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ABSTRACT

Initial Stages of Thin Film Deposition: Metal-Induced Surface Reconstructions

on Semiconductors and the Nucleation of Cubic Boron Nitride

Christopher Collazo-Davila

The deposition of thin films is becoming an increasingly more important part
of many new technologies. The degree of control made available through modern
thin-film deposition techniques allows an engineer to conceive of and create structures
on an atomic scale. This has given rise to new challenges in atomic scale
characterization. In this thesis, new and powerful approaches to atomic scale
characterization are employed to solve several current thin-film deposition problems.
Experimental measurements are obtained on an integrated, in-situ surface analysis
system with an adjoining ultra-high vacuum transmission electron microscope.

Transmission electron diffraction data is used to refine the atomic positions of
the Ge(001)-(2x1) native surface reconstruction. It is then shown that direct methods
techniques can be applied to both transmission electron diffraction and X-ray

diffraction data to solve completely unknown surface structures. Direct methods are

ii
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applied to X-ray diffraction data from the Ge(111)-(4x4)/Ag surface to determine its
structure. Also, two related linear surface structures on Si, the Si(111)-(3x1)/Ag and
the Si(111)-(4x1)/In structures, are both solved by applying direct methods to
transmission electron diffraction data. A general trend for linear reconstructions on
the Si (111) surface is noted by comparing the newly solved Si(111)-(3x1)/Ag and
Si(111)-(4x1)/In structures to the previously solved Si(111)-(5x2)/Au structure.
Finally, in-situ high energy electron bombardment and high-resolution electron
microscopy are used to reveal the formation of nanoarches in hexagonal boron nitride.
The nanoarch structures are shown to be possible nucleation sites for the cubic phase
of boron nitride, and the growth of cubic boron nitride thin films is explained based

on this new nucleation mechanism.
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CHAPTER 1: INTRODUCTION

1.1 Atomic Scale Engineering and Characterization

The rise of the semiconductor industry has pushed man's ability to engineer
materials on an atomic scale. The current minimum lateral feature size found on a
semiconductor chip is around 250 nm, and the familiar semiconductor industry's
"roadmap" calls for a steady reduction in that size to 50 nm within the next fifteen years.
At that point, the dimensions of the electronic devices on a chip will be on the order of
several hundred atoms across. However, the thrust towards the atomic scale is not
limited to the world of semiconductors alone. Other major industries are pushing the
scale of engineering to ever decreasing sizes as well. Some hard coatings research is
exploring multilayer films where the thickness of a single layer is only a few nm (Shinn
and Barnett 1994; Madan, Chu, and Barnett 1996). Also, as chapter S of this thesis
shows, it appears that a detailed atomic-scale understanding of the growth process of
cubic boron nitride (a potential hard coating material) is necessary in order to develop

- new processes capable of making high quality films. Moreover, many researchers
predict that the field of microelectromechanical devices (MEMS) is on the brink of a

rapid expansion into industry (Marshal 1997).
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In these growing high-technology nanoscale environments, the materials
scientist's job remains the same -- to relate the structure of a material to its properties.
While the properties may still manifest themselves on a macroscopic scale (e.g. surface
hardness or I-V response curves) and may therefore still be measurable through
conventional means, microscopic structures have become increasingly more difficult to
determine. New characterization techniques have emerged, and old ones have become
more sophisticated, but the technology of microstructural characterization seems to be
falling behind envisioned designs. A recent article in Research and Development
Magazine (Comello 1998) identifies metrology as one of the biggest barriers standing
between the semiconductor industry and 100 nm feature sizes. In order to overcome this
barrier the latest edition of the semiconductor industry's roadmap suggests a move
towards in-situ, integrated analysis by placing a variety of characterization equipment
directly on the chip fabrication line. This move towards in-situ analysis and the
integration of different analysis techniques can be seen in many areas of research, and it
is proving to be a powerful approach that is necessary to overcome the most difficult
characterization challenges.

This thesis underscores the capabilities of the integrated, in-situ analysis
approach to microstructural characterization. Through the use of an integrated analysis
system described in section 1.2.1, the surfaces of germanium and silicon and the
structure of several thin metal films on these two semiconductors have been

characterized on an atomic scale (Chapters 2 - 4). Also, the atomic scale dynamics
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taking place during the nucleation of cubic boron nitride thin films have been determined

as described in Chapter 5.

1.2 Experimental Approach

Much of the research described within this dissertation involved the use of the
SPEAR system described in section 1.2.1. The system was designed by Prof. L.D.
Marks and Prof. P.C. Stair with the help of Superior Vacuum Technology (SVT), which
is now part of EPI. SVT built the system and delivered it to Northwestern University.
Through the efforts of Ganesh Jayaram, Richard Plass, Eric Landree, Daniel Grozea, and
myself the SPEAR system was made operational (Collazo-Davila et al. 1995). Eric
Landree, Daniel Grozea, Erman Bengu, and [ have been responsible for the system's
maintenance. Erman Bengu was responsible for designing the boron nitride growth

chamber attached to the SPEAR system.

1.2.1 The SPEAR System

SPEAR stands for Sample Preparation Evaluation Analysis and Reaction. The
fundamental reason for the creation of the system was to have the capabilities of a high-
resolution transmission electron microscope (TEM) paired with standard film growth
and surface characterization techniques all within the same ultra high vacuum (UHV)
environment. A schematic diagram of the system is shown in figure 1.1a, and a

photograph appears in figure 1.1b. A central sample transfer chamber serves as the link

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Load-Lock

Figure 1.1. a) Schematic diagram of the SPEAR surface analysis system viewed from
the top. b) Photograph of the SPEAR system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



between a UHV H-9000 Hitachi TEM, a surface preparation/analysis chamber, a load-
lock, and a boron nitride film growth chamber. The surface analysis chamber has a
Perkin Elmer 04-548 dual anode x-ray tube and a Phi 10-360 spherical capacitance
electron energy analyzer (SCA) allowing the collection of x-ray photoelectron
spectroscopy (XPS) data. An FEI single lens field-emission scanning electron gun can
produce Auger electron spectroscopy (AES) data as well as scanning electron
microscopy (SEM) images. The surfaces of samples can be sputtered and imaged at the
same time with a 6050 Phi duoplasmatron variable gas source ion gun package, and
samples can be annealed either by direct current heating or by electron bombardment
using a high-current electron gun.

Samples placed into the load lock (up to 5 at a time) can be brought into the main
transfer chamber after an eight hour bake-out step which lowers the pressure in the load
lock to about 5x10-10 torr. The base pressure in the transfer, growth, and analysis
chambers is in the low 10-1! torr range, and the pressure in the objective region of the H-
9000 TEM where the sample sits is less than 1x10-10 torr with the electron beam on.
The growth chamber has a Thermionics 100-0010 3 kW electron beam evaporation
source for the evaporation of pure boron, and an Astex compact electron cyclotron
resonance (ECR) nitrogen source. A Perkin Elmer 04-300 ion gun can independently
provide 500 eV - 4 keV Ar* ion bombardment of the growing film. A small 4 inch port

on the side of the transfer chamber has been modified by Dr. Richard Plass to provide
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metal evaporation from resistively heated tungsten boats. The metal evaporation
capability was used to deposit silver in the study of the Si(111)-(3x1)/Ag structure

discussed in section 4.2.

1.2.2 Substrate Preparation

The substrates used for deposition or native surface studies were either silicon or
germanium, and the basic sample preparation procedure that was common to both
materials is outlined here. The sample geometry is dictated by the TEM sample
cartridge. All specimens have to be in the form of a 3 mm diameter disc and must have
regions that are only a few hundred angstroms thick in order to be suitable for TEM
study. Starting from a commercial Si or Ge wafer (400 pm to 600 pm thick), 3 mm
discs were cut using the ultrasonic disc cutter in Prof. V.P. Dravid's lab. The discs were
then thinned to 200 um using 600 grit alumina sandpaper. Next, the samples were
dimpled to a thickness of 20 um to 30 um in the center with a VG1000 dimpler using a
force of 10 g. and a grinding wheel speed of 20 rpm to 40 rpm. At a central thickness of
30 pm, the thickness at the edge of the 3 mm disc is about 180 um. As a final step in the
dimpling process, the samples were polished using first 1 um diamond paste, and then a
0.1 pm syton colloidal suspension. The thinning of the sample was completed by a
chemical etch consisting of a nitric and hydrofluoric acid solution ina 9 to 1 ratio for Si
and Ge(001). The etch was stopped as soon as a hole was seen to form at the center of

the 3 mm disc.
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Before being placed in the SPEAR system, the samples were mounted in a
molybdenum ring (fig. 1.2). The molybdenum ring has a lip on which the sample disc
rests, and either a tantalum or a tungsten spring clip above the sample keeps it firmly in
place. The molybdenum ring allows fragile TEM samples to be transferred safely and
also provides a route for heating by directly passing current through the molybdenum.
Once inside the UHV system, chemical impurities were removed from both the top and
the bottom surfaces of a sample by cycles of ion milling and annealing. Monitoring of
the surface impurity level was accomplished through XPS. Figure 1.3 shows a sequence
of XPS spectra collected during the cleaning of a Si(001) sample. When the surface
impurity levels were below the XPS detection limit, the sample was moved into the
microscope to check for the native surface reconstruction of the substrate using TED

(see for example fig. 2.3).

Top View

Molybdenum Spring

@ 4\@ Cross-Section
Side View

Figure 1.2. Drawing of the molybdenum ring for holding samples in the SPEAR system.
The spring clip can be either tungsten or tantalum.
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Figure 1.3. Sequence of XPS spectra collected during a milling/anealing cycle while
removing impurities from a Si(001) substrate.
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1.2.3 Surface Reconstructions

The atoms at the surface of a crystal reside in a different environment than the
atoms inside the bulk of the material. Consequently it often happens that the lowest
energy arrangement for the surface atoms differs from the arrangement of atoms inside
the bulk. This new arrangement of surface atoms is called a surface reconstruction.
Figure 1.4a shows the (001) surface for a diamond-cubic crystal with all of the atoms left

in their normal bulk positions. In this arrangement there are two dangling bonds on each

Side
View

Unreconstructed Dimer Formation

[110]
| [110]

Figure 1.4. a) The (001) surface of a diamond cubic crystal with all atoms remaining in
their bulk positions. The square 1x1 2D unit cell for the atoms on the surface is outlined
in black. b) The same surface after reconstruction and the formation of dimers. The new
2x1 2D unit cell for the surface atoms is outlined in black and is twice the size of the 1x1
unit cell aong the [110] direction.
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surface atom, and the system can lower its potential energy by forming new bonds
between atoms on the surface. As shown in Figure 1.4b, each surface atom bonds to a
neighboring atom along a <110> direction. The new pairs of atoms bonded to each other
at the surface are referred to as dimers, and the surface reconstruction is called a (2x1)
reconstruction in reference to the size and orientation of the 2D unit cell for the new
surface structure.

Surface reconstruction nomenclature is based on the 2D unit cell for the atoms on
the surface while in their bulk positions before reconstruction takes place (Wood 1963).
In the case of the (001) surface of a diamond-cubic crystal, the surface atoms in their
bulk positions form a 2D lattice with a square unit cell which is outlined in figure 1.4a.
This base unit cell of the bulk-terminated surface is always referred to as a 1x1 unit cell.
After rearrangement of the surface atoms, a new 2D unit cell is drawn for the surface
structure (fig. 1.4b), and the surface reconstruction is called a 2x1 reconstruction because
the a-axis of the reconstructed unit cell is "2" times as long as the a-axis of the original
1x1 unit cell, and the b-axis is "1" times as long as the b-axis of the 1x1 unit cell. In
general, a reconstruction will be labeled as (nxm)R¢°, where the reconstructed unit cell
has an a-axis length "n" times the a-axis length of the 1x1 cell and a b-axis length "m"
times the b-axis length of the 1x1 cell, and the reconstructed unit cell is rotated by an
angle of "¢"° relative to the 1x1 unit cell. If there is no rotation of the surface unit cell

then the R¢° is left off instead of explicitly writing R0°.
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Reconstructions were monitored as part of the work presented in this thesis both
for their intrinsic interest (specific reconstructions are the subjects of study in the
research described in Chapters 2 - 4) and also for their ability to provide information
about impurities not detectable by XPS (native substrate reconstructions were always
verified to be present before the deposition of any thin films). In terms of atomic scale
engineering, the smaller engineered structures become, the more important are their
surfaces and interfaces in terms of determining their behavior. Unfortunately, our
understanding of surface and interface physics is far from complete, and it currently does
not provide accurate predictive abilities. Being able to characterize and understand
atomic structures at a surface or an interface is an important step in the process of
building a working knowledge of surface and interface physics which will one day allow
accurate predictions to be made. In terms of impurity monitoring, most native surface
reconstructions are highly sensitive to small amounts of adsorbed atoms including
hydrogen which is not detectable by XPS. If a native surface reconstruction is detected
by TED, then one can be sure that the surface is almost completely free of any foreign
adsorbate atoms. The presence of a strong surface structure diffraction pattern also
indicates long range crder which shows that the surface is relatively flat on an atomic

scale with surface steps spaced by at least several tens of nanometers apart.
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CHAPTER 2: TRANSMISSION ELECTRON
DIFFRACTION FOR STUDYING
SURFACES

2.1 Surface-Sensitive Experimental Techniques

Despite the development of many experimental techniques for studying surfaces
of crystalline materials, determination of the atomic geometry of a surface reconstruction
remains a difficult experimental task. No single method exists which can independently
and routinely solve surface structures. The ideal technique would a priori produce an
image which would be directly interpretable in terms of surface atomic positions.
Unfortunately the only two imaging techniques which have the lateral resolution
required to discern individual atoms, scanning tunneling microscopy (STM) and high
resolution transmission electron microscopy (HRTEM), each have their own limitations.
STM can produce low-noise images of the density of states at a surface with a resolution
near 0.2 nm. However, peaks in the density of states do not always correspond to
surface atom positions, and even if they do, the atomic position information is limited to
a single layer of atoms. HRTEM is able to image all layers of atoms in a reconstruction,
but HRTEM images are difficult to obtain and suffer from relatively large amounts of

noise and high background signals.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

As an alternative approach to directly imaging surface atoms, one can perform
any measurement which is sensitive to the surface atomic positions. Providing that the
theory describing the measurement process is well enough understood to be accurately
simulated, quantitative comparisons can be made between the measurements and values
simulated from a tentative model for the surface structure. The success of this approach
relies on the accuracy of the simulations and in any case can only confirm or refute an
hypothetical model. The most common typé of surface measurements which are
compared to simulations are diffraction techniques. Low energy electron diffraction
(LEED) has been applied to almost every known surface reconstruction. While giving
valuable information about the dimensions of the unit cell and the nature of any disorder
in the surface structure, the scattering of the low energy electrons is highly dynamical
and is difficult to accurately model. Reflection high energy electron diffraction
(RHEED) is another technique which, due to strong dynamical diffraction, is difficult to
simulate. Grazing incidence x-ray diffraction (GIXRD), on the other hand, can be well
described by the relatively simple kinematical theory of diffraction, and has been
employed in many cases to refine surface reconstructions. Its only limitation is the
experimental difficulties associated with obtaining GIXRD data.

Perhaps one of the most powerful techniques for determining surface structures is
transmission electron diffraction (TED). If the TEM sample is tilted away from a major
bulk zone axis, the surface diffraction intensities can be approximated using kinematical

diffraction theory. Precise refinements are also possible since the required dynamical
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diffraction calculations can be accurately performed using the established multislice
simulation method. Although TED comes with its own experimental difficulties (mostly
due to sample preparation), the technique has a major advantage over GIXRD with
respect to data collection times. A complete GIXRD data set requires several hours to a
few days to acquire - even using modern sources of synchrotron radiation. A complete
TED data set can be recorded on film in under 5 minutes. The main reason surface TED
has not found more widespread use is that it requires highly specialized equipment
which is expensive and not readily available. Most surface reconstructions must be
formed under UHV conditions in order to survive long enough to be studied, and there
are only a handful of UHV transmission electron microscopes in the world. Despite the
rarity of capable laboratories, TED has made significant contributions to the field of
surface science. Solution of the celebrated Si(111)-(7x7) structure was based on TED
data (Takayanagi et al. 1985), and more recently our group has used TED data to solve

and refine a number of structures.

2.2 TED Data Collection and Reduction

Before collecting surface diffraction data in a TEM, the sample is tilted a couple
of degrees off the zone-axis in order to attenuate the bulk reflection intensities relative to
the surface reflection intensities (Jayaram, Plass, and Marks 1995). A series of negatives
1s then exposed with increasing exposure times. Typical exposure times will range from

0.5 s to 120 s. Such an exposure series will cover the wide dynamic range found in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

typical diffraction pattern. Parallel Electron Energy Loss Spectroscopy (PEELS) data
may be collected from the transmitted beam and the most intense bulk diffracted beams
as well. By measuring the bulk spot intensities relative to the transmitted beam with
PEELS, absolute comparisons can be made between simulated and measured diffraction
intensities during the fitting process. PEELS measurements also provide an estimate of
the sample thickness based on the ratio of the number of electrons in the entire spectrum
to the number of zero-loss electrons (Malis, Cheng, and Egerton 1988).

After developing, the diffraction pattern negatives are digitized to 8 bits with a
25 pm pixel size using an Optronics P-1000 microdensitometer. Relative beam
intensities are then measured using a cross-correlation technique developed in our group
(Xu, Jayaram, and Marks 1994). For each digitized negative, around 10 strong but non-
saturated spots are chosen, independently scaled to unit integrated intensity, and then
averaged together to form a motif representing the general shape of a diffraction spot.
Separate motifs can be formed for bulk and surface reflections since their shapes may
differ due to domain size effects. After the formation of the motifs, a software routine
scans through the negative comparing each non-saturated spot with the appropriate
motif. At each point of comparison, the background of diffuse scattering surrounding a
sharp diffraction spot is removed. For the comparison, the center of the spot to be
measured is found by cross-correlation with the motif. With the centers of the spot and
the motif precisely aligned, a least squares fit between the two is calculated pixel by

pixel assuming that the measured spot is simply a scaled up version of the motif. In this
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manner, the intensities of all the surface spots on a given negative are determined
relative to each other. For PEELS data, a one dimensional analog of the cross-
correlation method can be used to obtain the relative intensities of the transmitted beam
and strong bulk spots, and in subsequent analysis the PEELS intensity data can be
treated the same as if coming from another negative with its own exposure time.

Next, to compare intensities from different negatives in the exposure series,
scaling factors between the pictures are defined. Denoting the scaling factor between
pictures 1 and 2 as s, the scaling between 2 and 3 as s,, and so on, there are a total of (P-
1) factors if the total number of pictures is given by P. These factors are calculated by
minimizing the quantity,

P-1 P (I S 1 )2 (2.1)

2 2 2l =il
where S;;=(s;)(si+1) - - - (5j.1) represents the scaling between pictures i and j, and [, is the
intensity of beam number n in picture i. The sum over n is taken over all beams which
were measured in both pictures i and j. Many beams are often measured on as many as
six negatives in the middle of an exposure time series. Using the multiple measurements
and the calculated scaling factors, average intensities scaled to the shortest exposure time
are found. Due to the digitization process, there is a fixed window of optical density
which can be measured on a negative regardless of exposure time. However, as the

exposure time increases, the background noise on the film increases relative to the fixed

measurement window. To account for this changing uncertainty in intensity
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measurements, a separate variance is calculated for the data from each negative. The
variances are used for error estimates of individual measurements when calculating a

final average value and associated error (For details see appendix A).

2.3 TED Data Simulation and Surface Structure Refinement

2.3.1 Quantitative Measures of Agreement

There are many standard methods used to quantify the agreement between two
sets of numbers. This discussion will be limited to the three numerical measures of
agreement appearing in this thesis, and it will be presented in the context of comparing a
set of measured diffraction intensities to a corresponding set of simulated values.

