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ABSTRACT 

Triboelectric or flexoelectric phenomena have seen significant recent interest for energy 

harvesting. However, the underlying science responsible for triboelectricity have yet to be 

completely understood, both the fundamentals and an understanding of how the energy output 

depends upon the shape of the interacting surface. Here, we investigate the role of the contacting 

shapes (asperities) in triboelectricity. We demonstrate that their shape and size is very important, 

obtaining qualitative agreement with experimental results. Further, we discuss how the impact of 

the shape depends on material, geometric, gradient elasticity and electronic transport details. We 

Jo
ur

na
l P

re
-p

ro
of

mailto:l-marks@northwestern.edu


 2 

provide scaling rules which can be exploited to better design energy harvesting devices based upon 

either triboelectricity or flexoelectricity. 

Keywords 

Triboelectricity; Flexoelectricity; Contact Mechanics; Electromechanics; Asperity Shape; Charge 

Transfer Scaling 

 

1 Introduction 

Triboelectricity, the charge transfer between two contacting or rubbing materials, is of interest 

in a wide range of scientific, engineering, and everyday applications. In some, such as in the design 

of triboelectric nanogenerators (TENGs) [1], [2] large charge transfer is desirable. In others, less 

charge transfer is preferable, e.g., to prevent industrial accidents [3], pharmaceutical powder 

clumping [4], [5], [6], or excessive charging of space exploration vehicles [7]. Triboelectricity is 

also important in diverse scientific areas, from planetary formation [8] to the effect of shampoos 

on the static electricity of human hair [9]. Despite an increasing interest in triboelectric research, 

many details of the mechanism and relevant materials and geometrical properties are still unknown 

[10], [11], [12]. 

Some aspects of triboelectricity are established, and there is an analogy to a capacitor and 

compensating charges [13], [14]. If there is a potential difference between two materials due to the 

difference in their work functions (contact potential), this can be thought of as equivalent to the 

potential difference across a capacitor. The charge to compensate this will be that which cancels 

the electric field. It has been known for many decades [15] that if an insulating dielectric is in 
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between the two materials, then this will lead to a polarization 𝑃, a bulk bound charge of −∇ ⋅ 𝑃 

and a bound surface charge of 𝑃 ⋅ 𝑛̂, where 𝑛̂ is the surface normal [16]. The total charge is then 

the combination of the bound surface charge from the polarization and that from the potential.  

Previously, we have pointed out that triboelectricity occurs at contacting asperities, where 

electromechanical potentials large enough to drive charge transfer form due to asperity 

deformation [17], [18]. A significant contribution is due to the flexoelectric effect, the polarization 

caused by strain gradients, which should be combined with the contact potential between the two 

materials. Flexoelectric theory dates back to the 1960s [19], [20], and it has become an increasingly 

popular research topic as the small length scales of nanotechnology lead to inherently large 

gradients. The field grew especially after the seminal measurements by Ma and Cross [21], and 

flexoelectric contributions have been shown to be important for a variety of electronic materials 

and devices [3], such as switching of ferroelectrics [22], [23] or transistors [24] and photovoltaics 

[25], as well as a wider variety of fields including planetary formation [8] and bone healing [26]. 

Several reviews provide further background on flexoelectricity and its wider effects in electronic 

materials [27], [28], [29], [30]. 

Evidence for the importance of flexoelectricity in triboelectricity can be traced back to the work 

of Jamieson in 1910 [31], who showed that bending a piece of cellulose changed the sign of the 

tribocharge. This was taken further in 1917 by Shaw [32] who explored more materials, 

demonstrating that some were more positive with positive curvature, while others were more 

negative, and similar work has continued into the modern day [33]. The work of Jamieson and 

Shaw predates the formal theory of flexoelectricity by about 50 years [19], [20]. Recent work has 

continued to support the connection between triboelectricity and flexoelectricity [17], [34], [35], 

[36], [37], [18], [38]. 
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Going beyond this, we have also developed a more detailed model to analyze the 

electromechanics of single-asperity contacts [39]. The contact of asperities is simplified to a 

spherical metal indenter that is pressed into a semi-infinite semiconductor slab. The deformation 

is determined using Hertzian contact solutions [40], and the electronic band bending is calculated 

by considering electromechanical and other relevant electronic effects. 

