB to ensure large flat contact thus allowing particles to roll between the surfaces. The authors observed that under 100 nN of applied force IF-MoS2 particles agglomerated and rolled between the surfaces. At 400 nN the integrity of the
nanoparticles was damaged and exfoliation started to take over the wear process. Depending on the active mechanism, the crystallinity of IF-MoS2 particle influenced the friction in different ways. A low degree of crystallinity is beneficial to friction reduction when exfoliation is active as the exfoliation process is assisted by the defects in the crystalline.130,132

The results of \textit{in situ} sliding of layered structures taking place at the atomic scale is consistent with previous post-facto observation at the nanometre scale and microscopic scale.134 Sliding contact often involves wear particles and material transferred from one surface to the counterface. Godet135 and Singer \textit{et al.},136 among many others, showed the importance of transfer layer in wear and friction, particularly for solid lubricants such as graphite.137–139 MoS\textsubscript{2}114 and other transition metal dichalcogenides such as WS\textsubscript{2} that exhibit excellent lubricity only in dry or vacuum environment. Scharf \textit{et al.}140 showed in their cross-section TEM examination of a wear track that sliding (>1000 cycles) on amorphous MoS\textsubscript{2} resulted in about nine layers of MoS\textsubscript{2} sheet (~6 nm thick). \textit{In situ} TEM sliding imaging data showed that the transfer layer is primarily only one single sheet agreeing with the findings of monolayer transfer layer formation by Dunn \textit{et al.}141

\section*{Wear of metallic materials}

Wear of metallic material depends on both the intrinsic materials properties and contact geometry. Cobalt–chromium–molybdenum (CoCrMo) alloys are an important wear and corrosion resistant material which has enjoyed extensive use in medical devices.142 Some hip replacements made of CoCrMo alloy have served well \textit{in vivo} in the patients’ body for over 20 years.143–146 Although numerous simulator tests have been conducted in the past decade,23,147,148 the generation of nanoparticles as wear debris during use is not as yet fully understood. As-cast CoCrMo alloy is composed of an fcc metastable matrix and M\textsubscript{23}C\textsubscript{6} or M\textsubscript{6}C carbides.149–151 In order to obtain direct imaging data of sliding CoCrMo surface, \textit{in situ} sliding tests of the ductile fcc phase of a cast CoCrMo alloy (complying with ASTM standard F75) were attempted,105 and the wear processes exhibited similar dependence on the contact geometry as observed in micro-meter scale \textit{in situ} SEM wear test. As shown in the serial frames in Fig. 6, a ductile lamella was in repeated sliding contact with an AFM tip.105 The normal pressure was 144–230 MPa. The silicon tip was kept intact throughout the test, and wear primarily occurred in the fcc phase. In the occasions when the fcc phase slid toward the right hand direction, surface cracks were formed chipping off small pieces of materials, with volume ranging from ~3.7×10^5 nm3 to ~1.2×10^6 nm3. The attacking angle between the tip and surface was 64°. The degradation mechanism switched to ploughing when the fcc phase slid toward the left direction at an attack angle of 24°. The silicon tip penetrated into the surface by ~52 nm. After sliding ~1160 nm, the tip removed

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{\textit{In situ} sliding on CoCrMo fcc matrix introduced plastic deformation in the sub-surface. \textit{b} A crack was produced when the sample moved to the right-hand side (arrowed). The attack angle was 64°. The zoom-in micrograph in the inset shows curved crack propagation under the contacting point. \textit{c} Ploughing dominated at an attack angle of 24°. From reference105}
\end{figure}
\(\approx 3.0 \times 10^6 \) nm\(^3\) with the wear volume accumulated in front of the tip in the sliding direction.