First, an R-factor defined as,

N’ meas calc
Y I I

J

=t 2.2

P

can be calculated without the need for any estimates of the measurement errors. [™*isa
measured intensity, [ is the simulated diffraction intensity, and N is the total number
of measured intensities. Refinements using this R-factor are insensitive to the weaker
reflections in a data set since the weak reflections contribute relatively little to the sum in
equation 2.2. Therefore, in an R-factor fit the largest measured intensities will match the
simulated intensities within unrealistically small percentage errors at the expense of a

reasonable match for the weakest reflections.
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Alternatively, a reduced %’ value defined as,

2

L5
—N—Mj=l c

calc
2 ™ -1 2.3)

X

i
takes into account estimates of the measurement errors, the crj's, for each beam. M is the
number of parameters being varied during the fitting process. The x> value leads to a
more reasonable distribution of the fitting errors, and it can be interpreted as a statistical
measure of the probability of making a given set of observations (Bevington and
Robinson 1992, 68). For a good fit, the numerator in the sum should be on average
about equal to the denominator, and the value of x* will tend towards 1. Ifit is much
less than 1, then the estimates of the measurement errors are too large. If it is much
greater than 1, then the estimates of the measurement errors may be too small, the
postulated model may not be completely correct, or the simulation calculations may not
accurately represent the experimental measurement process. In any case, the statistical
interpretation of x* rests on the assumption that the measurement errors follow a
gaussian distribution. In practice this is not always the case, and there are often "outlier”
measurements which are grossly inaccurate for one reason or another.

In a situation where the measurement errors do not follow gaussian distributions,

a ¥ measure of agreement can be employed. The y value is defined as,
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1 % 'I;neas _ I(J;alci (2.4)
N-Muz o

J

[f

X

The 7 factor is similar to %* and for a reasonable fit will tend toward a value of 1, but it
is less sensitive to points with large errors. While in the calculation of ¥ a large value
of (I™* - [ for a poorly fit beam will be squared and will contribute significantly to
the sum, the same (I"* - [**) in the calculation of %, will only be a few times larger than

most of the other terms in the sum and will not be treated with undue importance.

2.3.2 TED Data Fitting Procedure

While kinematical diffraction theory provides a good description of weakly
scattered x-rays, a dynamical approach is needed for more strongly scattered electrons.
For this thesis, dynamical diffraction calculations were performed with the Northwestern
University Multislice and Imaging System (NUMIS) package. In the standard multislice
approach used by NUMIS, the crystal is cut into slices perpendicular to the direction of
the incident electron plane wave. The scattering calculations are performed slice by slice
as the wave propagates through the crystal.

Both the total sample thickness and the angle of tilt between the crystal zone axis
and the incident beam direction must be known for an accurate TED simulation. An
initial estimate of the crystal tilt can be found by looking at one of the longer exposure
negatives of the diffraction pattern and using either the intersection of Kikuchi lines or

the curvature of the zeroth order Laue zone to find the distance between the transmitted
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beam and the center of the zone axis. Next, an R-factor is used to compare the measured
bulk reflection intensities with simulated intensities in a three dimensional grid search
with two search axes corresponding to the two possible tilt directions and the third axis
corresponding to the sample thickness. While the crystal tilt can be found to within a
few hundredths of a degree during this step, the thickness cannot always be uniquely
determined. For a fixed crystal tilt near the correct value, the calculated R-factor for
simulated bulk intensities will oscillate with thickness. Typically, in the range of 0 nm
to 70 nm, two or three values of the thickness will be found to give reasonable measures
of agreement. The ambiguity can be eliminated by analyzing the PEELS data taken
from the sample. PEELS is accurate to around 10% when used to estimate thickness
(Malis, Cheng, and Egerton 1988), and this is accurate enough to clearly agree with only
one of the possible choices found during the grid search.

Once the crystal tilt and thickness have been determined, the surface structure
can be refined. A multislice calculation yields simulated intensities for the surface
diffraction spots and either a % or a % value is used to quantify the agreement with the
measured intensities. A standard minimization algorithm varies the atomic positions in
the surface slices to search for a better fit. The procedure is iterated until 2 minimum ¥y

or % value is found.
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2.4 Refinement of the Ge(001)-(2x1) Native Surface Reconstruction

The data for this study (Collazo-Davila, Grozea et al. 1997) were collected using
the SPEAR system described in section 1.2.1. The Ge(001) sample preparation and the
diffraction data collection were accomplished through the combined efforts of myself,

Mr. Daniel Grozea, and Mr. Eric Landree.

2.4.1 Background Information

The (2x1) reconstruction on Si(001) and Ge(001) has been the focus of many
investigations since it was first observed (Schlier and Farnsworth 1959) using LEED.
Today many details about the structure and dynamics of the two surfaces are known. It
is generally accepted that the basic building block of the Si(001) and Ge(001)

reconstructions is an asymmetric dimer (see figure 2.1). Atoms on the (001) surface

[001]

[110]

Figure 2.1. Buckled dimer which forms the basic building block for native Si(001) and
Ge(001) reconstructions. Two possible tilt directions are indicated as two shades of gray
in top two layers of atoms.
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satisfy dangling bonds by bonding with neighbors along a (110) direction. The two
atoms in a dimer, however, do not move toward each other equal amounts. One atom is
pulled slightly into the surface while the other is pushed out forming a tilted dimer with
two possible orientations. The dimers line up in parallel rows and by an ordering of

their tilt directions can form higher order reconstructions as shown in figure 2.2. Several

[001]

a b [110]

Side view
.‘U,...‘l..,.‘ﬁ..‘b DT T e T e
".."..".." "..".."..".
‘i,...‘b,.,.‘b....d. ‘l’,.‘b’,.‘l’..‘b
! '..."."..‘ : 3 '.."..".."
,‘. SO I B\ ¢ ..‘. Peb SW s ,...“,.,.‘.
L T TP T Q' ..Q' .."..‘ :
‘i SP 008 Jh BP0
," SOV AN ...'.
Top view [110]

[110]

Figure 2.2. Higher order native reconstructions of the Ge(001) and Si(001) surfaces
formed by an ordering of the dimer tilt directions. Unit cells are shown in black.
a) c(4x2) b)p(2x2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

room temperature diffraction experiments (Lander and Morrison 1962; Cardillo and
Becker 1978; Kevan and Stoffel 1984; Kevan 1985; Culberson, Kuk, and Feldman 1986;
Lambert et al. 1987; Lucas et al. 1993) have reported diffuse streaks at p(2x2) and
c(4x2) locations indicating that some ordering of the dimer tilts is present along dimer
rows. Sharp superstructure spots have only been seen upon cooling down to ~ 200K for
Ge(001) (Kevan and Stoffel 1984; Kevan 1985; Lambert et al. 1987; Lucas et al. 1993).
Theoretical total energy minimization calculations (Chadi 1979; Ihm et al. 1983;
Needels, Payne, and Joannopoulos 1987; Needels, Payne, and Joannopoulos 1988;
Spiess, Freeman, and Soukiassian 1994) show either the p(2x2) or c(4x2) structure,
figure 2.2, to have the lowest energy, but the experimental investigations indicate that
the c(4x2) structure is favored on both Si and Ge.

While early total energy minimization calculations and experimental studies
supported the tilted dimer model, the first STM study on Si(001) (Hammers, Tromp, and
Demuth 1986) sparked some debate by showing mostly symmetric dimers on the
surface. The few dimers that appeared tilted were localized near surface defects. The
authors of the STM paper suggested that at room temperature the dimers were flipping
orientation rapidly in comparison to the scanning rate, so that the STM images provided
a time-averaged representation of an asymmetric dimer. Using the calculated energy
difference between a symmetric dimer and a tilted dimer as the energy barrier to be

surmounted in a flip, Dabrowski and Scheffler (1992) estimated the flipping rate would

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

be 10’ s°! for Si, and Kriiger and Pollmann (1995) estimated that for Ge it would be 10
times smaller than for Si.

The first detailed experimental structural study on the Ge(001)-(2x1) surface was
attempted by Rossmann et al. (1992). This grazing incidence x-ray diffraction
experiment reported atomic positions up to 10 layers down from the surface. Since then
two more x-ray studies have been reported -- one on Ge(001)-(2x1) (Torrelles et al.
1996) and one on Ge(001)-c(4x2) at 150K (Ferrer et al. 1995). In the following sections
a TED study of the room temperature Ge(001)-(2x1) structure is described. The in-plane
atomic positions found agree with all three x-ray studies to within a few hundredths of
an angstrom. Such a precise experimental consensus allows the Ge(001) surface to serve

as a valuable model system for theoretical studies of native surface reconstructions.

2.4.2 Experimental Details

Sample preparation followed the basic procedure outlined in section 1.2.2. The
chemical etch consisted of a solution of HNO, and HF in a 9 to 1 volume ratio. For the
in-situ surface cleaning, an oxygen ion mill (4 kV, 60° from surface normal) followed by
an argon ion mill (3 kV, 60° from surface normal) and an anneal at 400 °C for 4 minutes
removed most of the surface contamination from the sample. Further cycles of argon ion
milling and annealing at 500 °C were used to strengthen the 2x1 surface diffraction

spots, and then the diffracted beam intensities were recorded using both film and PEELS
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as described in section 2.2. PEELS was used to measure the transmitted beam and the

eight strongest bulk diffracted beams.

Figure 2.3. Composite of two different exposure time Ge(001)-(2x1) diffraction
patterns. The arrowed suface spot is shown in the inset at the top left magnified eight
times to show the anisotropic shape due to domain size. Periodic steps on the surface
cause the splitting seen in the 1x1 spots.

Figure 2.3 shows the central region of a composite of two digitized diffraction
patterns. Reflections from both 2x1 and 1x2 domains are present. The diffraction spots
can be separated into three categories: bulk reflections which arise from the bulk

diamond cubic germanium lattice, 1x1 reflections having thc‘périodicity of the

unreconstructed (001) surface, and pure surface reconstruction reflections which arise
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from the 2x1 or 1x2 surface unit cells. The 1x1 spots have intensity contributions from
both the surface step structure as well as the surface reconstruction and so were not
considered in the analysis. The splitting of the 1x1 spots seen in figure 2.3 indicates a
periodic array of steps on the surface spaced about 7 nm apart. While the bulk spots
appear round, the surface reconstruction spots are elongated indicating anisotropic
surface domain sizes. Since both 2x1 and 1x2 domains must terminate at surface steps
and both the 2x1 and 1x2 spots are elongated along the same direction, the anisotropy is
most likely due to surface steps running along the direction perpendicular to the
elongation of the spots. Because dynamical diffraction calculations were used to refine
the model structure, kinematically symmetry equivalent spots were not averaged, and a

total of 372 surface intensities appeared in the final data set.

2.4.3 Diffraction Simulation Details

For the multislice calculations each bulk germanium unit cell was cut 4 times
along the [001] direction so that a single slice was 0.14 nm thick. TED data is
insensitive to displacements parallel to the incident electron beam, and the incident
electron beam was nearly perpendicular to the Ge(001) surface, so only displacements
parallel to the surface were considered. All of the models tested consisted of either one
or two reconstructed unit cells (4 or 8 slices) on both the top and bottom surfaces

separated by bulk material.
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The initial grid search of the crystal tilt and thickness narrowed the possible
thickness down to three ranges near 10 nm, 30 nm, and 60 nm. As mentioned in section
2.2 an independent thickness estimate can be made by analyzing the PEELS spectrum of
the transmitted beam with the relation, t/A=In(I/I,), where t is the thickness, A is the
inelastic mean free path, [, is the total number of electrons in the spectrum, and I, is the
number of electrons in the zero loss peak (Malis, Cheng, and Egerton 1988). An
effective inelastic mean free path for the Ge sample (dependent on the detector
collection angle) was measured by gathering convergent beam electron diffraction
patterns (CBED) and PEELS data from relatively thick regions to define the relationship
between t and In(I/I,). By analyzing the structure in CBED patterns one can measure
crystal thickness very precisely (Allen and Hall 1982), but for thin samples (a few tens
of nanometers) there is less structure in the CBED images and the technique becomes
less precise. Nevertheless, by concentrating on thicker regions of the sample, the CBED
technique provided accurate thickness measurements which could be correlated with
PEELS measurements to find A. A linear relationship between t and In(I/I,) was
verified (figure 2.4), and a value of 224 nm was found for A. Using this value for A, the
PEELS spectra indicated a thickness near 10 nm for the region from which the surface
diffraction data was taken. Finally, a numerical R-factor minimization refined the values
for the thickness and tilt to 7.6 nm and 100 mrad respectively. An overall scaling term
included in the R-factor fit was 2.5, indicating a reasonable agreement between the

absolute magnitudes of the measured and simulated intensities.
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Measurement of Inelastic Mean Free Path
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In(I/1) {Determined from PEELS}
Figure 2.4. Plot of In(I/I,) vs. thickness measured with CBED. The straight line is

y=224x, indicating an effective inelastic mean free path of 224 nm.

In all the models considered, both 2x1 domains and 1x2 domains were assumed
to exist on the top and bottom surfaces, requiring four separate multislice calculations
for each iteration of the minimization program. The four calculations were averaged
together to form the final simulated diffraction intensities. The relative weightings of
the four calculations in the final average were included as four additional fitting
parameters. In agreement with Rossmann et al. (1992) and Torrelles et al. (1996) the
best fit model for our data was a disordered array of buckled dimers shown in figure 2.1.

The random disorder in buckling direction was simulated by including both possible
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dimer orientations in a unit cell with a 1/2 fractional occupancy. The fractional
occupancy was simulated in only the first two layers of atoms. Isotropic Debye-Waller
factors for the first two layers were also included in the fit, and the factors for all other
layers were fixed at the bulk value.

A reduced y” was initially used as a measure of the goodness of fit. For the best
fit model a y* value of 2.36 was found. With 372 data points in the fit, the probability is
infinitesimally small that the model is completely correct, all of the error estimates are
accurate, and the value of x* would be 2.36. As mentioned in section 2.3.1, a key
assumption in a %’ analysis is that the errors between the measurements and the

simulation have gaussian distributions. Figure 2.5 is a plot of the distribution of errors

Weighted Error Distribution for X* Fit
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Figure 2.5. Distribution of weighted errors for the 372 simulated reflections in the ? fit.
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for the ¥ fit. Instead of being gaussian, the distribution is much closer to an exponential
distribution of the form exp(-|x), so the use of a x* analysis cannot be justified in this
case. Instead, a y value was employed to decrease the sensitivity to the outlier points

during the structure refinement.

2.4.4 Discussion of Refinement Results

The atom positions for the best-fit model are shown in table 2.1 along with the
results of three x-ray studies. The Debye-Waller factors for layers one and two were 3.9
times and 2.5 times the bulk Ge value respectively. While both % and ¥, factors were
calculated, only the results for the ¢ minimization are shown as explained above. In any
case, the atom positions only differed by at most a couple hundredths of an angstrom
between the two treatments. The y value for the fit shown is 1.10. Although the
magnitudes of the atom displacements in the Sth and 6th layers are only 0.005 nm and
0.004 nm respectively, they had a significant effect on the goodness of fit. For a model
with only the first two layers allowed to move, the lowest y value obtained was 1.63.
Including the 5th and 6th layer displacements in the model dropped the y, value down to
1.10. For comparison, the % value in the same case fell from 5.64 to 2.36. Other
models for the reconstruction were tested including a symmetric dimer and an ordered

array of tilted dimers, but none provided an adequate fit.
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Table 2.1 Comparison of Experimental Results for Ge(001)-(2x1) Structure

31

TED study Rossmann et | Torrelles et al. Ferrar et al.

al. (1992) (1996) c(4x2) (1995)
372 in-plane. | 42 in-plane 126 in-plane 46 in-plane

averaged to averaged to 48. 165 out-of-

13. 428 out-of- plane. (no 2x1

71 out-of plane averaged beams

plane. to 242. included).

X X X Y X Y

0.123 0.129 0.120 0.0%[10.1210 0.0*
0.421 0.422 0.427 0.0* ]| 0.4216 0.0*
0.017 -0.007 0.001 0.5%]0.0164" 0.529”
0.490 0.458 0.476 0.5*{0.4836" 0.471°
0.25%* 0.25* 0.25* 0.5*]10.25* 0.5*
0.75* 0.75%* 0.75* 0.5* 1 0.75* 0.5036
0.25* 0.25* 0.25* 0.0* 1] 0.2526 0.0*
0.75* 0.75* 0.75* 0.0* ]| 0.75* 0.0*
-0.0061° -0.009° -0.0047° 0.0*
0.5061" 0.509* 0.5047° 0.0*
-0.0052° -0.004° -0.0021° 0.5*
0.5052° 0.504° 0.5021° 0.5*

Notes: The size of the data set in each study is indicated at the top of each column, with
averaging over kinematically symmetry-equivalent reflections. As explained in the text
no symmetry averaging was done in the current study, and all of the reflections
measured in the study by Ferrar et al. were non-symmetry related. Numbers are in terms
of the (2x1) unit cell with X,=8 angstroms and Y,=4 angstroms. The atom positions
from the c(4x2) study of Ferrar et al. have been reduced relative to this same (2x1)
notation so direct comparisons can be made.

* a parameter that is fixed.

2,b two parameters that are symmetry related.

Overall the agreement between the experimental studies is excellent. If one
averages the values found in the four studies for each atom position, one finds that for

almost every position the largest deviation from the average occurs in the study by
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Rossmann et al. (1992). This can be attributed to the relatively smaller data set size
measured in that study. The positions for the first dimerized layer are all within 0.007
nm of each other, and even though the individual second layer positions show some
more scatter (0.024 nm) the distances between the two second layer atoms all agree to
within 0.008 nm. It is not surprising that the relative separation of atoms in a given layer
are determined more accurately than the individual atom positions, since the thermal
vibrations of neighboring atoms are likely to be correlated. While the vibration
amplitude for a given atom could be relatively large near the surface, its vibrational
amplitude relative to its neighbor would be significantly less.

It is interesting to note the close agreement for the dimer structure between the
room temperature (2x1) studies and the 150K c(4x2) study. Northrup (1993) reported a
similar agreement between room temperature photoemission measurements and the
surface band structure calculated for the Si(001)-c(4x2) reconstruction. He pointed out
that the agreement suggests a strong correlation of dimer tilt directions along a dimer
row. In fact, many studies have provided evidence for correlated buckling of dimers at
room temperature. Several studies have shown that in the formation of higher order
reconstructions, the dimer interaction along a dimer row is much stronger than the
interaction between rows (Kevan 1985; Lucas et al. 1993; Ferrer et al. 1995). In STM
studies (Hammers, Tromp, and Demuth 1986; Kubby et al. 1987; Wang, Arias, and
Joannopoulos 1993; Yang et al. 1994) some rows of alternating tilted dimers can be

seen. Other diffraction studies have shown diffuse streaks through c(4x2) positions
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indicating that some short range ordering is taking place (Lander and Morrison 1962;
Cardillo and Becker 1978; Kevan and Stoffel 1984; Kevan 1985; Culberson, Kuk, and
Feldman 1986; Lambert et al. 1987; Lucas et al. 1993). In our data the c(4x2) streaks
were also seen on the longer exposure time negatives (fig. 2.6). A temperature
dependent x-ray study by Lucas et al. (1993) indicated that the alternating tilting

continues for about 8 nm (20 unit cells) along dimer rows at room temperature. Based

Figure 2.6. Ge(001)-(2x1) diffraction pattern that has been high-pass filtered to
highlight the c(4x2) diffuse streaks. Arrows indicate two streaks passing through c(4x2)
locations.
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on temperature dependent photoelectron spectroscopy measurements, Landemark et al.
(1994) have argued that the room temperature Ge(001)-2x1 and Si(001)-2x1 surfaces
should actually be viewed as disordered c(4x2) surfaces. The similarity between the
(2x1) dimer and the c(4x2) dimer seen in table 2.1 provides further evidence for the

correlation of tilt directions along dimer rows.

Table 2.2 Comparison of Theoretical Results for Ge(001)~(2x1) Structure

Needels, Payne, Pollmann, Kriiger, | Spiess, Freeman,

and Joannopoulos | and Mazur (1987) | and Soukiassian

(1987) (1994)

X X X Y
0.1507 0.1404 0.1408 0.0*
0.4475 0.4423 0.4408 0.0*
0.0208 0.0069 0.0045 0.5*
0.4971 0.4933 0.4889 0.5*
0.2629 0.2451 0.5*
0.7566 0.7551 0.5*
0.25 0.25 0.0*
0.75 0.75 0.0*

Note: Positions are in terms of the (2x1) unit cell as in Table 2.1.

* denotes a parameter that is fixed.