One unresolved issue concerns the asperity shape, for which generalizations that can be used to 

assist design of energy harvesting devices are desirable. In tribology, the shape of asperities is in 

some cases considered to have little importance, such as its effect on real contact areas [41], [42] 

or on friction [43]. In other cases, tribological quantities of interest, such as leakage from a 

hydrodynamic film [43], creep at asperities [44], or wear rate in abrasives [45], are strongly 

dependent on asperity shape. 

With a focus on triboelectricity, asperity shape effects have been studied as surface 

modifications of TENGs [46], [47]. Microscale patterns have been created on the surface of 

materials by molding polymers to solid templates [48], [49] or selectively melting polymer 

surfaces with lasers [50], [51]. These studies indicate that surface modifications such as grating or 

arrays of protrusions or divots often increase charge transfer, enhancing TENG performance. One 

work compared surfaces with regular arrays of microscale domes and pyramids to flat surfaces 

[49]. TENG open-circuit voltage and short-circuit current were increased by ~50% for domes and 

~500% for pyramids. These results are attributed to increases in contact area, but the domes and 

pyramids would only increase the contact area by ~40% and ~30%, respectively. The difference 

in the electromechanics from the different asperity shapes is a significant part of this disparity. 

Other works have examined the effect of different surface morphologies on the performance of 
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TENGs [52], [53], [48]. We will return to this at the end of this manuscript after presenting directly 

relevant theory. 

Here, we consider the effect of the asperity shape on triboelectric polarization, bound surface 

charge and electromechanical band bending generated at contacts. We demonstrate the size 

scaling, as well as scaling with force and material dependent terms. Our theory explains results of 

experiments with surface modified TENGs, for which surface area changes alone are not adequate, 

and provides a foundation for future rational design of improved energy harvesting devices. 

2 Theory  

First, we examine the effect of asperity shape on electromechanical potentials, i.e., its effects on 

electronic band bending due to strain, via the deformation potential [54] and the mean-inner 

potential [55], and that due to strain gradients via flexoelectricity. Depending on the materials 

involved, specific problems necessarily include other potentials. For example, the Nb:SrTiO3 – 

Pt0.8Ir0.2 case [39] requires consideration of the depletion potential. For this work, these material 

system dependent potentials are left aside. Unless otherwise noted, the calculations presented here 

consider a rigid indenter contacting a SrTiO3 half-space and focus on the response of the half-

space; two contacting asperities can be simplified to this case by using an effective radius [56]. 

We choose SrTiO3 because it is well-characterized, but the analysis follows for any non-metal. 

Because SrTiO3 is cubic, we may ignore piezoelectricity. To simplify the analysis, the indenter is 

assumed to have dielectric properties of vacuum. (We will pose determining all the necessary 

parameters for other materials as a challenge to the community.) For further details regarding the 

calculations and relevant SrTiO3 parameters, see Supplementary Material SN1. 

We consider the five asperity shape cases shown in Fig. 1. The 3-D axisymmetric cases are 

sphere, cylinder, and cone indenters, shown in Fig. 1a-c. The 2-D cases with axial symmetry 
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correspond to indenters in the shape of an infinitely long cylinder or rectangular prism, shown in 

Fig. 1d-e and referred to as a roller and punch, respectively. While real asperity shapes are 

intermediate to these, they provide bounds to what can be expected for more realistic shapes [45]. 

How the results scale is discussed in terms of the mean contact pressure and contact radius, which 

may be calculated for more complex asperity shapes. 

 

Fig. 1. Sketches, axis definitions, and geometric parameters for the five indenter cases: (a) sphere, 

(b) cylinder, (c) cone, (d) roller, and (e) punch. 