The in situ sliding of CoCrMo fcc matrix experiment shows that continuum models are still largely valid in nano-scale wear of plastic materials. The wear process exhibits a strong correlation with the geometry of the contact, particularly the attacking angle. This observation of abrasive wear at the nanometre scale is exceedingly similar to the microscopic abrasive wear study reported by Murray et al., Challen et al., and Kato and his co-worker. Murray et al. found that the attack angle for cutting-ploughing transition was 60° for heat-treated 1040 steel (179 HV) and 30° for 1082 steel with higher strength of 858 HV. In their in situ SEM sliding tests of plastic materials, abrasive wear switched from ploughing at an attack angle lower than 40° to cutting (chipping) mode at higher attack angles. Challen and Oxley showed that ploughing and cutting mechanisms can be elucidated by the plane-strain slip line field model. A single asperity sliding on a ductile material creates a wave ABCDE as shown in Fig. 7a. The material volume flowing in and out reaches equilibrium as required by continuity. It was demonstrated that a wedge initially dug in the surface forms a plastic wave in front of it and eventually climbs until the wave migrate to the surface. Wear is associated with the material hardness (shear strength) as well as the geometric attack angle \(\alpha \). To evaluate the acting wear mechanism, the degree of penetration \(D_p \), a severity index of contact, is used:

\[
D_p = \frac{h}{a} = R \left(\frac{\pi H}{2W} \right)^{1/2} - \left(\frac{\pi H R^2}{2W} - 1 \right)^{1/2}
\]

where \(a \) is half of the contact width, \(h \) the depth of wear scar, \(H \), hardness of the plastically deformed material, \(W \) normal load and \(R \) tip radius. The attack angle is related to \(D_p \) by

\[
D_p = 0.8 \tan \left(\frac{\alpha}{2} \right)
\]

Hokkirigawa et al. developed a wear diagram based on their in situ SEM sliding results. As shown in Fig. 7b, ploughing prevails at lower angles (<30°) for bearing steels. Wear model transits to cutting at ∼40° and above. Figure 7c shows similar results reported by Doyle and Samuels that the cutting model is active when the attack angle is >40°. The nano-scale in situ TEM wear of ductile CoCrMo fcc phase agrees with the microscopic wear models based on slip-line theory and plastic deformation.

Substantial sub-surface deformation, wear and tribofilm transfer are reported in other in situ TEM wear of metallic systems. Anantheshwara et al. slid a tungsten probe on an Al–Mg alloy specimen. Defects of 10–30 nm in size were generated under the contacting...
interface as shown in Fig. 8a, presumably due to sub-grain formation or localised sub-grain rotation under high shear strain. The defects further developed into cracks and propagated across the sub-surface. Figure 8b shows the overview of the tungsten tip (the dark region). A thin layer of Al–Mg film was transferred and attached to the tungsten tip in less than one second. The deformation is consistent with a number of post-facto TEM observations of large localised deformation such as dislocations and nanocrystallines in macroscopic repeated sliding.41,159–161

Atomistic wear assisted by stress

Jacobs and Carpick162 reported atomistic wear of silicon through stress-assisted chemical reaction in in situ sliding of a silicon AFM tip against a diamond punch. The sliding test featured adhesive force with no applied load. Using trace profiles of four silicon tips, the authors calculated the volume loss at varying intervals. Figure 9a shows the volume lost for four tests as a function of slide distance. The volume lost showed no linear correlation with the product of sliding distance and load (see Fig. 9b), thus the Archard equation163 is not responsible for the wear. The authors ascribed the wear to a thermally activated process and the kinetics of the wear can be fitted using an Arrhenius equation:

\[\gamma = \gamma_0 e^{-(\Delta U_{\text{act}}/k_B T)} e^{(\sigma \Delta V_{\text{act}}/k_B T)} \]

where \(\gamma \) is wear rate, \(\gamma_0 \) a pre-factor, \(\Delta U_{\text{act}} \) the energy barrier to material removal, \(\Delta V_{\text{act}} \) activation volume, \(\sigma \) the work done by the stress. Jacobs and Carpick162 demonstrated an exponential dependence of volume loss on the work done by the adhesive load, as shown in Fig. 9. The normal stress was calculated using the Derjaguin–Muller–Toporov (DMT) model.29,30 All tests showed that the reaction was more associated with time in contact than the distance slid. Fitting the wear rate data as shown in Fig. 9c using the Arrhenius equation yields an activation volume of 6.7 ± 0.3 Å³ and energy barrier of 0.91 ± 0.06 eV, which are comparable to the volume of single atom bonding energies.162 Thus the wear was a stress-assisted chemical reaction and the volume removal was dominated by the kinetics of this chemical reaction. The in situ TEM atomistic wear reported by Jacobs and Carpick varied between 500 nm³ and 4000 nm³ per micron of sliding.162,164