The results of the three theoretical studies (Needels, Payne, and Joannopoulos
1987; Pollmann, Kriiger, and Mazur 1987; Spiess, Freeman, and Soukiassian 1994)
reporting atomic positions are shown in table 2.2. Both theory and experiment indicate a
projected dimer bond length of 0.240 nm. All of the studies lie within 0.006 nm of this
value. However, the theoretical calculations tend to overestimate the asymmetry of the

dimer. Looking at the x position for the first atom in the dimer, one sees that the
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experimental results range from 0.096 nm to 0.103 nm while the theoretical results range
from 0.112 nm to 0.121 nm. This discrepancy is possibly due to differences in
modeling. In each case the experimental data were fit best by a disordered array of
buckled dimers, while in the theoretical (2x1) calculations a perfectly ordered array of
dimers had to be assumed with all the dimers tilting in the same direction. Two of the
theory studies (Needels, Payne, and Joannopoulos 1987; Spiess, Freeman, and
Soukiassian 1994) also considered the c(4x2) structure. With its alternating dimer tilts
the c(4x2) offers a more accurate description of the room temperature surface than a true
(2x1) structure with all the dimers tilting the same way. The c(4x2) results are shown in
table 2.3, and one can see that the values obtained by Needels et al. provide the best

theoretical match to the experimentally determined structure.

Table 2.3 Comparison of Theoretical Results for Ge(001)-c(4x2) Structure

Needels, Payne, Spiess, Freeman,

and Joannopoulos and Soukiassian

(1987) (1994)

X Y X Y
0.1174 -0.0067 0.1381 0.0
04112 -0.0049 04414 0.0
0.0087 0.4694 0.0078 0.5185
0.4839 0.5138 0.4922 0.4815
0.2467 0.5050

0.7490 0.5013

0.25 0.0

0.75 0.0

Note: Positions have been reduced relative to a (2x1) unit cell as in table 2.1.
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In view of the experimental evidence, the lateral displacements in the Ge(001)-
(2x1) structure can be regarded as known with a high degree of confidence. Four
independent studies employing two distinct experimental techniques have reported atom
positions for the first 6 layers. The positions agree to within a few hundredths of an
angstrom. [t was shown that the best agreement between the experimentally determined
structure and a theoretical calculation was for a calculation assuming a full c(4x2) unit
cell. When taken with the extensive experimental evidence for correlated buckling at
room temperature, this suggests that for theoretical structure calculations of the Ge(001)-

(2x1) surface, the surface may be best modeled with a c(4x2) unit cell.
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CHAPTER 3: DIRECT METHODS FOR DETERMINING
SURFACE STRUCTURES

The standard diffraction analysis method discussed in chapter 2 in which
measured intensities are compared to those simulated from a trial model is a powerful
but limited approach. If the number of possible structures can be restricted to just a few,
then intensity fitting is excellent for differentiating between the possibilities and refining
the atom positions to a high degree of precision once the correct structure is known.
Unfortunately there are usually too many possible structures to all be compared to the
measured diffraction intensities.

This chapter describes alternative ab-initio approaches to analyzing surface
diffraction data known as direct methods. Direct methods can be used to determine the
basic geometry of a surface reconstruction without any prior knowledge other than the
symmetry elements present in the structure. Traditional intensity simulations can then
be used to refine the atomic positions. Sections 3.1 and 3.2 describe the general direct
methods approach used to analyze diffraction data, and section 3.3 illustrates the
application of direct methods to the case of the previously unknown Ge(111)-(4x4)/Ag

surface structure.

37
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3.1 Introduction to Direct Methods

A surface structure can be represented by a two-dimensional function, f(r), where
r =xa +yb. Rather than directly giving real-space information about f(r), diffraction
experiments yield information about its Fourier transform, F(h), where h = ha* + kb*,
and a* and b* are unit vectors in reciprocal space. F(h) is a complex quantity which can
be written in terms of its amplitude, [F(h)|, and phase, ¢(h), as F(h) = |[F(h)| exp[ip(h)].
Measured diffraction intensities, I(h), determine the amplitude of F(h) through the
relation, I(h) = {F(h)[?, but the phase remains unknown. If the phase was known then
F(h) would be completely determined, and f(r) could be solved by inverse Fourier
transforming F(h). The problem of finding the unmeasured phases is referred to as the
“phase problem” of diffraction analysis, and it is the central concern of direct methods.

Direct methods use the amplitude measurements and other a-priori information
about f(r) (e.g. it is non-negative, it consists of strong peaks localized at atom sites, or it
is zero over a finite region) to obtain estimates for the phase. Direct methods approaches
can be classified into two categories which are described in the next two sections.
Section 3.1.1 discusses approaches which are based on probability relationships which

exist between the amplitude and the phase, and section 3.1.2 covers approaches which

use iterative mathematical projections.
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3.1.1 Probabilistic Approaches

Probabilistic approaches to phase determination were the first successful direct
methods, and they were developed entirely within the context of crystallography. In
crystallography f(r) is periodic and consists of a discrete number of atoms within a unit
cell. Therefore F(h) is zero everywhere except at isolated points where h and k are
integers (a* and b* in this context are the reciprocal lattice vectors). F(h) is referred to
as the structure factor and can be written in terms of the positions of atoms within the

unit cell as,
— N -
F(h) =Y f; exp[Zﬂ:i(h : fj)] (3.1)
=

where N is the number of atoms in the unit cell, £, is the scattering factor for the j* atom,
and r; represents the position of the j* atom within the unit cell. The scattering factors
themselves are decreasing functions of |h|, so structure factors for large values of h will
be small. It is common in crystallographic direct methods to scale the structure factors
by the largest value F(h) can take, 2f. The scaled structure factors are referred to as
unitary structure factors (Woolfson 1961, 2) and are denoted by,

U(h) = i(

=

N _ N -
£ / y f,) exp[Zn:i(h 3 )] =Y n; exp[21ti(h 53 )] (3.2)
j=1

t=1
where 1 is called a unitary scattering factor. Defined in this way [U(h)| must lie between

0 and 1.
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Harker and Kasper (1948) were the first to show that knowledge of structure
factor magnitudes could give information about structure factor phases in some cases.
Using Cauchy’s inequality they showed that for a centrosymmetric crystal (a crystal with

an inversion center),
U2(h) < %[1 + U(zﬁ)] (3.3)

With an inversion center all structure factors are forced to be real, and phase
determination becomes a problem of sign determination. The term on the left of the
inequality must be positive and could be large for a particular h. If [U(2h)| also happens
to be large, then the sign of U(2h) could be determined to be positive in order to satisfy
equation 3.3. For example, if [U(h)| = 0.7 and [U(2h)| = 0.6, then equation 3.3 gives 0.49
< 1/2 [1 + 0.6], and U(2h) must be positive for equation 3.3 to be true.

In 1952 Sayre took another approach by considering the fact that the electron
density, f(r), consisted of non-overlapping atoms. If f(r) is squared, then the atom sites
become more sharply defined, but they remain in the same positions. As a consequence
the phases of the structure factors will remain unchanged since they only depend on the
position of the atoms and not their shapes. Using this fact and the convolution theorem,

Sayre derived his equation (Sayre 1952),

o(h)

F(h) = == F(k)F(h-k) (3.4)
VX
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where V is the volume of the unit cell and 6(h) is the ratio of the normal scattering factor
to the effective scattering factor for the squared atoms. Multiplying both sides of

equation 3.4 by F(-h) gives,
P = 225 F-BREFGE- B
k
=20 S IFCRIFEIFE - Dlexp Qil8¢-R) + 0 +0E-BY) (33
k

Equation 3.5 is valid for both centrosymmetric and non-centrosymmetric crystals, and it
illustrates an important relationship between the amplitudes and the phases of vector-
related structure factor triplets.

The Argand diagram in figure 3.1 shows the relationship geometrically. The left
side of equation 3.5 is real and positive and it is indicated by a thick black arrow in
figure 3.1. The sum on the right side of the equation is represented by the thinner arrows
in figure 3.1 joined head to tail. If |F(h)] is relatively large, and the magnitudes of [F(k)|
and |F(h-k)| also happen to be large for a particular value of k = k,, then the sum will be
dominated by the k, term. The dominant k, term is shown as a gray arrow in the Argand
diagram. If equation 3.5 is to be satisfied, then the series of arrows representing the right
hand side of equation 3.5 must end on the tip of the [F(h)|* vector. This is impossible
unless the vector corresponding to the dominant k, term lies close to the real axis. This
implies that the angle between the real axis and the k, vector, ¢(-h) + ¢(k,) + ¢(h-k,), is

close to zero.
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F(-h) F(k,)F(h-k,) /'\2

[E(h)?

¢(-h) + ¢(ky) + ¢(h-k;) ~ 0
Figure 3.1 An Argand diagram illustrating the relationship, ¢(-h) + ¢(k,) + ¢(h-k,) ~ 0
when |F(h)|, [F(k,)|, and [F(h-k,)| are all large.

One can state the relationship between the phases ¢(-h), ¢(k), and ¢(h-k) in terms
of probabilities if one asks the following question: given [F(h)|, |[F(k)|, and |[F(h-k)| what
is the probability distribution for the sum, ¢(-h) + ¢(k) + ¢p(h-k)? Cochran derived this
probability distribution (1955) and showed that the distribution is always centered
around zero degrees and can become sharply peaked for large values of the amplitudes.
Since ¢(-h) = -¢(h), the relationship, §(-h) + ¢(k) + ¢p(h-Kk) ~ 0, can be rewritten as ¢p(h)
~ ¢(k) + ¢(h-k). In this form the relationship becomes useful for phase extension. Ifthe

phases of two reflections, k and (h-k), are known, then the phase of the reflection which
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is the vector sum of the first two reflections, h =k + (h-k), is approximately equal to the
sum of the two known phases. The probability that the phase assignment for ¢(h) is
correct can be calculated, and the probability increases with increasing amplitudes for
the three involved reflections.

To find phases for a set of measured amplitudes, one can start by picking a few
strong reflections and giving them phases. From this basis set the phases can be
extended to get estimates for the phases of all measured reflections. The problem of
phase extension quickly becomes one of self-consistency, however. For any given
reflection, h, there are likely to be a number of pairs of vectors which give phase
estimates for h. One must find a way to search through all possible basis sets of phases
to find the ones which give the most self-consistent estimates for all reflections.

Going back to Sayre’s original observation that structure factor phases should
remain unchanged when f(r) is squared, self-consistency can be looked at from a
different perspective. A given set of phase estimates can be checked by squaring the
corresponding f(r) and checking to make sure that the phases of the structure factors for
f*(r) have remained essentially unchanged. This approach is closely related to iterative

projection methods which are discussed in the next section.

3.1.2 Projection Methods

The phase problem is not limited to crystallography, and similar challenges of

finding either unmeasured phase information or unmeasured amplitude information exist
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in many fields dealing with signal and image recovery. Progress in these areas has been
made with iterative methods involving projections onto sets. In this context a set,
denoted by S,, consists of a group of functions which satisfy given constraints. A
projection onto S, is accomplished through a projection operator, denoted by P,, which
can be applied to any given function, g(x), and will produce an output function which is
the member of S, closest to g(x). For example, S, could be defined as the set of all
functions of the variable, x, which are zero for -0 < x < 0. Then the associated
projection operator, P,, would be defined by its action on a general function g(x) as:
P,g(x) =0 for -0 <x <0, and P,g(x) = g(x) for 0 <x <o.

In the language of projections, the problem of retrieving phase or amplitude
information is stated as a problem of finding the intersection of m sets, S, S, ... S,.
Usually m = 2 with S, consisting of all functions which satisfy all of the known real-
space constraints, and S, consisting of all functions which satisfy all reciprocal-space
constraints. A member of the intersection of S, and S, will be an answer to the problem
as posed since it will satisfy every given constraint. To find the intersection an iterative
algorithm is used in which f,, = P,P\f, , where n is the iteration number. This simple
iterative sequence has been shown to have strong convergence to the intersection of S,
and S, if both sets are convex (Youla 1987). A set is convex if together with any f,(r)
and f,(r), it also contains pf,(r)+(1-p)f(r) forall g, 0 < p <1 (Youla 1987).

Unfortunately, the constraint of knowing only the amplitude information about a

function is not a convex constraint, so for the crystallographic phase problem strong
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convergence cannot be assured. However, for the general case of non-convex sets Levi
and Stark (1984) have defined a summed-distance error as,

J(£) = [{IBf, — £, 1Py £, — £} (3.6)
and they proved that J(£,.,) < J(f)). Therefore, even without convex sets, the iterative
sequence of, f,,, = P,P,f, can at worst only stagnate.

In practice, projection methods have been quite successful. An early example is
due to Gerchberg and Saxton (1972) who developed a method to recover phase
information from TEM images and diffraction measurements. The Gerchberg-Saxton
algorithm is illustrated schematically in figure 3.2. A real-space TEM image gives
amplitude information, |f;(r)|, about the real-space function, f(r), and a diffraction
pattern gives information about the amplitude of the Fourier transform of f(r) in
reciprocal space, [F(h)|, where the subscript “T” is used to denote the fact that these
amplitudes are taken to be the true values (neglecting measurement errors) for the
sampled object, f(r). To find the phase information in both domains, one starts out by
randomly assigning phases, 6(r), to the measured real-space amplitudes. A Fourier
transform then takes the function, |f;(r)| exp[27iO(r)], to the Fourier domain where it
becomes, |F(h)| exp[27i¢(r)]. Note that in general [F(h)| # |F(h)]| since the O(r) are in
general not the correct phases, 0.(r). Therefore, the amplitudes of the Fourier domain
function are corrected to their measured values giving the new function, |[F(h)|

exp[2nid(r)]. An inverse Fourier transform takes this corrected function back to the
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real-space domain where it becomes, {f(r)| exp[2nif(r)]. Again the real-space

amplitudes are corrected to the measured values, and the whole cycle repeats itself.

Amplitude Correction
[f(r)|

!

()] 2700 | <= | ()] 2o

FFT @ ﬁ FFT

[F(h)| 2¢® | =2>|[Fr(h)| e2m¢®

[E-r(h)|
Amplitude Correction

Figure 3.2. Diagram of the Gerchberg-Saxton algorithm.

For the Gerchberg-Saxton algorithm S, is the set of all functions whose real-
space amplitudes equal |f,(r)|, and S, is the set of all functions whose Fourier transform
amplitudes equal [F;(h)|. Gerchberg and Saxton defined a squared error as the sum of
the squared differences between the measured amplitudes and the amplitudes generated
after a Fourier transform operation during an iteration. They offered a geometrical proof

that the squared error can never increase after a Fourier transform step in their algorithm.
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The squared error will continually decrease, or at worst stay constant. They also showed
that for test cases, the algorithm was effective at finding estimates of 8.(r) and ¢(h)

such that the squared error closely approached zero.

3.2 Direct Methods for Solving Surface Structures
3.2.1 Challenges With Surface Diffraction Data

The probabilistic approaches to direct methods described in section 3.1.1 have
been enormously successful in the field of bulk x-ray crystallography. The importance
of the methods to the field was recognized when Hauptmann and Karle were awarded
the 1985 nobel prize in chemistry for their contributions to the development of direct
methods. Surprisingly, the application of direct methods to two-dimensional surface
diffraction data has only been realized during the past two years through work done in
our lab at Northwestern (Marks, Plass, and Dorsett 1997; Landree, Collazo-Davila, and
Marks 1997; Gilmore et al. 1997; Marks and Landree 1998; Marks et al. 1998). The
delay in applying direct methods in the field of surface science may be due in part to the
unique challenges encountered in working with surface diffraction data.

For a bulk crystal, all of the intense reflections can be measured. A surface
reconstruction however, resides on top of a bulk substrate which produces much stronger
diffracted beams than the thin surface structure. Unless the surface structure is
incommensurate with its substrate, which is uncommon, the bulk reflections will overlap

the surface reflections at many points in reciprocal space. Since the bulk diffraction
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intensities are much stronger than the surface diffraction intensities, the surface
reflections cannot be separated from overlapping bulk reflections and therefore will go
unmeasured. If one of the unmeasurable surface reflections happens to be a relatively
strong reflection for the surface structure, then the probabilistic approach of phase
determination will run into difficulties since it depends heavily on relationships between
the large-amplitude structure factors. We have found that projection methods are more
robust at handling data sets with unmeasured amplitudes, and they can even be used to
interpolate amplitude values for the unmeasured reflections while still restoring the
phase information.

Another challenge in analyzing surface diffraction data arises from the fact that
measurements are usually made of only in-plane reflections. Therefore while the data
are purely two-dimensional, the actual surface structure may consist of a few layers of
atoms located at different heights above the substrate. The restored map of the atom
positions will represent a projection of the surface structure onto a plane parallel to the
surface, and the height of the atoms above the substrate will be unknown. Related to this
height ambiguity is the problem that the registry of the surface structure relative to the
substrate crystal lattice is also unknown. These difficulties are largely ones of
interpretation in dealing with the two-dimensional projections of the surface atomic
positions. In practice, various educated guesses about the registry of surface atoms can

be tested through intensity simulation and refinement. The validity of guesses about the
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height of atoms can only be evaluated by examining other available experimental

measurements made on the particular surface structure.

3.2.2 Details of the Projection Method

As mentioned in section 3.2.1, work in our lab has shown that a method related
to projections works best for phase determination with surface diffraction data. In the
specific algorithm we use, modified unitary structure factors are defined as, U(h) =
W(h)F(h)/Xf *(h))", where W(h) is a window function included to reduce truncation
effects in the calculation of the Fourier transforms and can also be viewed as acting as a
pattern recognition component for atom-like features (Marks et al. 1998). Since the
unitary structure factors are used throughout the algorithm, the corresponding real-space
function will be denoted by u(r), emphasizing the fact that the amplitudes of its Fourier

transform are the unitary structure factor amplitudes. Operators are defined as,

0 {u(t) <0}
P,u(F) = (3.7)
u(F) m[u(f)/(u(f))] {u(%) > 0}

P,U(R) = B, {|U(B)lexp[2ri¢(R)]} =[Ur(B)lexp[2nio(R)]  (3.8)
where |U,(h)| are the measured unitary structure factors. The function,
u(r)Infu(r)/{u(r))], seen in equation 3.7 acts as a sharpening operator in the same sense

as the squaring operation discussed by Sayre (1952). Therefore, for non-overlapping

atoms, the phases of u(r) and of u(r)In[u(r)/{u(r))] will be the same. The function is also
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related to the relative entropy, S, = X, [u(r) In{u(r)/eu(r))} + {u(r))], which is
discussed in information theory (Cover and Thomas 1991). The algorithm defined by
the operators, P, and P, above, can be shown to minimize the relative entropy (Marks
and Landree 1998).

The progress of the algorithm is monitored with a figure of merit (FOM) which is

a scaled version of the summed-distance error discussed by Levi and Stark (1984),

FOM = }'|U,,,(h) —aU, (h)/|U,. (h)| (3.9)
h=0

where a is chosen to minimize equation 3.9. For the correct solution with no
measurement errors the FOM will be zero. In practice, it is found to be about 0.1 to 0.2

for accurate estimates of the phases.

3.2.3 Genetic Algorithm

To begin the iterative algorithm described in section 3.2.2, a set of starting
phases must be assigned to the measured unitary structure factors. For each new set of
starting phases the algorithm may converge to a different point. This is a consequence
of the non-convex nature of the sets and of measurement errors. Rather than the
existence of one unique point of intersection between the real-space constraints and the
reciprocal-space constraints, there are likely to be a number of local minimum approach
distances between the two sets. The true solution which is being sought could in general

be any one of these local minima.
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We use a genetic algorithm to globally search through all possible sets of starting
phases to find those sets which lead to the various local minima (Landree, Collazo-
Davila, and Marks 1997). The genetic algorithm encodes sets of starting phases as
binary strings of 1’s and 0’s. A single binary string corresponding to one complete set
of starting phases is referred to as a chromosome. For a given “population” of
chromosomes, an FOM is calculated for each chromosome by running the iterative
projection algorithm for each set of starting phases and keeping track of the summed-
distance error FOM (equation 3.9). A new population of chromosomes is then created
by combining pieces of chromosomes from the old population while favoring old
chromosomes with the lowest FOM’s. An element of mutation is also included by
randomly switching a given number of bits in the chromosomes of the new population.
Genetic algorithms have been shown to be effective global optimization methods, and
the particular implementation we have used for direct methods has been successfully

tailored to find many local minima.

3.3 Solution of the Ge(111)-(4x4)/Ag Surface Structure

Two GIXRD data sets were used in this study and were collected at the
Hamburger Synchrotron Radiation laboratory (HASYLAB) by Dr. Robert Feidenhans’l
and coworkers. The data was then sent to out lab at Northwestern University in the form
of symmetry-averaged intensities along with estimated measurement errors. At

Northwestern the data were analyzed using direct methods to determine a basic model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

for the surface structure, and then the model was refined according to the procedure

described in chapter 2.