The stress field in the elastic half-space is calculated from Hertz-like solutions [57], [58], [59] 

for a sphere of radius 𝑅, a cylinder of radius 𝑅, a cone with half-angle α measured from the vertical, 

a roller of radius 𝑅, and a punch of half-width 𝑅. These Hertzian solutions assume the pressure 

distribution at the surface, given in Table 1, is limited to the region inside the contact radius, where 

𝑝𝑚 is the mean contact pressure, 𝑎 the contact radius, 𝐹 the force on the indenter in the 3-D cases 

or the force per unit length in the 2-D cases, and 𝑌 the Young’s modulus of the half-space. The 

superscripts s, cy, co, r, and p refer to the sphere, cylinder, cone, roller, and punch, respectively. 

Note that none of these pressure distributions are differentiable at the edge of the contact region, 

𝜌 = 𝑎. While this is physically unreasonable, Hertzian solutions nonetheless give results with 

acceptable error for many contact problems [60]. In the cylinder, cone, and punch cases, the sharp 
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corners cause unresolvable numerical singularities. For these cases, contact solutions that 

incorporate strain gradient elasticity [61], [62] and eliminate this singularity are used with a length 

scale parameter of about ℓ = 0.04𝑎, corresponding to a contact radius of about 10 nm [63] (see 

Supplementary Material SN3). We also consider a third 2-D case, a triangular prism with half-

angle 𝛼, in the scaling results. It is not included in further calculations because there is no strain 

gradient solution that would be needed for the sharp contact point. For discussion of an elastic 

spherical indenter, see Supplementary Material SN2. 

Asperity Shape 
𝜎𝑧(𝑧 = 0)

𝑝𝑚
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) ∝ 𝑃𝑖 (

𝐫

𝑎
) ∝ 

Sphere (s) 3

2
(1 −

𝜌2

𝑎2
)

1
2

 (
3(1 − 𝜈2)

4

𝑅𝐹

𝑌
)

1
3

 (
𝐹𝑌2

𝑅2
)

1
3

 (
𝐹

𝑅2𝑌
)

1
3
 

𝜇

𝑅
 

Cylinder (cy) 1

2
(1 −

𝜌2

𝑎2
)

−
1
2

 𝑅 
𝐹

𝑅2
 

𝐹

𝑅2𝑌
 

𝐹𝜇

𝑅3𝑌
 

Cone (co) cosh−1
𝑎

𝜌
 

(2(1 − 𝜈2)
𝐹 tan 𝛼

𝑌
)

1
2
 

𝑌

tan 𝛼
 

1

tan 𝛼
 (

𝑌

𝐹 tan3 𝛼
)

1
2

𝜇 

Roller (r) 4

𝜋
(1 −

𝑥2

𝑎2
)

1
2

 (
4(1 − 𝜈2)

𝜋

𝐹𝑅

𝑌
)

1
2

 (
𝐹𝑌

𝑅
)

1
2
 (

𝐹

𝑅𝑌
)

1
2
 

𝜇

𝑅
 

Punch (p) 2

𝜋
(1 −

𝑥2

𝑎2
)

−
1
2

 𝑅 
𝐹

𝑅
 

𝐹

𝑅𝑌
 

𝐹𝜇

𝑅2𝑌
 

Triangular 

Prism 

2

𝜋
cosh−1

𝑎

𝑥
 

(1 − 𝜈2)

2

𝐹 tan 𝛼

𝑌
 

𝑌

tan 𝛼
 

1

tan 𝛼
 

𝑌𝜇

𝐹 tan2 𝛼
 

Table 1. Contact mechanics parameters and scaling for the six indenter shapes. 𝜎𝑧(𝑧 = 0) is the 

surface stress profile, 𝑎 the contact radius, 𝑝𝑚 = 𝐹/𝑎2 the mean contact pressure, and 𝜎𝑖𝑗, 𝜀𝑖𝑗, and 

𝑃𝑖 the stress, strain, and polarization in the half space, respectively. Note that 𝜎𝑖𝑗 (
𝐫

𝑎
) ∝ 𝑝𝑚, 

𝜀𝑖𝑗 (
𝐫

𝑎
) ∝ 𝑝𝑚/𝑌, and 𝑃𝑖 (

𝐫

𝑎
) ∝ 𝜇𝑘𝑙𝑖𝑗𝜀𝑘𝑙,𝑗 (

𝐫

𝑎
) ∝ 𝑝𝑚𝜇/𝑎𝑌. 
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The results of specific cases are, of course, dependent on 𝐹, 𝑅 or 𝛼, and 𝑌, but two generalizations 

and reductions are possible: 

1. The stress inside the half-space is proportional to 𝑝𝑚, so the strain is proportional to 𝑝𝑚/𝑌, 

strain gradient to 𝑝𝑚/𝑎𝑌, and polarization to 𝑝𝑚𝜇/𝑎𝑌. 