Similar exponential dependence of wear rate on stress has been reported in several nano-scale scanning probe wear tests, most of them involving extremely mild wear of single atom removal.163–169 Gotsmann and Lantz165 slid an AFM tip against polymer, and calculated that the volume loss was ~1 atom per micron sliding. Bhaskaran et al.166 observed atomic volume loss of ~1 atom per micron in sliding of DLC coating. Gotsmann and Lantz’s wear model165 suggested that normal pressure had minimal contribution to wear, and that the lateral, frictional force was responsible for the exponential dependence of wear. By fitting the experimental data, Gotsmann and Lantz calculated the effective barrier and activation volume to be 0.983 and 5.5 × 10⁻²⁹ m³, respectively.

Layer-by-layer wear and dislocation mediation

Hard engineering ceramic materials have been extensively exploited as wear resistance materials due to their hard nature and resistance to oxidation.170,171 The degradation of ceramics in sliding contact is frequently attributed to fracture at surface and sub-surface. Liao and Marks172 reported monolayer-by-monolayer wear of a hard M₂₃C₆ carbide phase in CoCrMo alloy. The carbide slid against a flat silicon tip using an AFM-TEM holder under a mild pressure of ~20 MPa, which is significantly lower than the yield strength of the carbide. Figure 10a shows the carbide and the AFM tip before the test. The white lines highlight the carbide geometry after 250 sliding passes. This carbide phase showed steady
material removal along [511] plane, with no cracks in either the surface or the sub-surface. Figure 10b shows a large number of debris transferred to the silicon tip. As shown in the wear loss as a function of sliding passes in Fig. 10c, the thickness of the carbide was reduced by ~46 nm over 250 sliding passes, or ~0.18 nm per pass. This reduction is comparable to the (511) planar spacing of 0.20 nm, suggesting that on average, one sliding pass removed approximately one monolayer. The wear coefficient was ~0.8, indicating that the layer-by-layer wear is a severe wear process. A number of wear debris nanoparticles were generated and transferred to the silicon tip. Figure 10d shows an M23C6 wear debris of ~8 nm in size. No dislocation was observed in the debris particle due to the small size and brittle nature of the carbide.

9 Atomistic wear reported by Jacobs and Carpick. Wear volume in the in situ sliding experiments shows exponential dependence on contact stress, indicating the process is stress-assisted thermal activations.

10 In situ sliding of silicon on an M23C6 carbide. a The carbide surface was oriented to [511]. The white lines represent the geometry of the carbide after 250 slide passes. b Wear debris were transferred from the carbide base to the silicon tip. The micrograph was taken when the specimen was still. c The material removal rate (~0.18 nm/slide pass) is nearly linear and close to the layer spacing. d High-resolution micrograph showing a ~8 nm debris particle. No dislocations were found in the particle.
The layer-by-layer wear is attributed to shear stress and misfit dislocations residing one layer from the carbide surface, and peel of the surface layer as it moved with the tip. Misfit dislocation exiting at solid–solid contact has been extensively investigated in thin films. In the situation where plastic deformation at a sliding interface is mediated by misfit dislocations, the crystallographic structure of the two surfaces plays a critical role. Bowden and Tabor pointed out that the friction force experienced by a single asperity is composed of two components, i.e. the shearing components at the interface (F_D) and the ploughing component in front of the tip (F_p). The plowing force, $F_p = \vartheta \cdot A$, can be considered as a creep process where the relationship between strain rate and shear stress ϑ is

$$\vartheta = A_2 \frac{D_G b}{kT} \left(\frac{\sigma_p}{G}\right)^n \cot \left[\frac{2(\sigma_p b) \sin (\Delta \theta/2)}{B_{tot}}\right]$$

where σ_p is the Peierls stress, B_1 the drag coefficients for different effects, ν velocity of dislocation, b Burgers vector, N_d the number of dislocations in the contact area, θ the absolute in-plane misorientation angle, $\Delta \theta$ is the angular different from the slip plane. The dragging force is strongly anisotropic. Only dislocation with Burgers vector component in the direction of sliding contributes to dislocation dragging. Misfit dislocations can stand off from the interface at a range of distance from mono-atomic cation dragging. Misfit dislocations can be modelled by moving a single asperity wear at the nanometre scale.