3.3.1 Background

For low coverages of Ag on the Ge(111) surface, (4x4) and (3x1) surface
reconstructions are formed. Around 1 ML of Ag, a (V3xV3)R30° structure appears, and
at coverages above 1 ML the (V3xV3)R30° structure transforms into a (6x6)
reconstruction (Le Lay 1983). Of these four structures, only the (V3xV3)R30° is known.
As in the case of the Si(111)-(¥3xV3)R30°-Ag surface (Ding, Chan, and Ho 1991;
Takahashi and Nakatani 1993), the Ge(111)-(V3xV3)R30°-Ag surface has the
honeycomb-chained trimer (HCT) structure (Huang et al. 1994; Géthelid et al. 1995;
Spence and Tear 1998), where the top layer of Ge-atoms are missing and the remaining
Ge-atoms in the outermost double layer form trimers which are surrounded by Ag atoms.
The (3x1) reconstruction has only been seen as small insets between (4x4) domains and
domains of the native Ge(111)-c(2x8) reconstruction, and it may have the same structure
as the Si(111)-(3x1)-Ag surface discussed in section 4.2.

Although the (4x4) structure has been studied by STM and photoelectron
spectroscopy, little is known about its atomic geometry. The coverage of Ag has been
determined to be around 0.3 ML (Bertucci et al 1979), and high resolution core level
photoelectron spectroscopy shows that all Ag atoms sit in nearly the same site (Gothelid

et al. 1995). Furthermore, the binding energy of the Ag atoms does not change as the
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(V3xV3)R30° reconstruction is formed, suggesting that the Ag site in the two structures
is similar (Gothelid et al. 1995).

STM images show that the unit cell is composed of two triangular subunits with
widely varying images depending on the tip bias (Hammar et al. 1993; Le Lay et al.
1994; Weitering and Carpinelli 1997; Spence and Tear 1998). The filled-state images
show six protrusions in one of the subunits, and the empty-state images show three
protrustions in the other triangular subunit. However, the protrusions seen with STM
may represent electronic effects rather than a;omic positions, and previous to the

application of direct methods, a model was not able to be constructed which could

accurately account for measured diffraction intensities.

3.3.2 Experimental Details

Cycles of sputtering and annealing at 650 °C were used to clean Ge(111) samples
until LEED measurements showed a sharp native Ge(111)-c(2x8) reconstruction. Silver
was then deposited onto the Ge(111) surface from a Knudsen cell while keeping the
sample at 400 °C. After LEED, RHEED, and STM all verified the presence of a
uniform, well-ordered (4x4) surface reconstruction, the sample was moved into a
portable UHV chamber which could be detached from the deposition chamber and
mounted onto the X-ray diffractometer.

Two sets of intensities were recorded from two separate samples: one on the

wiggler beamline W1 at HASYLAB using an X-ray wavelength of 1.40 A, and the other
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on beamline BW?2 at a wavelength of 1.24 A. Throughout the measurements the angle
of incidence was kept fixed at the angle for total external reflection in order to maximize
the surface diffraction intensities (Feidenhans’l 1989). The active area on the samples
were defined by a Imm slit in front of the sample and a 1.5 mm slit on the detector arm
directly after the sample. A position-sensitive detector with an acceptance angle of 0.6°
in the surface plane and 2.8° perpendicular to the surface plane was used to measure the
diffracted intensities. Integrated intensities were measured through rocking scans (-
scans) about the surface normal. The measured intensities were corrected for variations
in the active area using a Lorentz factor (Feidenhans’l 1989). For the first data set 107
in-plane, fractional-order reflections were measured and then symmetry-average giving
estimates for 64 non-equivalent reflections. For the second data set a total of 112
intensity measurements were recorded and symmetry-average resulting in 71 non-
equivalent reflections. The measurement errors were estimated to be about 13% by

checking the reproducibility between strong, symmetry-equivalent intensities.

3.3.3 Direct Methods Analysis

STM images from the Ge(111)-(4x4)-Ag surface (Hammar et al. 1993; Le Lay et
al. 1994; Weitering and Carpinelli 1997; Spence and Tear 1998) belong to the p3ml
plane group. While slight deviations from p3m1 symmetry could go undetected by
STM, the deviations would have to be minor and would not significantly alter the

phasing results. The 14 beams forming the basis set for the direct methods analysis are
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Table 3.1
Reflections Making up the Basis Set
(h,k) |F|Set1l [F|Set2 Phase
(degrees)
M) 1.96 2.15 360
(5,2) 3.23 3.23 180-360
4,3) 2.82 2.82 30-120

(7,1) 129 138  45-360
5,3) 211 1.62  45-360
(7,00  1.94 212 45-360
(8,3)  0.89 122 45-360
6,1) 081 1.14  45-360
(42) 151 1.19  45-360
(7,5)  0.84 0.76  45-360
(1,1)  1.59 1.64  45-360
(7,3) 072 0.80  45-360
(82) 085 072  45-360
(11,2)  0.69 046  45-360

Notes: The measured amplitudes for the second data set have been scaled to the first,
and their absolute magnitudes are arbitrary. The phase of (7,7) was fixed at 360°
through triplet relationships. The phases of all other reflections were varied within the
ranges shown. The limits on (5,2) and (4,3) were used to define an origin and to select
an enantiomorph. The phases of (5,2) and (4,3) were varied in steps of 60° and 30°
respectively, while all other phases were varied in steps of 45°.

shown in Table 3.1 along with their measured amplitudes and the limits placed on their
phases for each of the two data sets. With p3m1 symmetry, beams belonging to the class
of reflections (n,n), where n=any integer, have a phase of either 0° or 180°. Also due to
the p3m1 symmetry, ¢(4,3) =-¢(3,4), where ¢(h,k) is used to represent the phase of the
(h,k) reflection. Since (7,7) = (4,3) + (3,4) and all three reflections are strong, $(7,7) ~
$(4,3) + ¢(3,4) =0 (see section 3.1.1). A similar relationship between the (7,7), (5,2),

and (2,5) reflections exists which again indicates that ¢(7,7) ~ 0, so the (7,7) beam was
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assigned a phase of 0°. Origin definition and enantiomorph selection were achieved by
restricting the ranges of the phases of the (4,3) and the (5,2) reflections.

The 20 best sets of phases found by the genetic algorithm were used to generate
electron density maps. All of the maps showed the same basic structure with only minor

variations. Figure 3.3 shows typical maps for each data set. Since the data used in this

1 nm

Figure 3.3. Contour map of the calculated electron density using phases estimated
through direct methods for a) data set 1 and b) data set 2. For each map 6 contour levels
were evenly spaced between zero and the maximum electron density. The arrow in b)
indicates a partially occupied Ag site which has a lower occupancy for the first data set.
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study were purely two dimensional, the electron density maps are projections of the
(4x4) structure onto a plane parallel to the Ge surface as discussed in section 3.2.1.
While the relative intensities of the peaks seen in figure 3.3 changed from map to map
within the top 20 phasing solutions, the positions of the peaks were always the same.
The site arrowed in figure 3.3 was more prominent in maps from the second data set and
failed to appear at all in some maps from the first data set. The two possibilities that this
site could be either partially occupied or an artifact due to noise in the data were both
considered in the subsequent analysis. However, each non-arrowed site in figure 3.3
appeared in all 20 maps and was considered to correspond to either a Ge or a Ag atom

site.

3.3.4 Structure Refinement

Allowing for a silver coverage between 1/4 ML and 5/8 ML, models were
considered with 4 and 10 sites in each unit cell occupied by Ag atoms and the remaining
sites filled with Ge. The agreement between the measured and simulated intensities was
quantified using both an R-factor and a % measure of agreement. While the numbers
listed in the tables and used to make the figures are exclusively from the  refinements,
the R-factor is quoted along with the y value obtained from each model for reference,
since the R-factor is a widely used test.

As an initial refinement step atoms were not placed at the site which is arrowed

in figure 3.3, and the simulated intensities were compared only with the first data set for
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which the arrowed site was not prominent. Assuming that all of the phasing analysis
sites represent atoms in the top surface layer, a complete double layer of Ge atoms was
also added to each model to simulate relaxations extending into the bulk. Accordingly,
the three possible registries between the surface layer and the relaxed bulk double layer
were investigated for each different distribution of Ge and Ag atoms among the surface
sites. All refinements of the atom positions were done within the p3m1 plane group.
Two Debye-Waller factors were included in the refinement, one for the surface Ge and
one for the Ag. The Debye-Waller factor for the relaxed double layer was set at the
value for bulk Ge. Under these conditions, the best fit to the measured intensities was
obtained with the model shown in figure 3.4 which yielded ¥=2.31 and R=0.21.
Counting a scaling term, 21 variables were used in this fit for the 71 measured
reflections in data set 1.

[t should be noted that other permutations of Ag and Ge among the phasing
analysis sites cannot be conclusively ruled out. For example, a model with Ag placed at
the six nearest surface sites surrounding the trimers at the corners of the (4x4) unit cell in
figure 3.4 refines to a i value of 2.91 and an R-factor of 0.23. Other rearrangements of
Ag and Ge aléo lead to models with only a slightly worse diffraction intensity fit than
that for the distribution of Ag shown in figure 3.4. However, the model in figure 3.4 is
consistent with all of the experimental data available on submonolayer coverages of Ag

on Ge(111) as will be expanded upon in section 3.3.5.
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112]

Figure 3.4. Proposed model for the Ge(111)-(4x4)-Ag surface. Large black circles
represent Ag, and everything else is Ge. The (4x4) unit cell (a=b=16.0024, y=120°) is
outlined, and the asymmetric unit for the plane group p3ml is shaded in gray.

The model shown in figure 3.4 was also refined using the measured intensities
from the second data set. While the atom positions did not significantly change (the
largest shift was 0.017 nm), the fit was not as good for the second data set with x=3.26

and R=0.29. To look for additional atom sites, a Fourier difference map was created and
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is shown in figure 3.5. A strong peak in the difference map is seen at the location
corresponding to the arrowed site in figure 3.3. This suggests that the arrowed site is not
an artifact and is likely due to a partially occupied Ag site which has a higher occupancy
for the second data set. The other strong peak seen in figure 3.5 is located slightly
displaced from a site already occupied by Ge. The possibility that this site was Ag

instead of Ge was investigated, but a better fit to the intensities was not obtained.
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112]

Figure 3.5. Fourier difference map calculated for the second data set using the model
shown in Fig. 3.4. Six contour levels were evenly spaced between half the maximum
and the maximum electron density to highlight the strongest peaks.
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Figure 3.6. The proposed (4x4) model structure with a partially occupied Ag site shown
by large dark-gray circles (arrowed). The occupancy of this site was refined to 0.27 and
0.36 for data sets 1 and 2 respectively.

Working with the hypothesis that the Ge(111)-(4x4)-Ag structure can
accommodate a variable range of Ag through a partially occupied site, we refined a new
model with the second data set (fig. 3.6). The new model contained four new variables:

an x and a y position for the new partially occupied Ag site, a variable for the occupancy

of the site, and a Debye-Waller factor for the site. A better fit was obtained with ¥=2.63
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and R=0.13 at an occupancy of 0.3 for the new Ag site. Using the new model for the
first data set yielded ¥=2.15 and R=0.14 with an occupancy of 0.2 for the Ag site.
Finally, both data sets were fit together with a single set of values for all of the atomic
positions and Debye-Waller factors. A separate occupancy for the partial Ag site was
refined for each data set. In the final fit, the occupancies refined to 0.27 and 0.36 for the
first and second data sets respectively yielding x=2.22 and R=0.18. The atomic
positions and Debye-Waller factors for this fit are shown in table 3.2. With a separate
scaling factor for each data set, 28 parameters were varied, and including both data sets
gave a total of 137 measurements. Fourier difference maps created from this final model

for both data sets were essentially featureless with no well-resolved peaks.

3.3.5 Discussion of Results

Weitering and Carpinelli (1997) have already noted strong indications that the
(4x4) and the (V3xV3)R30° reconstructions induced by Ag on Ge(111) are related. The
structure for the Ge(11 1)-(\/3)0/3)R30°-Ag surface, the honeycomb-chained-trimer
structure (Huang, Over, and Tong 1994; Géthelid et al. 1995; Spence and Tear 1998), is
illustrated in figure 3.7. It consists of an array of Ge trimers, with each trimer
surrounded by six Ag atoms. Consequently, Weitering and Carpinelli suggested that the
Ge trimer serves as a common building block for the (4x4) structure as well. The
proposed model supports this view. The Ge trimer with the three nearest neighboring

Ag atoms found at the corners of the unit cell in figure 3.4 matches the basic structural
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Table 3.2
Atomic Positions for the Ge(111)-(4x4)/Ag Structure
Atom X x(unrelaxed) y y(unrelaxed) Wyckoff z
Ag 0.4197 - 0.5803 - d Surface
Ag 0.1511 - 0.3021 - d Surface
Ag 0.2099 - 0.1444 - e Surface
Ge 0.0563 - 0.1125 - d Surface
Ge 0.3826 - 0.1913 - d Surface
Ge 0.4774 - 0.3706 - e Surface
Ge 0.3436 - 0.4102 - e Surface
Ge 0.3333 - 0.6667 - b Surface
Ge 0.3349 0.3333 0.1674 0.1667 d Layer 1
Ge 0.5772 0.5833 0.4228 0.4167 d Layer 1
Ge 0.0793 0.0833 0.1586 0.1667 d Layer 1
Ge 0.3272 0.3333 0.4074 0.4167 e Layer 1
Ge 0.3333 0.3333 0.6667 0.6667 b Layer 1
Ge 0.2475 0.2500 0.4951 0.5000 d Layer 2
Ge 0.5102 0.5000 0.2551 0.2500 d Layer 2
Ge 0.5012 0.5000 0.4988 0.5000 d Layer 2
Ge 0.2512 0.2500 0.2474 0.2500 e Layer 2
Ge 0.0000 0.0000 0.0000 0.0000 a Layer 2

Notes: Atom positions are in terms of a (4x4) unit cell in the p3m1 plane group:
a=b=16.002A, y=120°. The Wyckoff letter corresponds to the site symmetry. A
Wyckoff letter of “d” indicates a site on a mirror plane and therefore the x and y
positions are symmetry related and only one variable is used to describe the atom
position. “e” is a general site and so both the x and the y values are independently
refined variables.
refined. The occupancy of the partial Ag site was fit with 0.27 for data set 1 and 0.36 for

data set 2. Isotropic Debye-Waller factors (defined as B=8m’<u®>, where <u”> is the

66,97

a

and “b” are fixed sites lying on a three-fold axis and are not

63

mean square atomic displacement) were fit at 6.60 A? for fully occupied Ag, 3.14 AZ for
partially occupied Ag, 3.74 A? for Ge in the surface layer, and 0.84 A? for Ge in layers 1
and 2. [In pure bulk samples at 280K, B=0.70 A’ for Ag and B=0.57 A? for Ge (Peng et

al. 1996).]
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Figure 3.7. Honeycomb-chained-trimer model for the Ge(111)-(¥3xV3)R30°-Ag
surface. Large black circles represent Ag, and everything else is Ge. A (4x4) unit cell
has been outlined in black to facilitate comparisons with figs. 3.4 and 3.6. The (V3xV3)
R30° unit cell is outlined in gray and white in the top right corner.

unit of the (V3xV3)R30° surface. The model is also in agreement with the high
resolution core level photoelectron spectroscopy results which suggest that all of the Ag
atoms are in nearly identical sites, in both the (4x4) and the (V3xV3)R30° structures
(Gothelid et al. 1995). The Ag coverage for the proposed (4x4) model is 3/8 ML while
the coverage for the (V3xV3)R30° surface is 1 ML. The comparison of figure 3.4 with

figure 3.7 reveals an easy path of transformation from the (4x4) structure to the
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(V3xV3)R30° surface upon the addition of 5/8 ML of Ag (or 10 Ag atoms per (4x4) unit
cell). All that is required in each unit cell is the removal of 3 Ge atoms and the addition
of the 10 Ag atoms. The six Ag atoms already in the (4x4) unit cell only need to be
slightly displaced, and apart from the removal of the 3 Ge atoms, the bonds between the
surface layer Ge and the first bulk double layer remain intact.

The partially occupied Ag site included in the final model suggests that the two
data sets were collected from a (4x4) surface already in the process of transformation to
the (V3xV3)R30° structure with the second data set taken from a slightly more Ag-rich
sample. The position of the partially occupied site is shown in figure 3.6. The six
positions per unit cell for this site can be grouped into three pairs. The two positions in a
pair are too close to both be occupied at the same time so the maximum possible
occupancy is 0.5. An occupancy of 0.5 would correspond to a disordered arrangement
of Ag atoms randomly distributed among the positions under the constraint of exactly
one Ag atom allowed in each pair. Having only one of the two positions in each pair
occupied will break the mirror symmetry locally and induce disorder in the basic (4x4)
structure.

The random site occupancy disorder described above would give rise to a diffuse
background in diffraction experiments. Transmission electron diffraction data from
surfaces with regions of (4x4) mixed with regions of (¥3xV3)R30° indicate an additional
type of disorder giving rise to structured diffuse scattering. Figure 3.8 shows two

diffraction patterns: the first from a region that is predominantly covered by the (4x4)
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Figure 3.8. Transmission electron diffraction patterns taken close to Ge(111) zone-axis.

a) From a region covered by the (4x4) structure. b) From a region with both (4x4) and
(¥3xV¥3)R30° domains. The magnified region in (b) shows diffuse rings (horizontal
arrow) surrounding the most intense (V3xV3)R30° spots. The diffuse rings are not
present in (a). The vertical arrows point to the same (4x4) surface reflection in both (a)
and (b). [Both TED patterns are courtesy of Mr. Daniel Grozea].
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structure and the second from a region in which the (4x4) and (V3xV3)R30° structures
coexist. In the second diffraction pattern, diffuse rings surround the strongest (V3xV3)
R30° spots. These rings are remarkably similar to the diffuse scattering reported on the
Auw/Si(111) surface during the transformation between the Si(111)-(V3xV3)R30°-Au and
the Si(111)-(6x6)-Au structures (Higashiyama, Kono, and Sagawa 1986; Nogami, Baski,
and Quate 1990; Takahashi, Tanishiro, and Takayanagi 1991; Yuhara, Inoue, and Morita
1992; Takami et al. 1994; Falta et al. 1995). In the Au/Si(111) case, the rings can be
attributed to a rotationally disordered yet evenly-spaced array of domain walls separating
regions of local (V3xV3)R30° order. In the case of Ag/Ge(111), the situation may be
similar with evenly-spaced boundaries forming between the (V3xV3)R30° and the (4x4)

domains.
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CHAPTER 4: LINEAR RECONSTRUCTIONS ON THE
SI(111) SURFACE

When coupled with transmission electron diffraction (chapter 2) the direct
methods approach discussed in chapter 3 provides a powerful technique for solving and
refining surface structures. The utility of this methodology is shown by the work
discussed in this chapter. Two previously unknown surface reconstructions on the
Si(111) surface were solved and refined by applying direct methods to TED data. Both
of these reconstructions, the Si(111)-(3x1)/Ag and the Si(111)-(4x1)/In, can be classified
as "linear" reconstructions as explained in section 4.1. The solution of the Si(111)-
(3x1)/Ag surface is detailed in section 4.2, and the Si(111)-(4x1)/In surface is discussed
in section 4.3. Finally, section 4.4 offers conclusions about the general characteristics of

linear reconstructions on the Si(111) surface.

4.1 Definition of Linear Reconstructions

Figure 4.1 shows the unreconstructed (111) surface of a diamond cubic crystal
(e.g. silicon or germanium). Among the symmetry elements present is a three-fold
rotation axis perpendicular to the surface, and as one might suspect many two-
dimensional structures forming on this surface display a three-fold axis as well. The

Ge(111)-(4x4)/Ag structure discussed in chapter 3 is one such example. However, there
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Figure 4.1. The unreconstructed (111) surface of a diamond cubic crystal. The
surface has a double-layer structure with the darker atoms sitting slightly higher
than the lighter atoms. Along the [111] direction the crystal has three-fold
rotational symmetry, and one three-fold axis is indicated by the black triangle at
the top. Linear reconstructions on this surface have either two-fold or only one-
fold rotational symmetry. A possible rectangular unit cell for such a
reconstruction is shown at the bottom.

is another general class of structures which form on the (111) surface which can be
called "linear" reconstructions. Rather than sharing the full symmetry of the substrate,
these structures have a rectangular unit cell with a two-fold rotation axis. While the
structures of many linear reconstructions remain unknown, the ones that have been
solved consist of chains or rows of atoms which appear as continuous lines or rows of
peaks in STM images.