2. Normalizing the coordinates 𝐫 by the contact radius 𝑎 results in a natural scaling. 

Specifically, the stresses 𝜎𝑖𝑗, strains 𝜀𝑖𝑗, strain gradients ∂𝜀𝑘𝑙 𝜕𝑥𝑗⁄ = 𝜀𝑘𝑙,𝑗, and flexoelectric 

polarizations 𝑃𝑖 = 𝜇𝑘𝑙𝑖𝑗𝜀𝑘𝑙,𝑗 scale as shown in Table 1, where 𝜇𝑘𝑙𝑖𝑗 is a flexoelectric tensor 

component. 

 Since SrTiO3 is cubic, there are three independent flexoelectric components, namely 𝜇𝑖𝑖𝑖𝑖 =

−36.9 nC/m, 𝜇𝑖𝑖𝑗𝑗 = −40.2 nC/m, and 𝜇𝑖𝑗𝑖𝑗 = −1.4 nC/m, which are referred to as the 

longitudinal, transverse, and shear components, respectively [64]. We note that, like dielectric 

constants, flexoelectric tensor components are normally quoted in the zero-frequency limit. Since 

flexoelectric polarization is connected to the dielectric behavior, there can be significant changes 

such as near phase transitions [65], [66]. There can also be large frequency dependencies of the 

flexoelectric coefficients and hence the polarization for some materials [67]. In the analysis herein, 

we consider only the zero-frequency limit. 

Table 1 includes only the parameters that lead to simple scaling. For example, each stress 

component depends differently on Poisson’s ratio [57], [58], [59], so these quantities vary in a 

complex manner.  We will now focus our attention on the scaling of the electromechanical 

potential ΦEM, which is obtained by determining the charge density and solving Poisson’s 

equation. 
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In the strained half-space, flexoelectricity produces a polarization density due to the strain 

gradient. The potential due to a polarization density 𝑃(𝐫) can be determined by considering the 

equivalent potential produced by the bulk and surface bound charge densities, 

 𝜚FXE(𝐫) = −∇ ⋅ 𝑃(𝐫);    𝜍FXE(𝐫) = 𝑃(𝐫) ⋅ 𝑛̂ (3) 

respectively, where 𝑛̂ is a unit vector normal to the surface. Far away from the contact in the 

vacuum or deep into the material, the two cancel so the potential decays faster than that of a simple 

charge; near the surface the surface bound charge density dominates. 

The volumetric strain 𝜀vol has two effects on the potential. First, the average potential in the 

crystal, or mean inner potential (MIP), shifts with strain [55]. For SrTiO3, this shift is given by 

𝜑 =
𝜕MIP

𝜕𝜀vol
= 22.2 eV. Also, since we are interested in charge transfer, we examine the behavior of 

the conduction band energy 𝐸C. This shifts relative to the MIP by an amount 𝐷BS
C =

𝜕(𝐸C−MIP)

𝜕𝜀vol
=

−17.2 eV, known as the conduction-band-specific deformation potential [54]. The valence band 

could be treated similarly using the valence-band-specific deformation potential instead. Like the 

flexoelectric polarization, the potential due to the volumetric strain, (𝐷𝐵𝑆
𝐶 + φ)εvol(𝐫), has a 

corresponding charge density, 𝓆MIP,DP(𝐫) = −∇ ⋅ (𝜖(𝐫)∇[(𝐷𝐵𝑆
𝐶 + φ)εvol]), determined by solving 