The shearing component can be modelled by moving a misfit dislocation at the surface. It is a collective contribution of phonon-wind (B_w) flutter effect (B_0) and electronic damping (B_e)

$$F_D = N_d(\sigma_p b)(\sin \theta + \cos \theta) \cot \left[\frac{2(\sigma_p b) \sin (\Delta \theta/2)}{B_{tot}}\right]$$

$B_{tot} = B_w + B_0 + B_e$

σ_p is the Peierls stress, B_1 the drag coefficients for different effects, ν velocity of dislocation, b Burgers vector, N_d the number of dislocations in the contact area, θ the absolute in-plane misorientation angle, $\Delta \theta$ is the angular different from the slip plane. The dragging force is strongly anisotropic. Only dislocation with Burgers vector component in the direction of sliding contributes to dislocation dragging. Misfit dislocations can stand off from the interface at a range of distance from mono-atomic layer to over 20 atomic planes depending on the shear moduli different and lattice registry. Materials removal and the transfer layer can be correlated to dislocation stand-off when the sliding is primarily mediated by dislocation motion in the surface.

Wear process observed in in situ TEM tests varies drastically with the materials and test conditions. For instance, in the atom-by-atom wear of silicon AFM tip, severe wear took place at no applied load and was dominated by thermal activation and adhesion (normal) force. The layer-by-layer wear of Mo2C, carbide features steady wear mediated under ~20 MPa. In the report by Anantheshwar et al. on sliding tests between a diamond pin and aluminium alloy, the aluminium alloy did not exhibit any wear at contact pressure of ~200–500 MPa. Wear began to take place at ~750 MPa. The initial material removal was ~80 nm in 20 sliding passes, and the wear rate gradually slowed down. After 50 sliding passes the tribological system was stabilised with no further wear recorded. It was observed that wear debris from the aluminium specimen scooped out a chunk of surface material. Wear debris can accumulate and roll between the surfaces. The presence of wear debris remarkably complicates microscopic wear process and deserves further investigation.

Tribochemical reactions: aging, graphitisation and etching

Tribochemical reactions are another critical component in many tribological processes, associated with chemical structure changes which are usually time dependence. It has been observed that sp2-bonded carbon atoms in DLC film experiences transition into sp3-bonding. Pasewka et al. performed MD simulation and suggested that sp3 carbon bonds in diamond undergo a sp3-to-sp2 order–disorder transition upon polishing. This transition is mechaenochemically activated, strongly dependent on the anisotropy of diamond crystallographic surface orientation. As shown in Fig. 11, surface carbon atoms leave their crystalline position, building an amorphous layer. The amorphisation featured only one atom at a time, so called ‘pilot’ atoms. This atomic process driven by force cannot be fitted with an Eyring-type or Arrhenius-type activation; rather the thickness, h, of the amorphous carbon layer is described by the following equation.

$$h(t) = \frac{1}{kT} \ln \left(\frac{1}{\beta + \alpha t^2 + 2(C_{\alpha \beta} + 1)} + \frac{\alpha}{\beta} + 2(C_{\alpha \beta} + 1)\frac{\alpha}{\beta}\right)$$

where $C_{\alpha \beta}$ is a constant, t time, $P_{\alpha \beta}(t)$ the probability for amorphisation of an atom in surface s by sliding in direction d_i, v velocity. The probability for amorphisation is negligible ($P < 10^{-5})$ for the {111} surface, while $P = 0.05$ for {110};{100} systems, leading to the anisotropism amorphisation rate.