The most familiar and thoroughly understood linear reconstruction is the native

Si(111)-(2x1) structure (Zitzlsperger et al. 1997) (fig. 4.2a). It forms upon cleaving in a
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UHYV environment and is metastable. Heating the Si(111)-(2x1) surface above ~330 °C
(Monch 1995, 223) irreversibly leads to the formation of the Si(111)-(7x7) native
reconstruction. A key element of the (2x1) structure is the presence of silicon dimer
chains which are highlighted as lighter-shaded atoms in figure 4.2a. Recently it has been
recognized by several researchers that similar dimer chains may be a part of other linear
reconstructions on the Si(111) surface. Most notably, all models currently proposed for
the (3x1) structure, which is induced by many different metals on Si(111), contain at
least one dimer chain. The importance of the work described in this chapter is to show
that similarities between different linear reconstructions on the Si(111) surface are more
widespread and more general in nature than previously thought. The Si(111)-(3x1)/Ag
structure described in section 4.2 (Collazo-Davila, Grozea, and Marks 1998), the
Si(111)-(4x1)/In structure described in section 4.3 (Collazo-Davila et al. 1997), and the
Si(111)-(5x2)/Au structure (Marks and Plass 1995) can all be described in the same
general terms. A partial silicon double layer containing a silicon dimer chain and either
one or two missing rows leaves a trench parallel to [T10] in which the metal adsorbate
atoms lie. Discovering such a general trend may aide in the solution of linear surface
structures which remain unknown like Si(111)-(5x1)/Ba (Weitering 1996) and Si(111)-

(6x1)/Cs (Park et al. 1995).
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Fig. 4.2 Three models proposed for the metal-induced Si(111)-(3x1) reconstruction
shown along with the native Si(111)-(2x1) surface. The metal adsorbate atoms are
represented by the large, black atoms. Surface dimer chains are highlighted as two
different shades of gray. a) Native (2x1) reconstruction on Si(111) surface. b) Extended
Pandey chain model for Si(111)-(3x1) reconstruction. c) Seiwatz chain model for (3x1).
d) Missing-row Pandey chain model for (3x1).
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4.2 Si(111)-(3x1)/Ag Reconstruction

Much research has focused on submonolayer coverages of alkali metals on the
Si(111) surface due to their unique effects on Si oxidation. When deposited at room
temperature the alkali metals promote oxidation and could be useful in a low
temperature microchip processing step to form gate oxides without loosing sharp doping
profiles (Muscat, Rjeb, and Roy 1994). When deposited at elevated temperatures, they
form the (3x1) surface structure which inhibits oxidation (Tikhov, Surnev, and
Kiskinova 1991). The mechanisms giving rise to such widely differing behaviors are not
completely understood, in part due to the fact that the (3x1) structure was previously
unknown.

The TED data used for this investigation were collected in the SPEAR system
described in section 1.2.1. Mr. Daniel Grozea was responsible for the Si(111) sample
preparation and the formation of the (3x1) surface structure. Both myself and Mr.

Grozea recorded and analyzed the diffraction data.

4.2.1 Background

LEED I-V curves suggest that the same Si(111)-(3x1) structure is induced by Li,
Na, Mg, and Ag independent of adsorbate type (Fan and Ignatiev 1990; Quinn and Jona
1991). While the adsorbate coverage was initially debated, careful measurements based

on ion scattering spectrometry (ISS) (Hashizume et al. 1993) and on AES combined with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

STM (Fukuda 1994) have shown that the saturation coverage is 1 adsorbate atom per
3x1 unit cell. Similarities between STM images of Li/(3x1) and Ag/(3x1) (Wan, Lin,
and Nogami 1992) along with the similar Si 2p core level spectra obtained from
Na/(3x1) (Okuda et al. 1994; Paggel et al. 1995), Mg/(3x1) (An et al. 1995), and
Li/(3x1) (Weitering, Shi, and Erwin 1996) have reinforced the idea that one structure,
predominately made up of Si atoms, is formed by many different elements on the
Si(111) surface.

Several groups have noted that the (3x1) surface electronic properties resemble
those of the native Si(111)-(2x1) structure. Figure 4.2 shows three models proposed by
Okuda et al. for the 3x1 surface (Okuda et al. 1994) along with the 2x1 structure
(Zitzlsperger et al. 1997). All three models contain silicon dimer chains. The model
shown in figure 4.2b was independently proposed by Erwin (1995) who has referred to it
as an extended Pandey chain (Pandey 1981). The structure in figure 4.2c can be
described as a Seiwatz chain (Seiwatz 1964) with a neighboring row of adsorbate atoms
sitting in T4 sites. Sakamoto et al. (1994), Weitering et al. (1994), and Wong et al.
(1994) each proposed a variant of the Seiwatz model with the adsorbate atoms moved to
T, sites halfway in-between the silicon chains. The model in figure 4.2d has received
relatively little attention since being proposed. Even though total energy calculations
showed that either the extended Pandey (Erwin 1995) or the Seiwatz (Jeong and Kang

1996) structure has the lowest surface energy for the previously proposed models,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

neither structure can fully account for experimental angle-resolved photoemission data

(Weitering, Shi, and Erwin 1996; Okuda et al. 1997).

4.2.2 Experimental Details

For the TED study a 3 mm silicon disc was prepared as described in section
1.2.2. Cycles of ion milling (1kV Ar") and annealing at 750 °C were used to clean the
surface until a sharp Si(111)-(7x7) diffraction pattern was seen in the microscope. After
room temperature deposition of Ag and an anneal at 550 °C for several seconds, both the
(3x1) and the (V3xV3) diffraction patterns could be detected. The Si(111)-(V3xV3)/Ag
reconstruction is a well-known structure induced at higher Ag coverages. Diffraction
intensities were recorded as described in section 2.2. Two separate data sets from
different regions of the sample and at different values of crystal tilt were collected and
reduced to give a total of 90 different (3x1) surface beam measurements. Of the 90
measured intensities, 56 had errors between 4% and 30%, 26 had errors between 30%

and 55%, and 8 had errors between 55% and 90%.

4.2.3 Structure Determination Through Direct Phasing

STM images of the 3x1 structure belong to the p1 plane group, although the
deviations from cm symmetry appear to be minor. For completeness the TED data was
analyzed by direct phasing in both p1 and cm plane groups. Taking the most probable

sets of phases found in the phasing analysis and combining them with the measured
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intensities, the diffraction pattern was Fourier transformed back into a scattering
potential. The solutions found by the direct phasing analysis all showed slight variations
of one basic scattering potential which is shown in figure 4.3. Four well-resolved peaks

labeled A, B, C, and D can be seen along with one double-lobed area labeled E.

Figure 4.3. Contour map of the scattering potential for the Si(111)-(3x1)/Ag surface
reconstructed using direct methods. A centered (6x1) unit cell is outlined. Four well-
resolved independent sites within the unit cell have been labeled A, B,C, and D. A
weak, double-lobed feature has been labeled E.

The four well-resolved peak positions were taken as initial atom sites from which
to start simulating the measured diffraction intensities. The double-lobed region was
considered to represent either two partially-occupied atom sites or an artifact arising
from the lack of a complete data set in reciprocal space. As an initial diffraction
intensity fitting step, both interpretations for the double-lobed area were tried along with

the permutations of placing one Ag atom at one of the sites and Si atoms at the

remainidg sites. Only one layer of atoms was modeled kinematically, and the effects of
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the bulk crystal and dynamical diffraction were neglected. The best fit found under
these conditions gave a reduced xz value of 4.49 for the case of Si atoms at positions A,
B, C, and D and two half-occupied Ag sites at position E. The next best fit for another
permutation of Ag and Si atoms among the A-E sites was much worse with x2=8.46.
The atom positions found through the phasing analysis and the initial refinement
step suggest a new model (fig. 4.4) for the Ag/Si(111)-(3x1) surface. In this new model
a partial silicon double layer with a silicon chain has a missing row where the adsorbate
atoms lie. The Ag atoms bond to a single atom in the silicon chain on one side of the
trench and can bond to one of two atoms in the partial double layer on the other side. In
this way, by choosing either the partial double layer atom in the [110] direction or the
one in the opposite direction, the Ag atom breaks the mirror symmetry along [112].
Both possible Ag sites are shown in figure 4.4. All of the Ag atoms in a single row
would have to shift in the same direction to accommodate all the dangling bonds, but
one can postulate the propagation of a surface dislocation traveling the length of a trench
thereby shifting every Ag atom in that row. Such a picture explains the deviation from
cm symmetry towards pl symmetry seen in STM images (Wan, Lin, Nogami 1992;
Ohnishi et al. 1994; Carpinelli and Weitering 1995) as well as the tip-induced shifting of
entire rows between scans (Carpinelli and Weitering 1995). The model in figure 4.4 can
also account for data linking the Ag/Si(111)-(3x1) and the Ag/Si(111)-(\3xV3)
structures. The fact that the (V3xV3) structure can be formed at room temperature by

deposition of Ag on a preexisting (3x1) surface reveals a low activation energy
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2

Figure 4.4. Structure of the Si(111)-(3x1)/Ag surface derived from direct methods. A
contour map of the scattering potential calculated from the measured intensities and the
estimated phases is shown at the bottom. The atomic positions used to construct the
ball-and-stick models are the refined positions listed in table 4.1. The refined atom sites
agree very well with the locations indicated by the contour map. Asin figure 4.3 a
centered 6x1 unit cell is outlined.
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barrier (Carpinelli and Weitering 1996). This coupled with the observation of similar
Ag MNN Auger line shapes for (3x1) and (V3xV3) (Fukuda 1994) points to a similar
local bonding geometry for Ag in both structures. Each Ag atom in figure 4.4 bonds
most strongly to a single Si atom in the Si chain and has two other Si atoms surrounding
it. Similarly, in (V3xV3) an Ag atom bonds most strongly to a single Si atom in a Si

trimer and has two other Si neighbors on the surface.

4.2.4 Structure Refinement

For the final fitting procedure the bulk crystal and dynamical effects were
accurately modeled. Both the angle of crystal tilt and the thickness of the sample were
found by measuring the bulk diffraction intensities and fitting them with the sample
thickness and tilt as the only two variables in a multislice calculation (section 2.3.2).
The best fit values for the thickness of the two sample areas (45 nm and 48 nm) agreed
with the thickness estimated from PEELS data (Malis, Cheng, and Egerton 1988) within
the PEELS measurement error. With the values for the bulk parameters, two
reconstructed double layers were added to the surface, and again multislice calculations
were used to find the (3x1) surface beam intensities. Allowing one bulk double layer to
relax with the new model for the surface atoms gave ¥°=2.81. The fit included 14
parameters: 12 for atom sites and a Debye-Waller factor for both the Ag and the surface
Si. The Ag occupancy was set at 0.5 for the two equivalent Ag positions to model a

disordered arrangement of the [110] shifts on the surface. It should be noted that the
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disorder is not inconsistent with the STM images. While Ag atoms in a single row
parallel to [110] are well ordered and predominately shift in the same direction, the
correlation between neighboring Ag rows is weak and the disorder along the [112]
direction is high.

For comparison, diffraction intensities from the other currently proposed
structures for the (3x1) surface were simulated. Several variations on each model were
explored including different registries between the substrate and the surface atoms and
possible displacements of Si surface atoms in the [110] direction. One relaxed double
layer and 2 or 3 Debye-Waller factors were always included keeping the number of
fitting parameters between 12 and 16. The best fit obtained with an extended Pandey

chain model was x’=7.54. Seiwatz models were tried with Ag at T and T, sites

79

resulting in a best %* of 6.35. The type of model shown in figure 4.2d yielded a y*=4.33.

Only the new model obtained from direct phasing was able to give a reasonable fit to the

measured intensities.

Allowing two bulk double layers to relax with the new model lowers the xz
value to 1.62. The 18 atomic sites varied in this fit are shown in table 4.1 along with 3
Debye-Waller factors and a refined occupancy for the Ag sites. Estimated errors were
calculated within a 68% confidence limit taking into account correlations between all
variables. For the relaxed subsurface layers, in which the atoms are only slightly
displaced from their bulk positions, the relative atomic positions within the layer were

determined more precisely than the position of the layer as a whole with respect to the
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Table 4.1
Refined Atomic Positions for Si(111)-(3x1)/Ag

Atom x X [unrelaxed] vy z [inferred] c [layer] <o rel>

Ag 0.132 - 0.350 Surface 0.0015 0.0015

Si 0.449 - 0.000 Layer

Si 0.028 - 0.000

Si 0.327 - 0.000

Si 0.252 - 0.500

Si 0.000 0.000 0.500 Layer 1 0.0020 0.0012
0.172 0.167 0.000
0.344 0.333 0.500

Si 0.068 0.056 0.500 Layer 2 0.0040 0.0014
0.229 0.222 0.000
0.397 0.389 0.500

Si 0.068 0.056 0.500 Layer 3 0.0084 0.0014
0.235 0.222 0.000
0.401 0.389 0.500

Si 0.139 0.111 0.000 Layer 4 0.0023 0.0009
0.309 0.278 0.500
0.470 0.444 0.000

Notes: Atomic positions are in terms of a c(6x1) unit cell in the cm plane group:
a=19.953 A, b=3.840 A. Ally positions were fixed except for the Ag site, oy=+0.0029.
The silver occupancy was fit with 0.43 £0.04, and isotropic Debye-Waller factors
(defined as B=8n’<u®>, where <u™ is the mean square atomic displacement) were fit at
6.32 1.5 A* for Ag, 3.20 £0.46 A? for surface Si, and 0.47 #0.22 A? for layers 1 and 2
Si. In pure bulk samples at 280K, B=0.70 A? for Ag and B=0.46 A? for Si (Peng et al.
1996). For the errors o [layer] and <o rel> see text.

bulk crystal. This is a consequence of the fact that the data set includes no bulk
reflections and consists entirely of surface superstructure intensities. Accordingly, two
errors are listed for each layer in table 4.1. The first, o[layer], represents the 68%

confidence limit with respect to shifting the entire layer as a whole relative to the bulk.
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The second, <cre|>, is an average value for the uncertainties in the relative atomic
positions within the layer. Individual values of ore] for pairs of atoms were all found to
lie within 50% of <ore]> for a given layer. The possibility of Si atoms shifting in the
[110] direction was also explored, however displacements of Si atoms along [110] were

not significant and did not improve the fit.

4.2.5 Discussion of Results

The value 0.43 £ 0.04 which was fit for the Ag occupancy suggests a slightly
lower coverage than 1/3 of a monolayer and is consistent with previous estimations of
the adsorbate coverage on (3x1) surfaces. Weitering et al. (1994) have suggested that
different surface preparation conditions may lead to different levels of adsorbate vacancy
defects thus explaining the range of coverages reported in the literature. While the
current observation is consistent with this view, it is not conclusive as the error on the
occupancy increases to + 0.12 at the 99% confidence limit. It is interesting to note
possible differences between the Ag-induced (3x1) structure and alkali-induced (3x1).
Surface X-ray data from Li/(3x1) and Na/(3x1) have been fit by a similar model
(Lottermoser et al. 1998) to the one proposed here for Ag/(3x1). The X-ray model for
the alkali metals is more symmetric than the Ag/(3x1) model with no deviations from cm
symmetry. This agrees well with STM images which show cm symmetric images for
the alkali (3x1) surfaces (Hashizume et al. 1993; Wan, Lin, and Nogami 1992) and p1

symmetric images for Ag/(3x1) (Wan, Lin, and Nogami 1992; Ohnishi et al. 1994;
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Carpinelli and Weitering 1995). The difference may be due to atomic size and number
of valence electrons. Ag may readily form two bonds long enough to bridge the trench
parallel to [110] thus breaking the cm symmetry, while the monovalent alkali metals
might only form one bond on one side of the trench and thereby preserve the mirror

along the [112] direction.

4.3 Si(111)-(4x1)/In Reconstruction

The Si(111)-(4x1)/In surface is an interesting subject of study for a couple of
reasons. First, the behavior of indium is unique when compared to the behavior of the
other group III elements on the Si(111) surface. Indium forms the linear (4x1) structure
while boron, aluminum, and gallium do not form any kind of linear structures on
Si(111). Second, indium on silicon is an important system which displays surfactant-
mediated epitaxial growth. Surfactant-mediated epitaxy (SME) has received a lot of
attention recently due to the possibility of high-quality film growth at low temperatures.

In SME, less than a monolayer of surfactant material (typically around 0.2 ML)
is seen to promote smooth layer-by-layer growth at temperatures that would give 3D
island growth on the bare substrate. Most models of the phenomena are based on kinetic
arguments and include ideas such as a decrease of the diffusion barrier for crossing a
surface step (Esch et al. 1994) or a decrease in surface mobility leading to an increase in
the 2D island nucleation density (Oppo, Fiorentini, and Scheffler 1993). In either case,

for a quantitative description of experimental data the models need accurate values for
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the activation energies. These can be derived theoretically through first principles
calculations, but only if the exact atomic structure of the surface or of the surface steps is
known.

The two TED data sets used for this study were collected by Prof. Y. Tanishiro
and Dr. K. Nishil at the Tokyo Institute of Technology. The intensities in one data set
were measured in Japan and then sent to Northwestern as a list of numbers to be
analyzed by direct methods. The other data set was sent to Northwestern University in
the form of a 12-bit digitized image of a single diffraction pattern to be measured and

analyzed.

4.3.1 Background

Indium forms a rich variety of surface structures on Si(111). The (\/3)0/3)
reconstruction consists of 1/3 of a monolayer of In adatoms sitting in T4 sites (Nicholls
et al. 1985; Woicik et al.1993). With increasing In coverages first a (¥31xV31) structure
appears followed by the 4x1 (Tanishiro et al. 1996). Little is known about the
(¥31xV31) structure other than it has a higher In coverage than the (V3xV3)
reconstruction, and no consensus exists for the (4x1) structure with proposed models
ranging from two to four In atoms within the unit cell (0.5 ML to 1 ML coverage).
Between 1.0 ML and 1.2 ML still more 2D structures form before the creation of 3D

metallic In islands. These high In coverage surfaces have been studied almost
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exclusively through STM and are seen to have periodicities of (1x1) and (V7xV3) (Kraft,
Ramsey, and Netzer 1997). Filled-state STM images of the (4x1) surface (Nogami,
Sang-il Park, and Quate 1987; Sang-il Park, Nogami, and Quate 1988; Tanishiro et al.
1996; Stevens, Worthington, and Tsong 1993) show two lines per unit cell running
parallel to the shorter side of the unit cell. In some particularly good quality images,
these lines can be seen to consist of broad peaks which overlap each other and blur
together to form the line. Broad peaks in one line lie in-between the peaks from a
neighboring line so that a zigzag pattern is formed.

Based largely on the STM images, several models for the (4x1) structure have
been proposed. The most straight-forward interpretation of the STM images, namely
that the broad peaks each correspond to one In atom adsorbed on an unmodified Si(111)
surface, leads to the model shown in figure 4.5a. This model was proposed by
Cornelison, Worthington, and Tsong (1991) and by Stevens, Worthington, and Tsong
(1993) and was shown to be the best fit to their ion-scattering spectrometry (ISS) data.
The coverage for this model is 0.5 ML. In contrast, Auger (Nakamura, Anno, and Kono
1991; Saranin et al. 1997) and photoemission (Abukawa et al. 1995) measurements
indicated a higher In coverage of 0.75 - 1.0 ML, and three different structures in this
coverage range have been proposed (figs. 4.5b, 4.5c, and 4.6). Figure 4.5b shows a
model proposed by Nakamura et al. (1991) and refined by Finney et al. (1994) in which
1 ML of In sits on T4 and Hj sites of an unreconstructed Si double layer. Finney et al.

justified a coverage of 1 ML by showing a Patterson map calculated from X-ray
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Figure 4.5. Indium adatom models for the Si(111)-(4x1)/In surface. The large black
atoms represent indium. a) Half of a ML of indium in H3 and T4 sites as suggested by
Cornelison, Worthington, and Tsong (1991). The (4x1) unit cell is outlined. b) One ML
of indium in H3, T4, and bridge sites as suggested by Nakamura et al. (1991). c¢) One
ML of indium in T sites as suggestd by Abukawa et al. (1996).

diffraction data from the Si(111)-(4x1)/In surface and pointing out that it contains too
many peaks to be explainable with a 0.5 ML coverage. While this is true if one assumes

that no Si atoms participate in the reconstruction, the inclusion of Si allows for a

consistent explanation of the Patterson map at lower In coverages. Figure 4.5¢c shows
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another 1 ML model proposed by Abukawa et al. (1996). In their study, Abukawa et al.
looked at photoemission spectra and concluded that the silicon substrate was ideally
terminated in a one-to-one bonding arrangement with the In overlayer, i.e. every In atom
resides in a T} site. Finally, figure 4.6 shows a model that was recently proposed by
Saranin et al. (1997). Saranin et al. showed that STM images of the surface still revealed
a (4x1) periodicity even when the In atoms in the Si(111)-(4x1)/In structure were
displaced with hydrogen. This, they argued, proves that the reconstruction is due largely
to a rearrangement of substrate Si atoms. Following the extended Pandey chain model
proposed for the Si(111)-(3x1)/Metal surface (Erwin 1995) they constructed the Si dimer
chain model shown in figure 4.6. The coverage of 0.75 ML for this model was estimated
from auger data in conjunction with STM observations. However, a coverage of 0.75
ML is unlikely since it would prohibit the mirror or glide planes which have been shown
to be a part of the structure by several diffraction and scattering techniques (see section

4.3.4).