Poisson’s equation where 𝜖(𝐫) is the (in general, spatially-varying) dielectric permittivity. Then, 

the electromechanical potential ΦEM(𝐫), which includes the flexoelectric, mean inner potential, 

and conduction-band specific deformation potential is given by the solution to 

 −∇ ⋅ (𝜖(𝐫)∇ΦEM(𝐫)) = 𝓆EM(𝐫) = 𝓆MIP,DP(𝐫) + 𝜚FXE(𝐫) + 𝜍FXE(𝐫) (4) 

where 𝓆EM(𝐫) is the total bound charge density due to electromechanical effects. Finally, we note 

that in both the solution for 𝓆MIP,DP and of Eq. (4), we include the image charges and dielectric 

screening created by the surface of the half-space [68]. 
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In Eq. (4), if the bulk flexoelectric term 𝜚FXE dominates, then 𝓆EM ∝ ∇ ⋅ 𝑃 ∝ 𝑝𝑚/𝑎2𝑌. If the 

surface term 𝜍FXE dominates instead, then 𝓆EM ∝ 𝑃 ⋅ 𝑛̂ ∝ 𝑝𝑚/𝑎𝑌. Finally, if the strain-dependent 

term 𝓆MIP,DP dominates, 𝓆EM ∝ ∇2𝜀vol ∝ 𝑝𝑚/𝑎2𝑌. Ignoring any variation in the dielectric 

permittivity that may occur due to mechanical effects, ∇2ΦEM ∝ 𝓆EM/𝜖, so the potential will scale 

as ΦEM ∝ 𝑝𝑚/𝑌 if either bulk term, 𝜚FXE or 𝓆MIP,DP, dominates, or as ΦEM ∝ 𝑎𝑝𝑚/𝑌 if the surface 

term 𝜍FXE dominates. In our calculations with SrTiO3, we find ΦEM ∝ 𝑝𝑚/𝑌. 

3 Results 

3.1 Potentials, Charges Densities, and Electromechanical Energies 

 

Fig. 2. Plots of ΦEM/(𝑝𝑚 𝑌⁄ ) for different indenter shapes: (a) sphere, (b) cylinder (c) cone, (d) 

roller, and (e) punch. The 𝜌 and 𝑧 axes are normalized by the contact radius 𝑎. Contour lines are 

labeled in the color bar. 
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Fig. 3. Plots of 𝓆EM/(𝑝𝑚 𝑎2𝑌⁄ ) for different indenter shapes: (a) sphere, (b) cylinder (c) cone, (d) 

roller, and (e) punch. The 𝜌 and 𝑧 axes are normalized by the contact radius 𝑎. Contour lines are 

labeled in the color bar. 

Figs. 2 and 3 show ΦEM/(𝑝𝑚 𝑌⁄ ) and 𝓆EM/(𝑝𝑚 𝑎2𝑌⁄ ) plotted against normalized coordinates 

𝐫/𝑎 for the five indenter shapes. In the 3-D cases (a-c), the cylinder case is clearly distinct, while 

the sphere and cone share many features. This is caused by the surface stress distribution being 

most concentrated at the edge of contact in the case of the cylinder, while it is most concentrated 

at the center in the sphere and cone cases. This leads to the sphere and cone sharing a similar 

surface charge density (see Figs S1-S5c). When the effect of the sharp corner of the cone is reduced 

by strain gradient solutions, the sphere and the cone solutions approach each other closer, further 

supporting this reasoning (see Figs S1 and S3). The 2-D cases follow intuition; the roller is most 

similar to the sphere, and the punch to the cylinder. Despite the similarities in Figs 2 and 3 for 

various indenter shapes, the scaling remains vastly different in accordance with Table 1.  
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Understanding the energies involved in electromechanical contacts can give further insight into 

the problem. A simplified thermodynamic potential density Ψ, ignoring piezoelectric terms and 

terms with more than one polarization gradient, gives the following form [28]. 