Merkel et al. slid a tungsten probe on hydrogenated, wear-resistant DLC film in situ in a TEM in vacuum. Figure 12a shows a bright-field TEM image of DLC film after 200 sliding passes. The EELS spectrum of the sliding contact highlighted by the white circle was monitored at intervals during 300 passes as shown in Fig. 12b. The π* peak, fingerprint of sp3 bonding, increased with sliding passes, providing direct evidence of graphitisation induced by sliding. Graphitic transfer layers were present on the tungsten tip and lowered the friction.

Humidity is known to have deleterious effects on the wear resistance of hydrogenated DLC. M’ndange-Plusff et al. examined wear of DLC film in situ in an environmental TEM in 0.15–1.5 torr of wet nitrogen or hydrogen gas. Sliding in wet N$_2$ resulted in remarkable wear, as shown in Fig. 12c, with clear wear traces were produced after only 20 sliding passes. The thickness reduction calculated based on the contrast change was determined to be 2 × 10$^{-3}$ nm2. It was suggested that chemically reactive atoms activated by the sliding reacted with either water vapour, chemically absorbed oxygen or hydroxyl species. In contrast, the DLC film was newly intact after sliding in wet H$_2$ gas. The wear resistance is ascribed to the passivation of hydrogen of any active carbon radicals. The accelerated wear in wet N$_2$ provides quantitative nanoscale evidence of tribochemical reaction taken place at a sliding surface, and is consistent with the macro-scale wear resistance of hydrogenated DLC film.

Liquid-like behaviours

In addition to microstructural and chemical change, friction may alter the surface such that the surface may...
behave like a liquid with high mobility. In 1964 Pashley et al.194 observed liquid-like behaviour in an \textit{in situ} growth of gold and silver single crystal films in a TEM, where high surface diffusion led to coalescence of metal nuclei. Merkel and Marks103 conducted \textit{in situ} sliding test of gold nanofilm and recorded that a gold film can attach to a sliding tungsten probe at slightly elevated temperature of \(\sim 166^\circ\text{C}\). Figure 13a shows the TEM micrographs of a liquid-like gold neck connecting the probe and gold film. The gold neck region exhibited remarkable flexibility to accommodate deformation. Surface diffusion, which is \(\sim 300\ \text{nm}^2\text{s}^{-1}\) for gold, was calculated to be equivalent to a viscosity of 1.61 Pa s at 166°C, about one order of magnitude greater than air. The temperature is significantly below the melting point of 1064°C, and thus bulk diffusion does not account for the high mobility.103

Liquid-like behaviour can significantly influence how the surfaces and wear debris interact with each other. Lockwood et al.195 exploited a NanoLAB TEM triboprobe196 to rub a diamond probe on an FIB-machined aluminium alloy substrate without heating the specimen. The aluminium alloy specimen was heavily doped by gallium during the sample preparation. It is observed that the wear debris particles produced over time can behave like a liquid. Figure 13b shows two debris particle droplets on each side of the contacting surface.195 Upon pushing the droplet, a liquid bridge was formed within 0.08 s. The meniscus on the side of the bridge revealed the liquid-like nature. EDS data showed that the droplets were mostly composed of gallium, and the liquid bridge resulted in complex capillary forces between the surfaces even when the surfaces were separated. Four-body (surfaces, wear debris and droplets) solid–liquid interactions need to been considered in this nano-scale sliding event. Atomistic simulation suggests that pseudoelastic deformation driven by surface diffusion can take place for \(<10\ \text{nm}\) silver nanoparticles at room temperature.197
What do we know, what do not we know, whither the science

In situ TEM single asperity sliding experiments are still in their early stages. In some cases they have provided the first definitive proof of long established models in tribology; in a few cases they have demonstrated that new phenomena occur at the nanoscale, sometimes unexpected ones. In most cases they take place in electron microscopes which were not designed for this purpose with instruments where compromises have been made in the mechanical properties that can be measured and the accuracy of the tip/sample displacements. From a technical view these are exceedingly hard experiments to perform; we are aware of many more attempts to obtain useful tribological information than published papers which have had impact upon the field.