4.3.2 Experimental Details

Since the data was collected in Japan, the sample preparation procedure differed
from the one described in section 1.2.2. In this new sample preparation procedure a 7
mm X 1 mm piece of silicon is cut from a 0.4 mm thick (111) wafer. A hollow is
mechanically ground into the wafer, and the bottom of the hollow is thinned by in-situ

DC heating and oxygen etching (Ozawa et al. 1990) in a 100 kV UHV electron
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View

Figure 4.6. Model of Si(111)-(4x1)/In surface proposed by Saranin et al. (1997) which
includes silicon dimer chains. The large black atoms represent indium, and everything
else is silicon.

microscope (Takayanagi et al. 1978). After the 7x7 native reconstruction is seen to
form, 1 ML of In (as measured by a quartz oscillator) is deposited onto the Si substrate
which is kept at about 300 °C. During the In deposition the surface periodicity changes

from 7x7 to 1x1. A 450 °C anneal then desorbs some of the indium and produces the

(V3xV3) structure. Finally, another deposition of 0.4 - 0.5 ML of In onto the surface at
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300 °C creates the (4x1) structure. TED intensities were recorded on either Fuji FG

films or on Imaging Plates.

4.3.3 Measurement of the Diffraction Intensities

The data set which was processed in Japan was recorded on film. The single 12-
bit digitized image that was sent to Northwestern for processing was recorded on an
imaging plate. The 15 strongest measured intensities for the two data sets are shown

side by side in table 4.2. It should be noted that the two data sets came from two

Table 4.2
Comparison of Strongest Reflections
h k Image Plate Film

6 0 8.33 8.53
3 1 7.10 7.54
5 0 6.05 6.95
5 1 5.38 6.22
4 1 4.78 5.48
1 1 3.94 5.01
6 2 2.74 3.05
9 1 2.40 2.72
2 0 2.40 1.31
8 1 2.27 261
11 0 2.22 1.63
3 2 1.97 1.12
5 2 1.96 2.03
7 0 1.96 2.15
3 0 1.96 2.00

Notes: The image plate data was measured using the cross-correlation technique at
Northwestern University. The film data set was measured and symmetry averaged in
Japan.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

different samples. The close agreement for the strongest intensities highlights the fact
that the effects of crystal tilt and sample thickness are more significant for the weaker
reflections, and they have relatively small percentage effects on the strongest reflections.
This is critical for both the direct methods analysis of the TED data and for the
kinematical intensity R-factor refinement step of this investigation, both of which hinge
on the stronger reflections. Multislice and dynamical scattering theory were not used to
simulate diffraction intensities, since in this case the sample thickness and amount of
crystal tilt were not measured.

The cross-correlation technique (section 2.2) was used to measure the surface
beam intensities from the 12-bit image sent to Northwestern. The intensities were then
symmetry averaged according to the assumed symmetry of the reconstruction. With an
assumption of p2Zmm for the Patterson symmetry (the symmetry seen in the diffraction
pattern) 27 independent intensities comprised the final data set. The lack of repeat
measurements (a through-exposure time series) for the intensities made accurate error
estimates impossible, and the structure refinement process was done using an R-factor

measure of agreement between simulated and measured intensities.

4.3.4 Structure Determination
Although the symmetry of the structure is not completely known, ISS data
(Comelison, Worthington, and Tsong 1991) and RHEED data (Nakamura, Anno, and

Kono 1991) have suggested glide or mirror planes parallel to [112] (the longer side of
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the unit cell). A glide plane along this direction seems unlikely, since its existence
would require the extinction of all (h,0) reflections where h is odd, and the TED data
show significant intensities at these points. Accordingly, the diffraction pattern was
analyzed with the three possible plane groups of p2mm, plm1l, and p2gm. It was also
noted that the (0,1) reflection is too weak to be detected in the TED pattern. With a
mirror along the [112] direction, the absence or near absence of the (0,1) spot suggests
that the scattering potential on each of the two mirror planes within a unit cell is the
same or nearly the same (a strong argument against an odd number of In atoms in the
unit cell). Alternatively, without a mirror along the [112] direction, the extinction of the
(0,1) spot could be caused by a glide plane parallel to [110]. For completeness, the pg
plane group was also investigated.

Of all the symmetries investigated, only three plausible scattering potential maps
were generated and are shown in figure 4.7. The map shown in figure 4.7a suggests 4 In
atoms per unit cell (1 ML coverage) and is consistent with the models proposed by
Abukawa et al. (1996) and Nakamura et al. (1991). This map also shows the possibility
of a slight modification to the Abukawa model by having faint peaks at locations which
could be interpreted as arising from a silicon dimer chain (arrowed sites in figure 4.7a).
The map shown in figure 4.7b is not interpretable in terms of any previously proposed

model. Instead it suggests a structure of zigzag chains of In separated by rows of Si, or

possibly chains of Si separated by rows of In. Finally, the map seen in figure 4.7c also
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Figure 4.7. Three possible scattering potentials for the Si(111)-(4x1)/In surface,
calculated using measured amplitudes and phases estimated through direct methods.
Arrows in (a) show a possible Si dimer chain, and a (4x1) unit cell is outlined. The
symmetry for each image is a) p2mg, b) p2mm, and c) p2mg.
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cannot be interpreted in terms of previously proposed models and suggests a new
structure for the surface. It appears to indicate a single chain of In atoms and a
neighboring partial Si double layer containing a Si chain.

All of the possibilities discussed above were tried as initial starting structures for
refinement based on kinematically simulated diffraction intensities. As mentioned
before, reliable error estimates for the intensity measurements were not available, and an
R-factor was used as a measure of agreement between the simulated and the measured
intensities. Along with the surface atom positions, one underlying double layer was
allowed to relax for the fit, and two Debye-Waller terms (one for In and one for the
surface Si) were allowed to vary resulting in either 8 or 10 fitting parameters depending
on the particular model. All refinement calculations were done with the restriction of
plml symmetry. Only two of the models gave adequate fits to the measured intensities.
The modified Nakamura model (with a Si dimer chain added) shown in figure 4.8a gave
an R-factor of 0.18, and the completely new model shown in figure 4.8b gave an R-
factor of 0.19. The new model seen in figure 4.8b was suggested by the scattering
potential map shown in figure 4.7c. The next best R-factor achieved out of all of the
other initial starting structures was for the unmodified Abukawa model with R=0.34.

While diffraction intensity simulations alone are not able to discriminate between
the two models shown in figure 4.8, the 0.5 ML model in figure 4.8b can be chosen as
the correct structure based on the other available experimental data. Abukawa et al.

(1995) interpreted features in their photoemission measurements as arising from
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Figure 4.8. Two models for the Si(111)-(4x1)/In surface which provide a good fit to the
measured diffraction intensities. a) Modified model of Nakamura et al. (1991) with
silicon dimer chain added (R=0.18). b) New 0.5 ML model with silicon dimer chain

(R=0.19).
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sp3 hybridized dangling silicon bonds. Two such bonds can be seen in each 4x1 unit cell
for the structure in figure 4.8b (on the lighter-shaded Si atoms). The dangling bonds can
also explain the filled-state STM images. It seems likely that if the In atoms sit low
enough in the missing silicon row trench in the Fig 4.8b structure, a positively biased
STM tip would primarily image the electrons residing in the dangling bond states on the
uppermost silicon atoms. If this is true, then the filled-state STM images would consist
primarily of a zigzag chain of peaks separated by about 0.5 nm, which is precisely what
the filled-state STM images do show. Also, if the 1| ML In coverage for the figure 4.8a
structure was the correct coverage, then there would be four distinct 2D surface phases
all existing in the narrow coverage range of 1.0 to 1.2 ML (the 4x1, the 1x1, and two
different V7xV3 structures). While not impossible, such a situation is unlikely, and again
one is led to favor the lower-coverage figure 4.8b model over the structure shown in
figure 4.8a. Finally, both photoemission (Abukawa et al. 1995) and inverse
photoemission (Hill and McLean 1997) experiments have indicated that the 4x1 surface
has a one-dimensional metallic electronic structure. Along the [112] direction (the long
side of the unit cell) the surface is semiconducting. However along [110] (the short side
of the unit cell) the surface shows metallic character, suggesting metallic In bonds
extending only in this direction. With the indium chains extending in the [T10] direction

and isolated from each other along the [112] direction, the 0.5 ML model shown in
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figure 4.8b is able to explain the 1D metallic behavior. The atomic positions in the final

refinement of the figure 4.8b structure are shown in table 4.3.

Table 4.3

Refined Atomic Positions for Si(111)-(4x1)/In
Atom type X y z
In 0.00 0.0 0.000
In 0.85 0.5 0.000
Si 0.22 0.0 0.000
Si 0.66 0.5 0.000
Si 0.38 0.0 -0.043
Si 0.46 0.5 -0.043
Si 0.18 0.5 -0.043
Si 0.71 0.0 -0.043
Si 0.28 0.0 -0.280
Si 0.05 0.5 -0.280
Si 0.79 0.0 -0.280
Si 0.52 0.5 -0.280
Si 0.12 0.0 -0.363
Si 0.37 0.5 -0.363
Si 0.61 0.0 -0.363
Si 0.87 0.5 -0.363

Notes:. The x-axis is taken along the [112] direction, and the y-axis is along the [110]
direction. The positions of the Si atoms along the [111] direction have been estimated
from their bulk values. The positions are listed in terms of the unit cell with dimensions
of A=13.30 A, B=3.84 A, and C=9.40 A.

4.4 Conclusions

Figure 4.9 shows the two linear reconstructions discussed in sections 4.2 and 4.3
along with the linear Si(111)-(5x2)/Au reconstruction (Marks and Plass 1995). The

similarities between the structures are striking. Each reconstruction consists of a partial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

Figure 4.9. Solved linear reconstructions on the Si(111) surface. Large black circles are
the metal atoms. a) Si(111)-(4x1)/In b) Si(111)-(3x1)/Ag c) Si(111)-(5x2)/Au.

silicon double layer containing a silicon dimer chain. In both the (3x1)/Ag and the

(4x1)/In structures a missing Si row is replaced by the metal atoms, and in the (5x2)/Au

structure two Si rows have missing top layers which are replaced by Au atoms. The
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similarities show that the metal-induced linear reconstructions of the Si(111) surface are
primarily a substrate reconstruction.

General comparisons can even be made with the native Si(111)-(7x7)
reconstruction as pointed out by Saranin et al. (1997) for the case of (4x1)/In. (While
the model proposed by Saranin et al. (fig 4.6) cannot explain the diffraction data, it does
correctly incorporate a reconstructed silicon double layer with dimer chains which led
them to make some interesting observations.) Saranin et al. noted that a silicon row on
one side of a dimer chain must form a stacking fault, while the row on the other side of
the dimer chain will remain unfaulted. A similar interplay between faulted and
unfaulted halves of the unit cell exists in the (7x7) surface structure. Therefore, the
metal-induced linear reconstructions on Si(111) in once sense can be viewed as hybrids
of the native (2x1) structure with its dimer chains and the native (7x7) structure with its
stacking faults. The main distinction for the (7x7) surface is the fact that the faulted and
unfaulted regions are separated by dimer rows rather than dimer chains. However, in the
formation of both dimer rows and dimer chains the basic energetics are the same. While
a price is paid in raising strain energy and in producing a stacking fault, it is more than
made up for by a reduction in surface energy obtained through the saturation of dangling

bonds.
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CHAPTER 5: NUCLEATION MECHANISM IN CUBIC
BN FiLM GROWTH

5.1 Motivation for Study

The cubic form of boron nitride (c-BN) has the same crystal structure as diamond
and shares many of its attractive properties. It is extremely hard (60 - 70 GPa), has a
high thermal conductivity (2-9 W cm™ K"), and possesses a wide band gap (~6 eV)
(Vel, Demazeau, and Etourneau 1991). Furthermore, unlike diamond which currently
can only be p-type doped, c-BN has been successfully doped both p and n type making it
a strong candidate for wide band gap semiconducting applications. Also c-BN will not
react with iron at high temperatures as diamond will, so c-BN has potential as a tool
coating for machining ferrous based alloys.

With such widespread potential uses, the growth of high quality c-BN films has
been extensively studied. While some progress has been made, the current quality of c-
BN films is not good enough for commercial applications, and many questions about
growth mechanisms remain unanswered. By far the most important question concerns
the role played by ion bombardment. It is generally accepted that some form of ion
bombardment is needed during growth to form the cubic phase. It is also known that the
ion bombardment creates large compressive stresses in the growing material, and that
these compressive stresses contribute to film adhesion problems. A combination of

compressive stress and chemical attack by ambient water vapor has been blamed for
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cracking and delamination typically seen for c-BN films grown to a thickness of 200 nm
or greater (Cardinale et al. 1994).

Recently the work of McKenzie et al. (1995) and Hahn et al. (1997) have shown
that the ion bombardment is most important for nucleating the cubic phase. Once the
nucleation step has occurred, less-severe bombardment (lower ion energy and/or flux) is
capable of sustaining c-BN growth. By lowering the ion energy after c-BN nucleation
took place, Mirkarimi et al. (1997) was able to grow a 700 nm cubic BN film which did
not delaminate from its substrate. While this represents a significant breakthrough, 700
nm is still not thick enough for commercial applications. Further progress is hindered by
the lack of an atomic-scale understanding of the ion-induced nucleation mechanism. In
order to optimize the nucleation and growth process to minimize the level of residual
compressive stress, one needs an accurate model from which to gain new insight and to
predict better techniques. The c-BN film formation process is simply too complex with
too many variables (e.g. substrate temperature, ion incidence angle, ion energy, ion
mass, ion flux, boron and nitrogen flux, vacuum level, and substrate material) to expect
rapid progress to be made through trial-and-error based attempts at film growth.

The work described in this chapter gives an atomic-scale description of the ion
bombardment induced nucleation of c-BN. The proposed nucleation mechanism is
consistent with all of the experimental observations on c-BN film growth reported in the
literature, and it even offers an explanation of difficulties in reproducibility which has

been seen by a number of researchers working in the field.
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5.2 Background

5.2.1 Crystal Structures of Boron Nitride

Figure 5.1 shows the four basic crystal structures of BN. Hexagonal BN (h-BN)
and rhombohedral BN (r-BN) are characterized by an ordered stacking sequence of sp*-
bonded sheets analogous to the sp>-bonded sheets found in graphite. Another form of

sp® BN, turbostratic BN (t-BN), has a disordered stacking sequence with each sheet
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Figure 5.1. Four crystal structures of BN. Letters to the right indicate the stacking
sequence of the layers. a) hexagonal b) rhombohedral c) wurtzitic d) cubic.
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randomly rotated about an axis parallel to the stacking direction. Cubic BN and
waurtzitic BN (w-BN) are characterized by sp’-bonded networks analogous to diamond.
Cubic BN crystallizes in the zinc blende structure, and w-BN has the wurtzite structure.

Early work on the formation of c-BN was done at high temperatures and
pressures (Wentorf 1961; Bundy and Wentorf 1965), and the BN phase diagram was
formulated from data taken under these extreme conditions. The coexistence line
between hexagonal BN and cubic BN was extrapolated from the region of high
temperature and pressure down to the region of room temperature and atmospheric
pressure under the assumption that BN behaved essentially the same as carbon (Vel,
Demazeau, and Etourneau 1991). Therefore, it has long been thought that the
thermodynamically stable form of BN under standard conditions is h-BN, and that c-BN
is a metastable phase. However, these assumptions have recently been challenged, and it
has been suggested that the cubic phase is actually the thermodynamically preferred
form of BN at room temperature and atmospheric pressure (Nakano and Fukunaga 1993;
Solozhenko 1993; Sachdev et al. 1997). In either case, as pointed out by Mirkarimi,
McCarty, and Medlin (1997) and by Kulisch and Reinke (1997), a large activation
barrier must be overcome to transform h-BN to c-BN or to transform c-BN back to h-
BN. What matters is that hexagonal BN is the less-dense phase, and although it may be
due entirely to kinetics, h-BN forms much more readily than ¢-BN under standard

conditions of pressure.
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5.2.2 Synthesis of Cubic Boron Nitride

c-BN was first synthesized from h-BN in 1957 using high temperatures and high
pressures (Wentorf 1957). Current commercial production using catalysts still involves
pressures around 6 GPa at temperatures near 1700 °C to produce a powder of small c-
BN crystals (Vel, Demazeau, and Etourneau 1991). The c-BN powder can then be used
as an abrasive or sintered to form cutting tools. The extreme conditions needed for these
fabrication techniques make them costly, and alternative routes to obtaining ¢-BN are
desirable.

In 1979 M. Sokolowski showed that w-BN could be deposited with a pulsed
plasma deposition method. This sparked an interest in using thin-film growth techniques
to grow c-BN, and several different methods have been shown to work. These include
plasma enhanced chemical vapor deposition (PE-CVD) (Okamoto et al. 1990;
Yokoyama et al. 1991; Saitoh and Yarbrough 1991; Ichiki, Momose, and Yoshida 1994;
Song et al. 1994; Dworschak, Jung, and Ehrhardt 1995), ion beam assisted pulsed laser
deposition (Doll et al. 1991; Ballal et al. 1993; Friedmann et al. 1994; Medlin et al.
1994; Mirkarimi et al. 1995), ion beam enhanced vapor deposition (Tkeda 1992; Kester
and Messier 1992), ion plating (Ikeda, Kawate, and Hirai 1990; McKenzie 1993), and rf
sputter deposition (Mieno and Yoshida 1990; Kidner, Taylor, and Clarke 1994). The
one common element found in all of these techniques is the bombardment of the
growing film with a flux of energetic ions. The range of ion energies used in typical

cubic BN growth experiments varies from 100 eV up to 1 keV. While some isolated
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reports have appeared claiming the formation of c-BN without ion bombardment (Pryor
et al. 1994; Phani, Roy, and Rao 1995), the results have not been found to be

reproducible and are generally viewed with great skepticism.

5.2.3 Microstructure of c-BN Thin Films
The films deposited by the above mentioned techniques always show the same
basic microstructure which is illustrated in figure 5.2. First, an amorphous layer about 2

nm thick forms. Two nanometers is comparable to the ion range for the ion energies

sp* layer

c-BN

t-BN

Amorphous

Substrate

Figure 5.2. Diagram of the microstructure of c-BN films grown with ion bombardment
assisted techniques.
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typically used, and the amorphous layer has been attributed to intermixing between the
substrate material and the boron nitride by several researchers (Kulisch and Reinke
1997). Above the amorphous layer a textured turbostratic BN layer extends for another
2 to 5 nm. The graphite-like sheets in the t-BN layer are oriented vertically with their
edges exposed on the growth surface. McKenzie (1993) claimed that this texture was
thermodynamically driven by compressive stress. He showed that in a biaxial
compressive stress field, the Gibbs free energy of vertically oriented graphitic sheets was
lower than the free energy of graphitic sheets oriented parallel to the compressive stress
(in the plane of the substrate). Cardinale et al. (1997) refuted this argument by
considering all possible orientations of the sheets within a biaxial stress field, and
showed that the orientation with lowest free energy was actually one with the sheets
tilted 45° to the stress plane. Instead of being thermodynamically driven, they proposed
that the texture is due to plastic deformation of the t-BN. They argued that the
compressive stress should cause slip along the basal planes and kinking of the graphitic
sheets. These deformation mechanisms tend to orient the sheets perpendicular to the
stress field, and once all of the t-BN is oriented vertically, no further plastic deformation
can take place (McCarty and Medlin 1997).