 Ψ = −
1

2
𝜎𝑖𝑗𝜀𝑖𝑗 −

𝑓𝑖𝑗𝑘𝑙

2
(𝑃𝑘(𝐫)

𝜕𝜀𝑖𝑗(𝐫)

𝜕𝑥𝑙
− 𝜀𝑖𝑗(𝐫)

𝜕𝑃𝑘(𝐫)

𝜕𝑥𝑙
) −

1

2
𝜖𝑖𝑗

−1𝑃𝑖(𝐫)𝑃𝑗(𝐫) (5) 

The strain energy density is 𝐸strain
′ (𝐫) = 𝜎𝑖𝑗(𝐫)𝜀𝑖𝑗(𝐫)/2.  The stress and strain are proportional to 

𝑝𝑚 and 𝑝𝑚/𝑌, respectively when plotted against the normalized axes 𝐫/𝑎. Therefore, the total 

strain energy integrated over the whole half-space volume Ω is 𝐸strain = ∫ 𝐸strain
′ (𝐫) 𝑑𝐫

Ω
∝

𝑎3𝑝𝑚
2 𝑌⁄ . For example, the total strain energy for spherical contacts is 𝐸strain

s ∝ (𝐹5 𝑅𝑌2⁄ )
1

3, and, 

from the calculations, 𝐸strain
s (𝐹5 𝑅𝑌2⁄ )

1

3⁄ = 2.6. 

The flexoelectric energy density is 𝐸FXE
′ (𝐫) =

𝑓𝑖𝑗𝑘𝑙

2
(𝑃𝑘(𝐫)

𝜕𝜀𝑖𝑗(𝐫)

𝜕𝑥𝑙
− 𝜀𝑖𝑗(𝐫)

𝜕𝑃𝑘(𝐫)

𝜕𝑥𝑙
) where 𝑓 is the 

flexocoupling tensor defined by 𝜇𝑖𝑗ℎ𝑙 = 𝜖ℎ𝑘𝑓𝑖𝑗𝑘𝑙. The strain and polarization are proportional to 

𝑝𝑚/𝑌 and 𝑝𝑚𝜇/𝑎𝑌, respectively, so the total flexoelectric energy is 𝐸FXE = ∫ 𝐸FXE
′ (𝐫) 𝑑𝐫

Ω
∝

𝑎𝑝𝑚
2 𝜇2 𝑌2⁄ . For spherical contacts, 𝐸FXE

s ∝ 𝐹𝜇2 𝑅𝑌⁄ , and 𝐸FXE
s (𝐹𝜇2 𝑅𝑌⁄ )⁄ = 3.1 m/nF, where 

we have used 𝜇 = 𝜇𝑖𝑖𝑗𝑗, the flexoelectric tensor component with the largest magnitude. 

Finally, the polarization energy density is 𝐸P
′ (𝐫) = 𝜖𝑖𝑗

−1𝑃𝑖(𝐫)𝑃𝑗(𝐫) 2⁄ . The polarization is 

proportional to 𝑝𝑚𝜇/𝑎𝑌, so the total polarization energy is 𝐸P = ∫ 𝐸P
′ (𝐫) 𝑑𝐫

Ω
∝ 𝑎𝑝𝑚

2 𝜇2 𝑌2⁄ . For 

spherical contacts, 𝐸P
s ∝ 𝐹𝜇2 𝑅𝑌⁄ , and 𝐸P

s (𝐹𝜇2 𝑅𝑌⁄ )⁄ = 1.7 m/nF. Note that this scales in the 

same manner as 𝐸FXE
′ , which should be expected because the only source of polarization we 

consider is the flexoelectric effect. Plots of the energy densities and other results are found in 

Supplementary Material SN5 and Figs. S8-S10. 

Compared to the strain energy, the scaling of the flexoelectric and polarization energies shows 

that the flexoelectric effect becomes more important when the contact radius and modulus become 
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smaller. This follows the intuition that when gradients become large at small scales, especially the 

nanoscale, flexoelectricity becomes increasingly important. 