Rather than recapitulating what has been achieved, we will focus in this section on some reflective comments about what could be improved and where the field might progress in the future more as a perspective section. To date the image resolution reported is of low resolution around several nanometre during sliding. Most images and videos are based on mass contrast primarily due to lack of tilting capabilities in two dimensions and difficulties of preparing thin, defect-free sliding components. A dedicated imaging processing technique to filter out vibration and directional motion can be beneficial to improve image quality during sliding. Owing to electron beam damage, tribology of hydrocarbon-based polymeric materials, which play a significant role in various engineering applications, has not been investigated much in in situ TEM studies. A systematic study of reducing irradiation damage is required to understand organic materials sliding in in situ TEM tests. It may be that new low-voltage electron microscopes that are starting to become available have a promising further for this type of application.

From a tribological point of view, much work needs to be done for in situ TEM tribometers to simultaneously measure force and displacement in all three axes. In particular, the capability of lateral force measurement is extremely desired to acquire friction data of sliding interface. Most in situ TEM sliding to date has been performed in high vacuum, and thus may not fully represent what takes place in ambient atmosphere. With the state-of-the-art high-resolution and analytical TEM, it is desired to extend the full capability of advanced TEM to in situ TEM dynamic studies. In an aberration-corrected TEM, the gap between the poles of objective lens can be increased to accommodate a larger holder. Thus comprehensive analysis of atomic defects (such as dislocations) and surface atomic arrangement can be achieved at least in principle. In addition, in situ tribological tests in varied environment, such as gas, pressure, temperature and sliding speed, has become possible with the recent advance in environmental TEM.

Despite the aforementioned limitations current in situ TEM tribology investigations have provided unprecedented information on fundamental aspects of wear and friction at the nanometre scale. Conventional microscopic wear mechanisms usually involve materials plasticity and hardness, and in many cases can be extended to nanoscale sliding. Extensive plastic deformation, ploughing, chipping and third body rolling have been observed in great details in sliding single asperities. The dynamics of tribolayer formation and transfer have been recorded and related to the tribological behaviours at the macroscopic scale.137–139,198

Surfaces and nano-asperities can behave differently from their bulk form. The reports on liquid-like behaviour of gold film at sliding contact, thermally activated atomistic wear assisted by adhesion normal force, and steady wear of chromium carbide in a layer-by-layer fashion indicate that conventional wear mechanisms based on contact mechanics, adhesion and material plasticity may not fully account for single asperity wear at the nanometre scale. Much more work needs to be done in order to understand the breakdown of conventional continuum theories. Friction and wear are collective response of a
large number of atoms and defects at contact surface and sub-surface. Imaging the dynamics of these atoms will significantly extend our understanding of wear and friction at multiple length scales, such as atomic fracture due to friction or adhesion, defect initiation and evolution, tribofilm formation and transfer and chemical reactions with the environment and/or counterpart. The in situ TEM tribological tests have provided a unique tool to obtain direct experimental data for unravelling the mysteries. In situ sliding in controlled environment, although with very limited access to, has begun to be investigated and the results are exploited to understand the sensitivity of a tribological process. The DLC film tested in situ in a TEM in dry condition was nearly wearless, and the presence of water vapour significantly accelerated wear. There is clear evidence that the tribological process can transform sp² carbon to sp³ carbon with minimal thermal processes, and that the tribofilm played a critical role in the tribological process of DLC. By implementing cutting-edge analytical TEM tools, the influence of the environment can be resolving at the atomic scale.

Summary

Wear, lubrication and friction at the full length scales have received continuous attention. Dating back to the seminal work of Bowden and Tabor,7,38 we know that solid–solid friction involves asperity–asperity contact at the micro to nanoscale. From a conventional materials science/mechanical properties approach, this is therefore going to involve both plastic and elastic processes. The process is of high complexity that requires comprehensive understanding of both materials intrinsic properties and extrinsic environmental. As recognised by Lucretius,199 wear process involves small scale and was once beyond our power of observation. In situ tribological tests in a TEM have provided useful details of wear process of engineering materials at the nanoscale. With the integration of more sophisticated electron microscopy and tribometry techniques, more dramatic results on sliding interfaces will be anticipated in the future.

Acknowledgement

The authors acknowledge support from the National Science Foundation on grant number CMMI-1030703.

References

Liao and Marks In situ singleasperity wear at the nanometre scale