On top of the textured t-BN layer the cubic BN is seen to grow. The c-BN layer
shows a columnar grain structure with the width of the columns ranging from 5 nm to

100 nm. The grains are also preferentially oriented with a cubic (111) plane parallel to
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the basal planes in the t-BN layer (Zhou, Ikuhara, and Suzuki 1995; Medlin et al. 1996;
Johansson et al. 1996). To explain this alignment of the (111) cubic planes with the t-
BN basal planes, it has been suggested that the exposed edges of the graphitic sheets act
as nucleation sites for the cubic phase (Medlin et al. 1996; Widany, Frauenheim, and
Lambrecht 1996). The work presented in section 5.4 shows that it is actually an ion-
induced modification of the exposed basal plane edges which allows them to act as
nucleation sites as will be discussed in more detail in that section. Finally, on top of the
cubic BN layer, recent results indicate the presence of 1 nm to 2 nm of sp>-bonded
material (Friedmann et al. 1994; Bouchier et al. 1994; Sene et al. 1996; Park et al. 1997;
Hofsiss et al. 1997). This thin sp>-bonded surface layer has important implications for

previously proposed growth models which will be discussed in section 5.3.

5.2.4 Effect of Growth Parameters

The body of experimental work studying the effects of various growth
parameters on the formation of cubic BN thin films is extensive and has recently been
reviewed by Mirkarimi, McCarty, and Medlin (1997) and also by Kulisch and Reinke
(1997). Here general trends in the effects of the growth parameters are identified with
reference only to a few pivotal studies.

The most thoroughly investigated parameters are those involving the ion
bombardment: the ion energy, the ion mass, and the ion flux. Kester and Messier (1992)

were the first to show that the effect of the ion bombardment could be described by one
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critical parameter related to the ion momentum available per atom incorporated into the
growing film. Regardless of the species of ion, its energy, or its flux, as long as the total
momentum of the ions per film atom was above a threshold value of 200 (eV amu)'?
then cubic BN would form. They also showed an upper bound in ion bombardment near
300 (eV amu)'* above which complete resputtering of the film took place and no net
growth occurred. These observations were later confirmed and refined in a study by
Mirkarimi et al. (1994). With this behavior then, a decrease in ion flux can be offset by
an increase in ion energy or ion mass, and a decrease in ion energy can be compensated
for by an increase in the ion flux. The cubic phase will still form as long as the total
momentum transferred to the film per incorporated atom remains within the window of
~200 (eV amu)'” to ~300 (eV amu)'?. However there is evidence that the

(m;,,E;.) */atom scaling for the threshold of c-BN formation breaks down for relatively
low energy ions (50 eV to 200 eV) (Kulisch and Reinke 1997).

Another well-studied effect is that of the substrate temperature. Cubic BN has
been grown on substrates in the temperature range of ~ 100 °C up to ~1300 °C. Reinke
et al. (1995) compiled data from a number of earlier studies and showed that higher ion
flux or energy levels are necessary to form c-BN as the temperature is lowered from 400
°C down to 100 °C. It has not been possible to form c-BN for substrate temperatures
below ~ 100 °C. Hofsiss et al. (1997) noted that the graphitic sheets in the oriented t-
BN layer underneath the c-BN became more ordered with increasing temperatures.

Moreover, the work of Kester et al. (1994) indicated that the overall thickness of the t-
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BN layer also increased at higher growth temperatures. The increase in t-BN thickness
could be compensated for by increasing the ion flux or energy.

Finally, one potentially important and useful parameter that has not been
extensively studied is the angle of ion incidence. One study by Bouchier et al. (1994)
showed that for increasing incidence angles (measured from the substrate normal), a
lower level of ion bombardment is necessary for c-BN growth. In another study by
Mirkarimi et al. (1995), two different angles of incidence were used. For the larger
angle depositions, slightly higher c-BN contents were found, and c-BN formation was

possible at lower temperatures.

5.3 Current Theories

There have been a large number of theoretical treatments published on c-BN film
growth, and again the reader is referred to Mirkarimi, McCarty, and Medlin (1997) and
to Kulisch and Reinke (1997) for a detailed account. The goal of this section is to
describe the four basic types of theories, and to point out their individual strengths and

weaknesses with respect to their capabilities of explaining experimental observations.

5.3.1 Quenching

Quenching theories attribute the formation of c-BN to rapid cooling of thermal
spikes caused by ion impacts. The idea of a thermal spike was first treated quantitatively
by Seitz and Koehler (1956). In their treatment, an ion was modeled as depositing all of

its energy as phonons at a single point in a crystal upon impact. Heat diffusion
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equations were then solved to find the distribution of energy as a function of time after
the ion impact. It was found that for ion energies in the range of a few hundred eV, a
small region of the crystal a few nm in diameter would effectively experience
temperatures of several thousand degrees for about 1 ps before the energy was
dissipated. It has been argued by some researchers that the rapid quenching of the
thermal spike region may allow a metastable phase to be frozen in.

Quenching models have been criticized for not being able to explain cubic BN
crystal sizes of tens of nm, and for not offering a reason for the low temperature
boundary seen for c-BN formation. However, Hofsiss et al. (1998) have recently
revised the calculations of Seitz and Koehler (1956) with more accurate assumptions
including estimating the ion energy actually transferred to phonons (which is not the
ion’s entire kinetic energy) and modeling the energy transfer to occur along a line in the
crystal rather than at a single point. Arbitrarily taking 3 eV as the activation energy for
an “atomic rearrangement process”, and using the phonon frequency as the rate of
rearrangement attempts, Hofséss et al. find that all of the atoms within a cylindrical
volume of length equal to the ion penetration depth and of radius of about 0.2 nm will
have at least one chance to rearrange their bonding. They claim that larger crystal sizes
may easily be explained by a templating effect. Once a small cylinder of the cubic phase
forms, a neighboring thermal spike will solidify epitaxially on the original small grain,
and eventually a large grain will build up. With respect to the cutoff temperature

criticism, Dworschak, Jung, and Ehrhardt (1995) argued that the temperature in the
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thermal spike zone is additive with that of the substrate. Higher substrate temperatures
allow for more time before a thermal spike reaches equilibrium with its surroundings.
Below a certain temperature, the spike may simply be quenched too rapidly for any c-
BN to form.

In any case, one of the biggest questions about quenching is whether or not the
thermal spikes are actually able tc permanently rearrange any atoms at all. Mirkarimi,
McCarty, and Medlin (1997) claim that recent atomistic simulations of ion impacts show
that melting within the thermal spike core does not occur for high-melting-point
ceramics like h-BN. Also, work done as part of this thesis at Argonne National Labs
with Dr. Mark Kirk has shown that 50 keV Xe™ ions are not able to produce significant
atomic rearrangements in h-BN at room temperature. 50 keV Xe” ions have enough
energy to create a substantial defect cascade region several nm? in volume in which
practically every atom is knocked off of its lattice site. If this amorphized region is
frozen into place or transforms into another phase apart from h-BN, then it should be
easily visible in dark-field microscopy images which are sensitive to lattice strain.

In an experiment using the Hitachi H-9000 TEM at Argonne National Labs, a
sample of h-BN was viewed in dark-field mode while simultaneously being bombarded
with 50 keV Xe" ions at a dose rate of 10'° cm™ s™. Even up to a total fluence of 10"
ions/cm?, not a single amorphous region or alternate-phase inclusion was seen. Also, the
transmission electron diffraction pattern from the h-BN crystal remained sharp without

any indications of disorder in the h-BN lattice. These observations indicate that
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diffusion occurs so rapidly in h-BN that any ion-induced damage can be quickly
annealed out even at room temperature. Therefore the quenching of thermal spikes by
themselves are not able to account for the formation of a new phase from h-BN. Since
the Argonne experiments were done under vacuum, the possibility of thermal spikes
working in conjunction with large compressive stresses to produce a new phase cannot

be ruled out.

5.3.2 Compressive Stress

The early compressive stress models for c-BN growth can be classified as static
stress models. It is well-known that ion-induced interstitial defects lead to film
densification and cause the large residual compressive stresses seen in ¢-BN thin films.
McKenzie et al. (1993) measured the compressive stress in-situ during c-BN growth and
found a cutoff value around 4 GPa below which no cubic BN formed. They suggested
that the high pressures from the compressive stress and the high temperatures provided
by thermal spikes pushed the BN into a region of its phase diagram where the cubic
phase is stable. As mentioned before though, the previously accepted phase diagram for
BN has come into question, and a similar investigation by Cardinale et al. (1996) did not
find the same sharp cutoff value of compressive stress.

Alternatively Mirkarimi et al. (1994) proposed a dynamic stress model. In their
model a local instantaneous stress is determined by the steady state production and

annihilation rates of interstitials and vacancies. An additional factor describing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



111

accumulation of defects at sinks accounts for the build-up of residual stress. They
predict that the highest instantaneous stress, and hence the formation of c-BN, will take
place at a depth corresponding to the maximu@ defect production rate. From their
model they are able to account for the (m,  E;,,)""*/atom scaling discussed in section
5.24.

The major shortfall of the compressive stress models is their inability to explain
the effect of the substrate temperature. Higher temperatures should allow for more
defect relaxation processes to occur, thus decreasing the overall dynamic or static stress.
Therefore one would expect c-BN to become more difficult at higher temperatures if
compressive stress is the controlling factor, but exactly the opposite trend is observed

experimentally.

5.3.3 Subplantation

Subplantation as described in detail by Lifshitz et al. (1990) to explain the
growth of tetrahedral amorphous carbon (ta-C), refers to the “shallow implantation” of
ions in the energy range of 1eV to 1000eV. The penetration depth of an ion in this
energy range will typically be a few nm. As the ion transfers its energy to the substrate,
it displaces target atoms and causes a densification of the film with the creation of many
interstitials. As the density reaches a certain critical level, a spontaneous athermal
transformation to sp>-bonded material takes place. Lifshitz et al. also believed that sp*

bonded atoms had a lower displacement energy than sp*-bonded atoms, and they claimed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

that the cubic phase would be favored due to a higher resistance to ion damage. This
preferential displacement mechanism, however, has been refuted by measurements
which indicate that the difference in displacement energies is only around 10 eV
(Steffen, Marton, and Rabalais 1992; Koike, Parkin, and Mitchell 1992).

As in the case of the compressive stress models, subplantation models cannot
account for the substrate temperature effects found for c-BN deposition. One would
again expect increased temperatures to promote the relaxation of defects resulting in a
less dense film. It should be noted that subplantation does a better job at describing the
growth of ta-C for which it was originally formulated. In the case of ta-C there is no low
temperature cutoff, and sp’-bond formation becomes more difficult at elevated

temperatures.

5.3.4 Preferential Sputtering

The preferential sputtering model has been championed by one group (Reinke et
al. 1995, Kulisch and Reinke 1997). They agree that the formation of the textured t-BN
layer preceding c-BN is governed by compressive stress, and they claim that the c-BN
nucleation mechanism is an independent process which is not related to preferential
sputtering. However, once c-BN nuclei have formed, they postulate that at a critical ion
energy and flux, h-BN is preferentially sputtered to the point that the cubic phase grows
more rapidly in volume than the hexagonal phase. As part of their model they also state

that an incoming atom being incorporated into the film automatically takes on the
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bonding hybridization of the particular phase upon which it lands. Eventually, the entire
growth surface will be covered by c-BN.

To compare results from the literature, they defined the flux ratio, F, as the ratio
of the flux of ions at the growth surface to the flux of boron atoms, and they plotted F vs.
ion energy, Eion, for many different studies. They defined Fy, as the boundary line
between h-BN formation and c-BN, and F; as the boundary between c-BN and complete
resputtering of the film. By a simple consideration of mass balance Reinke et al. derived
the equation for the boundary lines as a function of Eiop, the ion angle of incidence, 0,

and the temperature, T,

ZSB(T)
=) .1
by (£

where s is the sticking probability of boron and Yy, ¢ is the sputter yield for either the
hexagonal or the cubic phase. For net c-BN growth to be possible Y}, must be greater
than Y.. Measurements show that Y;,/Y. ~ 1.5 (Reinke et al. 1995). At a constant
temperature, equation 5.1 predicts the boundary lines to be proportional to the inverse
sputter yield. For comparison, Reinke et al. fit the inverse sputter yield for Si under
argon bombardment to the compiled data at 500eV and found better agreement to the
boundary line than for the momentum dependence predicted by Kester and Messier

(1992), and by Mirkarimi et al. (1994).
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One of the strengths of the sputter model is its qualitatively correct prediction of
the influence of substrate temperature. According to equation 5.1, the effect of
temperature is seen in the boron sticking probability, sg. As the temperature is lowered,
sg increases and both Fy, and F, are raised. Therefore, in agreement with experiment, a
higher ion flux or ion energy is needed for c-BN growth. Also, the variation of Fy, with
the ion incidence angle as predicted by the sputter model is supported by the available
studies of the effect. As 0 increases (0 being measured from the surface normal), the
sputter yield will increase and Fy, should be lowered. Such a trend is shown in a limited
study by Bouchier et al. (1994) and by the work of Mirkarimi et al. (1995).

The sputter model has been dealt a blow by the studies which revealed the
presence of the 1 nm to 2 nm surface layer of sp>-bonded BN sitting on top of the c-BN
(Friedmann et al. 1994; Bouchier et al. 1994; Sene et al. 1996; Park et al. 1997; Hofsiss
et al. 1997). The mechanism of preferential sputtering clearly predicts that the growth
surface should end up consisting entirely of the cubic phase. Kulisch and Reinke (1997)
have tried to explain the surface sp* bonding by suggesting the presence of an sp*-
hybridized surface reconstruction, but such a reconstruction would only involve the first
layer of atoms and could not account for the estimated thickness of a few nm.

Although the sputter model is not able to explain the growth of cubic BN, it is
still relevant to the nucleation of the cubic phase. The nucleation mechanism which is
described in the next section is able to incorporate the greatest strengths of the sputter

model in describing the influences of substrate temperature and ion incidence angle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

5.4 Identification of Nucleation Mechanism

5.4.1 Transmission Electron Microscopy for the Study of Ion Bombardment Effects

An accurate description of the effects of ion bombardment on BN at an atomic
level is the key to understanding the formation of cubic BN thin films. In this regard,
high resolution transmission electron microscopy (HREM) is a powerful tool with its
spatial resolution of ~ 0.2 nm. One could expect significant insight to be gained through
a basic experiment in which a sample of hexagonal BN is subjected to ion bombardment
and then placed into a TEM for examination. Unfortunately, such a basic experiment is
made difficult by practical considerations involving the mechanical properties of h-BN
and the requirements of TEM sample preparation.

Standard TEM sample preparation techniques are incapable of producing self-
supporting h-BN samples with areas that are thin enough to be electron transparent. The
only alternative is to support micron-size pieces of h-BN on a fine grid structure of
another material (the sample preparation process for which is described in section 5.4.2).
Having a grid-supported sample does not hinder the electron microscopy in any way, but
it does create problems in an ion-bombardment study. The levels of bombardment
which are typically used for growing c-BN also produce a significant amount of
sputtering. On a h-BN/grid sample, some of the material which is sputtered from the
grid will redeposit onto the h-BN, and thereby create a contamination problem. Ion
sources cannot be focused onto an individual micron-size h-BN particle, so the

sputtering problem with ions is unavoidable.
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Useful experiments with h-BN samples in a TEM can still be realized, however,
if one uses electron irradiation as an alternative to ion bombardment. The high energy
electron beam in a TEM can accomplish the same ballistic displacement of atoms from
their lattice sites without sputtering any material from the support grid. An electron
beam in a standard high resolution TEM using a LaB, filament can be focussed onto an
area on the order of a micron across. A section of an h-BN piece away from the support
grid can be subjected to intense electron irradiation, thus producing the required ballistic
atomic displacements, and then the same section can be immediately imaged to record
any changes occurring on an atomic scale.

Table 5.1 lists common accelerating voltages used in TEM’s along with the
corresponding maximum possible ballistic energy transfer from an electron to a boron or
a nitrogen atom which occurs for a direct head-on collision. The estimates of the
average number of displacements per atom (dpa) were calculated assuming a
displacement energy of 30 eV and a 1 minute exposure to an electron flux of 100
Amp/cm? (6.24 x 10%° electrons cm?s™). A beam current density of 100 Amp/cm” at the
sample represents an upper range estimate of what can be achieved in a TEM with a
LaB; filament. For comparison, typical c-BN growth conditions result in an average of
about 5 displacements per atom in the film (Sene et al. 1996). An examination of the
dpa estimates in table 5.1 indicates that a similar number of ballistic displacements will

be achieved for electron beam irradiations lasting about ten minutes at 100 Amp/cm?.
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The expectation that such electron irradiation experiments will be relevant to the
deposition of c-BN films is supported by the literature. As discussed in section 5.2.3,
BN always deposits first as a textured sp>-bonded layer. It is the action of the ion
irradiation on this sp’>-bonded layer which is responsible for the nucleation of c-BN. The
fact that it has not been possible to form c-BN with ion energies under 50 eV
(Mirkarimi, McCarty, and Medlin 1997) is consistent with the assumption that ballistic
displacements play a role of primary importance. Since high energy electrons can
produce the same ballistic displacements in h-BN, useful insight into ion irradiation

processes can be obtained.

Table 5.1
Energy Transfer from Electrons to Boron and Nitrogen Atoms in a TEM
Boron Nitrogen
Accelerating Max Energy Estimated Max Energy Estimated
Voitage (kV) Transfer (eV) dpa' Transfer (eV) dpa’
1,000 402 1.0 310 1.3
400 113 0.5 87 0.5
300 79 0.4 61 0.4
200 49 03 38 03
100 22 0.0 17 0.0

"The dpa are calculated for 1 minute of electron bombardment at a current density of 100
Amp/cm’ assuming a displacement energy of 30 eV for both B and N. The total
displacement cross sections were calculated using the McKinley and Feshbach (1948)
approximation to the Mott series (1929). The modified Kinchin and Pease (1955)
relation was used to account for secondary displacements occurring for primary energy
transfers greater than twice the displacement energy.
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5.4.2 Sample Preparation

Polycrystalline hexagonal boron nitride (99.5% purity) was obtained from
Advanced Ceramics Corp. in the form of a sintered rod (15 cm long, 1 cm diameter).
Small flakes were scraped from the rod with a razor blade and then placed into a mortar
and pestle with methanol. The h-BN flakes were crushed by hand in the methanol, and
then a drop of the h-BN/methanol slurry was put onto a 1000-mesh gold grid. The
methanol evaporates in minutes leaving behind micron-size h-BN pieces loosely
attached to the grid. By searching through the grid square by square in the TEM, one
can find several h-BN pieces favorably oriented near a major zone axis that also have

regions thin enough for HRTEM.

5.4.3 Observation of Nanoarches

Figure 5.3 shows high resolution TEM images for two h-BN crystals: one viewed
along the (1120) zone axis and the other along the (0001) zone. Looking along the
(1120) zone the sp>-bonded sheets are parallel to the beam, and each dark lattice fringe in
figure 5.3a corresponds to a single sp>-bonded sheet viewed edge-on. The (0001) zone is
rotated 90° with respect to (1120), and in this orientation the sp’>-bonded sheets lie
perpendicular to the beam. The pictures in figure 5.3a and 5.3b were taken in SPEAR’s
UHV-H9000 TEM at an accelerating voltage of 300 kV taking care to limit the
photographed regions’ exposure to the electron beam. Under normal operating

conditions for HREM, the current density at the sample will be roughly 1 Amp/cm>.
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Figure 5.3 High resolution TEM images of h-BN. a) (1 120) zone. b) (0001) zone.
With 300 keV electrons, a current density of 1 Amp/cm? will produce only 0.004 dpa

after 1 minute of irradiation (assuming a 30 eV displacement energy). The regions

shown in figure 5.3a and 5.3b were not subjected to much more than a minute of
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exposure to the electron beam before the images were recorded, so any ballistic

displacement damage is minimal.