3.2 Contribution of Flexoelectric Tensor Components 

A less material-specific analysis can be realized by considering ΦEM when 𝜇𝑖𝑗𝑘𝑙 = 0 or when 

𝐷𝐵𝑆
𝐶 + 𝜑 = 0, i.e., when the electromechanical response is due to only the deformation potential 

and mean inner potential shift or only flexoelectricity. We define 

 −∇ ⋅ (𝜖(𝐫)∇ΦMIP,DP(𝐫)) = 𝓆MIP,DP(𝐫) (6) 

 −∇ ⋅ (𝜖(𝐫)∇ΦFXE(𝐫)) = 𝓆FXE(𝐫) = 𝜚FXE(𝐫) + 𝜍FXE(𝐫) (7) 

where ΦMIP,DP and ΦFXE correspond to these two cases, respectively. Further, we consider three 

separate components of ΦFXE that each depend on only one of the three independent flexoelectric 

coefficients in a cubic system. That is, we set all but one flexoelectric coefficient to zero and 

calculate ΦFXE. These results are more applicable to materials other than SrTiO3; they remain 

dependent on the mechanical and dielectric properties of SrTiO3, but not on other electronic 

properties, notably including the flexoelectric coefficients. Components of the bound charges can 

be calculated similarly (see Supplementary Material SN4). For a sphere indenter, the result is 

plotted in Fig. 4, which has three cases: non-zero longitudinal (𝜇𝑖𝑖𝑖𝑖 ≠ 0), non-zero transverse 

(𝜇𝑖𝑖𝑗𝑗 ≠ 0), and non-zero shear (𝜇𝑖𝑗𝑖𝑗 ≠ 0) flexoelectric coefficients. ΦEM can be obtained by 

simply adding in the appropriate proportions the ΦFXE terms and (𝐷𝐵𝑆
𝐶 + φ)εvol(𝐹, 𝐫), as shown 

in Eq. (8). 

 ΦEM = 𝜇𝑖𝑖𝑖𝑖Φlongitudinal
FXE + 𝜇𝑖𝑖𝑗𝑗Φtransverse

FXE + 𝜇𝑖𝑗𝑖𝑗Φshear
FXE + (𝐷𝐵𝑆

𝐶 + φ)εvol (8) 
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Fig. 4. Plots of (a-c) ΦEM/(𝑝𝑚 𝜇′𝑌⁄ ) with artificial flexoelectric coefficients and (d) 𝜀vol/(𝑝𝑚 𝑌⁄ ) 

for a rigid sphere indenter.: (a) 𝜇𝑖𝑖𝑖𝑖 = 𝜇′,  𝜇𝑖𝑖𝑗𝑗 = 𝜇𝑖𝑗𝑖𝑗 = 0. (b) 𝜇𝑖𝑖𝑗𝑗 = 𝜇′,  𝜇𝑖𝑖𝑖𝑖 = 𝜇𝑖𝑗𝑖𝑗 = 0. (c) 

𝜇𝑖𝑗𝑖𝑗 = 𝜇′,  𝜇𝑖𝑖𝑖𝑖 = 𝜇𝑖𝑖𝑗𝑗 = 0. 

Figs. 4a-c and S6a-c show that the flexoelectric component contributions to the potential have 

differing shapes and magnitudes, while the bound charge contributions have similar shapes but 

with the longitudinal component contributing an opposite sign to the transverse and shear. For a 

normalized flexoelectric coefficient, the longitudinal and transverse components contribute similar 

magnitudes, while the shear contributes much more. However, as is true for SrTiO3, the shear 

flexoelectric component is often much smaller than the others [64]. 
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Fig. S7a-c shows that the transverse flexoelectric component is largely dominant in determining 

the flexoelectric surface charge, except close to the contact edge (𝜌 ≈ 𝑎), where the shear 

component becomes relevant. 

4 Discussion 

We have calculated normalized electromechanical potentials and bound charge densities for a 

variety of rigid indenter shapes contacting an elastic half-space and described how the potentials 

and thermodynamic elastic, flexoelectric, and polarization energies scale with indenter force and 

size, as well as slab modulus. The shape of asperities is important in triboelectricity because it 

affects how ΦEM scales, as well as the shape of the potentials and charge densities, as shown in 

Figs. 2 and 3. 

Figs. 4, S6 and S7 emphasize that the ratios between components of a material’s flexoelectric 

tensor control the shapes of the potential and charge densities. For cases unlike SrTiO3, the shapes 

may change dramatically (though the scaling remains the same). Therefore, determining the 

relative magnitudes of the flexoelectric coefficients for materials of interest is helpful in informing 

the design of triboelectric devices using those materials. 
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Fig. 5. Experimental data of micro-patterned TENGs from Varghese, et al.: (a-c, d-f) Open-circuit 

voltage and short-circuit current, respectively, measured for a cellulose acetate nanofiber/micro-

patterned PDMS TENG, with (a,d) flat, (b,e) dome, and (c,f) pyramid micropatterns. (g,h) SEM 

images of (g) pyramid and (h) dome micropatterns. The scalebar in both images is 50 μm. 

Reprinted from Nano Energy, 98, Varghese, H., H. M. A. Hakkeem, K. Chauhan, E. Thouti, S. 

Pillai and A. Chandran, A high-performance flexible triboelectric nanogenerator based on 
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cellulose acetate nanofibers and micropatterned PDMS films as mechanical energy harvester and 

self-powered vibrational sensor, 107339, Copyright (2022), with permission from Elsevier. 

We can quantitatively match experimental scalings for triboelectric experiments that have been 

performed with different asperity shapes and/or different roughness. Consider surface-modified 

polydimethylsiloxane (PDMS) films of Varghese et al. [49]. We estimate the increase in contact 

area using the reported measurements and the images reproduced in Fig. 5g-h. We assume that the 

domes are half-spheres, that the height of the pyramids is equal to their side length, and that the 

cellulose acetate nanofiber can be modeled as homogenous, since the fiber size is much smaller 

than the domes and pyramids. Then there is approximately a 40% and 30% increase in surface area 

for domes and pyramids, respectively. However, they observe an increase in short-circuit current 

density of about 70% for domes and 500% for pyramids, as well as an open-circuit voltage increase 

of about 40% for domes, and 430% for pyramids.  

We map the pyramids to cones with half angle of 45° and use spheres for the domes with radius 

given by Varghese, 21 μm. Then, if the 3 N force is spread evenly over the artificial asperities, 

which have number density ~150 mm-2 across the 2 cm2 sample, and we take the modulus [69] of 

the Sylgard 184 PDMS to be 1.32 MPa, we can calculate the polarization energies 𝐸P for the two 

asperity shapes. For the pyramids, 𝐸P = 2.0 m/nF (
𝐹

𝑌 tan3 𝛼
)

1

2
𝜇2 = 18 kN m3 C−2 𝜇2and for the 

domes, 𝐸FXE = 1.7 m/nF 
𝐹

𝑅𝑌
𝜇2 = 6.2  kN m3 C−2 𝜇2. These have a ratio of 2.9, and the 

polarization energies similarly have a ratio of 3.0. These are compared to the relative difference 

between the experimental open-circuit voltages and closed-circuit current densities, which have 

ratios of about 3.8 and 3.5, respectively, in excellent agreement.  Further details and additional 

explanations of other experimental results can be found in Supplementary Material SN6. 
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5 Conclusion  

In conclusion, without the addition of any empirical parameters, using analytical models of 

elasticity and the consequent flexoelectric polarization, we have demonstrated significant 

dependence upon asperity shape which agrees with experimental results. Furthermore, we have 

provided scaling relationships so these results can be applied generally to assist in optimizing 

flexoelectric and triboelectric energy harvesting strategies. We pose as a challenge to the 

community measuring key materials properties such as flexoelectric coefficients and deformation 

potentials when comparing triboelectric performance. This work also contributes to the increasing 

evidence that flexoelectricity plays a major role in triboelectricity, as first suggested by the 

experiments of Jamieson [31] and Shaw [32] over a century ago and well before there was any 

theory for strain-gradient polarization. 

SUPPLEMENTARY MATERIAL 

Included in the Supplementary Material are notes and figures including discussions of 

computational details, elastic and strain gradient elasticity contact solutions, contributions of each 

flexoelectric component to the bound charge distributions, and expanded information about the 

thermodynamic energies calculated in the main text. 
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HIGHLIGHTS 

• Asperity shape changes how triboelectric contact problems scale. 

• Experiments qualitatively agree with the theoretical shape scaling.  

• Complete electromechanical bound charge densities and potentials are calculated. 

• New insights inform the design of triboelectric energy harvesting devices. 
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