Figure 5.4. The same areas that are shown in figure 5.3 after 10 minute exposure to 300
keV electron beam with 50 - 100 Amp/cm? current density. a) (1120) zone. b) (0001)
zone. Arrows in (b) indicate the arches which are located at the edges of surface steps.
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The pictures shown in figure 5.4a and 5.4b are from the same areas as in figure
5.3a and 5.3b, but they were recorded after an exposure to 50 - 100 Amp/cm* for 10
minutes. The high current density was obtained by removing the condenser aperture
from the electron beam path and adjusting the bias on the Wehnelt cup in the electron
gun. These irradiation conditions will produce 1.8 - 3.9 dpa - a range which is
comparable to the estimated 5 dpa occurring for standard ion-induced c-BN formation

(Sene et al. 1996).

[1100]

[0001]
Figure 5.5. Basic model of nanoarch with 1 nm diameter.

The structures which are seen to form with the intense electron irradiation can be
referred to as nanoarches. They are essentially half-nanotubes capping the ends of the
sp’-bonded sheets. A model of their basic structure as viewed along the (1120) zone axis
is shown in figure 5.5. The observation of the curling of sp*>-bonded sheets under intense

electron beam bombardment is nothing new. The formation of onion-like structures has
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been reported for both carbon (Ugarte 1992; Banhart and Ajayan 1996; Qin and [ijima
1996) and boron nitride (Banhart, Zwanger, and Muhr 1994). However, the well-
ordered semi-cylindrical capping seen here has only previously been reported for high-
temperature / high pressure treatments (Horiuchi, He, and Akaishi 1995; Boulanger et al.
1995).

Before discussing the relevance of nanoarches for the nucleation of cubic BN, a
few more details about their formation should be mentioned. As shown in table 5.1, 300
keV electrons are capable of transferring up to 79 eV to boron atoms and 61 eV to
nitrogen atoms through ballistic collisions. These values are certainly over the
displacement energies for both atoms in the h-BN lattice. The electron irradiation
experiments were repeated for an accelerating voltage of 200 kV, and again the BN
nanoarches were seen to form. However, 100 keV electrons were not able to create
arches even for irradiations lasting up to an hour. These results show that the arches are
created by the ballistic atomic displacements rather than by electronic interactions. As
the electron energy is lowered, the energy transferred to atoms through nuclear collisions
decreases while the energy transferred through electronic interactions increases. At 100
keV the maximum possible ballistic energy transfer has dropped to 22 eV which is less
than estimated displacement energies in BN. Therefore, the lack of arch formation at
100 keV can be easily explained by the absence of ballistic atom displacements.

Another important observation was made when the experiment was repeated in a

different microscope. Figure 5.6a shows a (1120) zone-axis image taken before intense
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Figure 5.6. Images along (1 120) zone recorded on H-9000 TEM operating at vacuum
level of ~ 107 torr. a) Before electron irradation. b) Same region after 10 minute
exposure to 300 keV electrons at 50 - 100 Amp/cm’ current density.
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electron irradiation, and figure 5.6b shows the same region just after a 10 minute, 300
keV irradiation at 50-100 Amps/cm®. The mottled contrast in figure 5.6b indicates that
the h-BN crystal has sustained damage, but no evidence of nanoarch formation can be
seen. The images in figure 5.6 were taken on the standard Hitachi H-9000 TEM at
Northwestern University. Apart from its base vacuum level (~ 107 torr) it is identical to
the UHV H-9000 connected to the SPEAR system used for the images shown in figures
5.3 and 5.4. Longer irradiation times were tried on the standard H-9000 TEM lasting up
to an hour, but nanoarches could not be produced. This is in sharp contrast to the
observations made with the UHV H-9000 TEM, for which nanoarch formation was
easily reproduced and was verified for several different samples. Further confirmation
of the vacuum level dependence was obtained through experiments on two other
transmission electron microscopes. In the H-9000 at Argonne National Labs operating
at a pressure around 5x107 torr, nanoarches could not be created. However, ina 1 MeV
microscope in Japan operating at a pressure of 1x10°® torr, arches could be easily formed
in 20 minutes with irradiations of ~ 20 Amp/cm®.

If one assumes that the driving force for the formation of the nanoarches is a
reduction in the number of dangling bonds at the surface, then the difficulty in forming
arches in poorer vacuum environments can be readily interpreted. Instead of the
graphitic sheets creating a considerable strain energy by curling around onto themselves

to saturate the dangling bonds, it is likely to be more energetically favorable for atoms
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from the ambient gas to bond to the edges of the sheets (e.g. termination with a single
hydrogen or with an OH group). To form an arch, the edges of the sheets must be
stripped free of the contaminates, and this can only be accomplished if the incident
irradiation removes atoms faster than they arrive from the residual gas.

For an order-of-magnitude estimate, we can take 10 eV for the energy required to
sputter a hydrogen or oxygen atom from the surface. Then with 300 keV electrons at
100 Amp/cm?’ current density (the conditions for the H-9000 TEM experiments), each
surface hydrogen or oxygen atom will experience about 4 sputtering events during a 1
minute time period. Assuming that the contaminate gas is water, the arrival rate of water
molecules can be estimated assuming ideal gas behavior and a temperature of 300 K.
With a partial pressure of water of 10™'° torr (UHV conditions), the H,O arrival rate is
4.8x10"° cm™ s™. Using the density of bonding sites available on the (1T00) surface of
h-BN (1.2x10" cm™), the H,O arrival rate can be written in a more useful form as 0.0024
molecules per bonding site per minute. This shows that the sputtering rate is about 3
orders of magnitude greater than the contaminate arrival rate, and in the steady state the
h-BN surface will be stripped almost entirely clean.

For the 1 MeV microscope in Japan operating at 20 Amp/cm’, the sputtering rate
was about 1 per minute per oxygen or hydrogen atom. This is to be compared with an
H,O arrival rate of 0.24 per bonding site per minute (1x10°® torr). Since the sputtering
rate is several times greater than the contaminate arrival rate, the h-BN surface sites will

again be predominately occupied by dangling bonds, and arch formation can be
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expected. In the case of the standard H-9000 microscopes however, the pressure at the
sample was at best 107 torr. This corresponds to a contaminate arrival rate of 2.4 per
bonding site per minute, which is approaching the sputtering rate of ~ 4 per minute. It is
not surprising then that arch formation doesn’t take place, as contaminate atoms are
replaced as quickly as they are sputtered.

It should be noted that these calculations are only rough estimates which include
assumptions about the surface binding energy, the chemical identity of the contaminate
atoms, and the contaminate sticking probability (implicitly taken as unity).
Nevertheless, the binding energy estimate and the mass of the contaminate molecule are
only likely to be off by at most a factor of 2 or 3, and so we can expect the order of
magnitude to be accurate. The fact that the contaminate atom arrival rate is estimated to
be about equal to the sputtering rate for a pressure near 107 torr, indicates that the
proposed mechanism for the vacuum level influence is consistent with our experimental

observations.

5.4.4 Significance of Nanoarches for Nucleation of Cubic Boron Nitride

The creation of BN nanoarches by ballistic atom displacements reveals a direct
link between ion irradiation and the nucleation of the cubic phase of boron nitride. As
mentioned briefly in section 5.4.3, the formation of nanoarches lowers the total surface
energy by saturating dangling bonds at the expense of creating a significant amount of

strain energy. Assuming a constant radius of curvature for an arch with a diameter of 1
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nm (4 sp’-bonded sheets across), a B-N-B bond on the outer loop of the arch will be bent
by ~ 11° as projected along the [1120] direction. Eleven degrees represents a minimum
estimate since some bonds will be bent to an even greater degree if the radius of
curvature does not remain constant. Some experimental evidence exists for large
variations in the radius of curvature for nanotubes. EELS measurements on BC,N
nanotubes (Weng-Sieh et al. 1995) suggested a puckered geometry for the tube walls
since the B edge retained its sp>-hybridized signature while the N edge indicated a
relaxation towards sp’ bonding.

We postulate that for nucleation of c-BN, the bond strain in the nanoarches
lowers the barrier to sp® hybridization. The deposition of boron or nitrogen atoms on an
arch and the formation of sp® bonds will release some of the strain energy. The addition
of more B and N atoms will extend the sp® bonding network, and a small cubic BN
crystal will be formed. Figure 5.7 illustrates possible steps in this cubic BN nucleation
process. The structure shown in the final step (fig. 5.7d) is actually modeled after the
interfacial structure proposed by Widnay, Frauenheim, and Lambrecht (1996). Through
density-functional based tight-binding calculations they showed that the structure was
stable. It also agrees with the texture seen in c-BN thin films (basal planes in h-BN
parallel to a (111) plane in c-BN). Along the [111] direction in the cubic crystal, 3 cubic
(111) planes match almost perfectly 2 hexagonal basal planes. The 5 % mismatch can

be easily taken up by the h-BN with its high compressibility along the [0001] direction.
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Figure 5.7. Conversion of a nanoarch to a c-BN nucleus. The structure in (d) has been
shown to be stable by Widnay, Frauenheim, and Lambrecht (1996).

A new picture of c-BN film growth emerges based on the BN nanoarch
nucleation mechanism. The film formation process is illustrated schematically in figure
5.8. First the ion bombardment creates the textured t-BN layer (fig. 5.8a) -- most likely

through a compressive stress mechanism. The compressive stress may even be
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important for compressing the sp’-bonded sheets by ~ 5 % to obtain a good lattice match
to c-BN, but the key element for nucleation is the formation of the nanoarches (fig.
5.8b). Finally, the nuclei formed through the nanoarches grow and coalesce, and the

nanocrystalline c-BN film is formed (fig. 5.8c).
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Figure 5.8. Depiction of c-BN growth process based on nanoarch nucleation
mechanism. a) Formation of textured t-BN layer. b) Formation of nanoarches. c¢) Cubic
BN nucleation and growth.

This new picture of c-BN film growth is consistent with the large body of
experimental evidence available on the process. Since the removal of contaminate
species which is necessary for nanoarch formation is essentially a sputtering process, the
correct behavior with substrate temperature and the angle of ion incidence is predicted as
in the sputter model. None of the other theories (quenching, stress, or subplantation) can
explain the temperature behavior. The sputtering model itself fails to explain both the

continued growth of the cubic phase at lower ion bombardment levels after nucleation

has taken place and the presence of the thin sp® surface layer. However these
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observations are still consistent with the arch nucleation model. The critical values
reported for the ion energy, ion flux, and temperature are all critical values needed for
nucleation and therefore are well-described as a sputtering process. After nucleation,
homoepitaxial growth can continue through a different process and will not depend on
sputtering. Also, while largely unpublished, a number of labs have been unable to grow
c-BN even though their deposition parameters matched those published for other
workers. This irreproducibility can be attributed to the vacuum level dependence found
for nanoarch formation. Ifthe contaminate arrival rate is too high, nanoarch formation

will not be possible and the cubic phase will never nucleate.

5.5 Implications

The identification of the nucleation mechanism in cubic BN film growth opens
up many new possibilities. To minimize the compressive stress, one can reduce the level
of ion bombardment necessary to form c-BN nuclei by working in UHV conditions and
raising the ion incidence angle to increase the sputter yield. It might also be possible to
seed c-BN nucleation without ion bombardment using BN fullerene structures placed on
the substrate before growth, as was demonstrated in the case of C, with diamond
(Meilunas et al. 1991). It even becomes reasonable to consider using ion beam
lithography to define c-BN structures. A thin layer of t-BN could be grown on a
substrate and then a pattern could be written into it using a rastered ion beam to form c-

BN nuclei only in selected areas. Of course some of these ideas are highly speculative,
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but it would not even have been possible to consider them without first understanding

the nucleation mechanism of c-BN on an atomic scale.
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CHAPTER 6: FUTURE WORK

6.1 Surface Structure Determination

The direct methods algorithm used in our lab is continuously being improved and
refined. However, the current implementatior: is highly developed and will be effective
for the solution of most surface x-ray or transmission electron diffraction problems. The
most likely barriers that will be encountered will be experimental in nature, and will
have to be dealt with at the data collection stage. The formation of twin domains or
rotationally equivalent domains for which the reflections from one domain overlap the
reflections from another have already prevented a direct methods analysis of one surface,
the Sn induced Si(111)-(2V3 x 2V3)R30° structure. The ambiguities presented by such a
data set can be avoided if the sample preparation procedure is capable of being tailored
to produce a predominantly single-domain surface. For example, it has been
demonstrated by Stevens, Worthington, and Tsong (1993) that a single-domain Si(111)-
(4x1)/In surface can be created by using a miscut Si(111) substrate. Apart from these
occasional “degenerate” domain structures, the direct methods algorithm is ready to be
applied to any of a number of interesting surface structure problems.

One of the more interesting systems which could be studied further is the indium

on Si(111) surface. The lowest-coverage (V3xV3) reconstruction (1/3 of a ML of In) has
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been determined using a number of conventional surface-sensitive techniques (Nicholls
et al. 1985; Woicik et al. 1993), and the higher-coverage (4x1) reconstruction (1/2 of a
ML of In) was solved during the course of the work of this thesis (section 4.3). Yet,
while the (Y31xV31) structure forming for an In coverage between 1/3 and 1/2 of a ML
acts as a link between the (V3xV3) and the (4x1) surfaces (Tanishiro et al. 1996), the
atomic geometry for the (V31xV31)/In structure itself remains completely unknown.
One might expect parts of the (V31xV31) structure to bear some similarity to fragments
of the (4x1) or the (V3xV3) structures just as the (4x4)/Ag and (V3xV3)/Ag structures on
the Ge(111) surface were seen to be related in chapter 3. It might also be possible that
the Si(111)-(¥31xV31)/In surface is similar to the Ge(111)-(4x4)/Ag surface since their
unit cells are close in size and both structures occur for nearly the same coverage of
metal atoms. In any case, a transmission electron diffraction data set from Si(111)-
(N31xV31)/In should be readily analyzed through direct methods, and its solution would
represent the largest previously unknown surface structure solved by applying direct
methods to TED data.

Also, with all of the submonolayer structures induced by In on the Si(111)
surface solved, one can work on formulating a complete surface phase diagram for the
system as was done for the case of gold on the Si(111) surface (Plass and Marks 1997).
Collaborative work with other groups may be required to obtain information about
theoretical surface energies and accurate measurements of phase transition temperatures,

however such an effort should be valuable to the surface science community.
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6.2 Cubic Boron Nitride Film Growth

As described in chapter 5, the deposition of cubic boron nitride thin films is a
highly complicated process, and the formation of nanoarches can only offer an
explanation for the nucleation step. It may be possible that other factors work in
conjunction with the formation of nanoarches to nucleate c-BN. Two limited studies
(McCarty et al. 1996; Hofsiss et al. 1997) have indicated that the substrate temperature
plays a role in the ordering of the textured turbostratic BN layer which forms prior to c-
BN nucleation. The low temperature cutoff for the formation of the cubic phase may be
due to a lack of order in the t-BN layer which prevents the formation of nanoarches. The
studies of McCarty et al. (1996) and of Hofsiss et al (1997) were only preliminary and
suggestive, and the effect that the temperature has on the ordering of the t-BN layer
deserves more in-depth attention. One could take advantage of the BN growth
capabilities available on the SPEAR system to grow thin BN films on Si substrates at
varying temperatures. The plan-view geometry of the samples would be ideal for
characterizing the resulting structures of the t-BN films through HREM and TED.

Another alternative explanation for the low temperature threshold for c-BN
formation may have to do with the stability of c-BN under ion bombardment. Ullmann,
Baglin, and Kellock (1998) studied the effects of 1.1 MeV Xe ion bombardment on
cubic boron nitride films at room temperature. They found that for a fluence of Xe ions
resulting in about 2 dpa for boron and nitrogen atoms in the film, the cubic phase was

destroyed, and the film converted back into sp*>-bonded material. With typical c-BN film
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growth conditions, the boron and nitrogen atoms in a growing film are subjected to
roughly 5 dpa (Sene et al. 1996). Therefore it may be possible that the low temperature
threshold for c-BN deposition corresponds to an activation energy threshold for an ion
damage healing process in the c-BN crystal. Studies of the temperature dependence of
keV ion damage in c-BN could be carried out at Argonne national labs and would clarify
this point.

Finally, as pointed out to me by Dr. Mark Kirk, other factors such as the total
recoil energy transfer rate per unit volume of the film may play critical roles as well.
Also, Erman Bengu has noted that the formation of extended defect structures could be
important in cubic boron nitride film growth and should be investigated. Energy transfer
rate issues are currently being explored through TRIM ion bombardment simulations
and theoretical scattering calculations. This is only an initial step as TRIM calculations
involve a number of approximations and must be viewed with some caution for incident
ion energies in the sub-keV energy range. A more accurate approach would involve the
use of a sophisticated simulation package such as MARLOWE which takes into account
the crystal structure of the target material. However, MARLOWE calculations are
complicated and involved, and it is likely that a startup time of several weeks would
have to be invested before any useful results were obtained. The investigation of the
role of extended defect structures as suggested by Erman Bengu would also require
extensive theoretical modeling work. Information could be obtained possibly through

molecular dynamics simulations or through first-principles total energy calculations for
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proposed defect structures. While these calculations would again require a significant
setup effort, they could offer some important insight into processes which are currently

only poorly understood.
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APPENDIX A. DIFFRACTION INTENSITY
MEASUREMENT ERRORS

In the TED intensity measurement process described in chapter 2, a single
reflection, h, is likely to be measured several times on different negatives belonging to
the through-exposure-time series. Given that the relative intensity scaling factors
between the repeat measurements can be calculated as described in section 2.2, the next
question becomes one of averaging the different measurements to arrive at one final
value with an associated error estimate for the intensity of a given beam.

If the measured values actually corresponded to the number of electrons arriving
during the exposure time, N°, then random counting statistics would be directly
applicable and the error for a single measurement would be (N9)'>. [ will denote this
error for a single measurement by o;(h), where j is used to index the picture from which
the measurement was made, and h is the particular reflection being measured. With
error estimates for individual measurements, averaging several different measurements
for the same reflection would be a straight-forward application of the standard formula

(Bevington and Robinson 1992, 59),
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I;(h)/ )
Z—[ /c3(h)

I(h)=- (A.1)
7
%U o} (h)

where [;(h) is the measured intesity of the reflection, h, for picture number j, and the

sums are taken over all pictures in which I(h) was measured. The corresponding error
for the averaged value would be (Bevington and Robinson 1992, 59),

1
VA
?(/c,% (h)J

However, the intensity values that are measured from the exposed negatives are

o{l(h)]= (A.2)

proportional to N¥, not equal to it, and therefore it is not correct to directly equate o;(h) =
[Ij(h)]"z. Instead, [(h) should be viewed as a function of N°(h) given by,
[;(h) = CN$(h) (A.3)

where C is the proportionality constant. Then by following the propagation of errors
(Bevington and Robinson 1992, 38) one finds,

oi(h), =C’ci(h)y  (A4)
Here the subscript “I” placed after o;’(h) is used to indicate that the units of the error
estimate are the same as the intensity measurement units, L(h). The term, of(h)N,
represents an uncertainty directly as a number of electrons and so is not numerically
equal to 6;’(h),. Substituting 5;’(h)=N° in equation A.4 and then using equation A.3

gives,
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o (h), = CI;(h) (A.5)

Equation A.5 shows the correct relationship between L(h) and cf(h),. If one is to obtain
an error estimate for an individual measurement by calculating [L,(h)]'?, then the value of
the constant, C, must be known first.

As mentioned in section 2.2, the uncertainty in individual measurements
increases with increasing exposure times because of a stronger background relative to
the optical density measurement window. This causes C to become a function of the
picture number, with larger values of C for longer exposure times. Rearranging equation
A.5 shows that C; can be regarded as a variance for a measurement scaled by the value of
that measurement,

o 0',;(?1)[
Iih

(A.6)

It should be constant for a given exposure time, and can be estimated from the data itself

by,

_oi) 1 L -1

UL M-15 I(h)

(A7)

where the sum is taken over all reflections measured in picture number j. Equation A.7
is actually a recursive relationship since the average value for a measurement, I(h),
should be calculated using equation A.1 taking into account the relative uncertainties of

measurements from different pictures. So I(h) depends on the estimates of the Cj.
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To find self-consistent estimates for the C;, we run iterative calculations using
equation A.7. For the initial iteration, we take all of the C;/=1 and calculate the I(h) with
an equal weighting of all pictures. In the next pass, the T(h) are recalculated using the
estimates for the C; found during the initial iteration. The procedure continues (usually
for about 10 cycles) until the C; converge to a self-consistent set. Once the C; are
known, then we have estimates for the uncertainties of individual measurements, and

final average values with associated errors can be calculated for all of the reflections

using equations A.1 and A.2.
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