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ABSTRACT 

 

 

 

Building the Nanoplasmonics Toolbox Through Shape Modeling and Single Particle Optical 

 

 Studies 

 

 

 

Emilie Ringe 

 

 

Interest in nanotechnology is driven by unprecedented properties tailorability, achievable by 

controlling particle structure and composition. Unlike bulk components, minute changes in size 

and shape affect the optical and electronic properties of nanoparticles. Characterization of such 

structure-function relationships and better understanding of structure control mechanisms is 

crucial to the development of applications such as plasmonic sensors and devices. The objective 

of the current research is thus twofold: to theoretically predict and understand how shape is 

controlled by synthesis conditions, and to experimentally unravel, through single particle studies, 

how shape, composition, size, and surrounding environment affect plasmonic properties in noble 

metal particles. Quantitative, predictive rules and fundamental knowledge obtained from this 

research contributes to the “nanoplasmonics toolbox”, a library designed to provide scientists 

and engineers the tools to create and optimize novel nanotechnology applications. 

In this dissertation, single particle approaches are developed and used to unravel the effects of 

size, shape, substrate, aggregation state and surrounding environment on the optical response of 

metallic nanoparticles. Ag and Au nanocubes on different substrates are first presented, followed 

by the discussion of the concept of plasmon length, a universal parameter to describe plasmon 

energy for a variety of particle shapes and plasmon modes. Plasmonic sensing (both refractive 
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index sensing and surface-enhanced Raman spectroscopy) and polarization effects are then 

studied at the single particle level. 

In the last two Chapters, analytical shape models based on the Wulff construction provide unique 

modeling tools for alloy and kinetically grown nanoparticles. The former reveals a size-

dependence of the shape of small alloy particles (such as those used in catalysis) because of 

surface segregation, while the latter uniquely models the shape of many particles commonly 

studied for plasmonic applications.  

The new models and descriptive parameters developed in this work help predict and understand 

shape and size effects in metal nanoparticles relevant for interdisciplinary applications of 

plasmonics, and help guide both non-specialists and nanotechnology researchers. 
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CHAPTER 1 

 

Introduction to Nanoparticle Shape and Optical Properties 
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The optical properties of nanoparticles have been observed for centuries, for example, as part of 

the 4
th

 century AD Lycurgus cup (Figure 1.1) and medieval stained glass. Scientific interests in 

the color of small particles debuted later, when Faraday
1
 synthesized the famous "Ruby Fluid" 

by reacting gold chloride with phosphorous in ether. Faraday recognized that the color was due 

to the reduction of gold to small particles, and later Mie
2
 provided the theoretical foundations 

explaining the color of the particles and its dependence on metal composition as well as 

surrounding environment.  

 

 

Figure 1.1. Lycurgus cup, a 4
th

 century AD Roman artifact containing nanostructured metals. 

Left: reflected light illumination (light source positioned around the cup). Right: transmitted light 

illumination (light source positioned inside the cup). Images from the British Museum. 
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The predominantly theoretical research on the topic of (as they were called then) ultrafine 

particles in the early and mid-20th century focused on the shape, growth, and optical response 

modeling of metallic particles.
2-9

 The development of electron microscopy in the mid-20th 

century provided an invaluable tool to image particles, such that experimental studies exploring 

morphology, stability, and catalytic activity emerged.
10-25

 Advances in synthesis and 

instrumentation, coupled with the discovery of surface-enhanced spectroscopies, plasmon 

sensing, optical signal transduction, and single molecule detection, revived interest in the optical 

properties of ultrafine particles in the late 20th century, during which the term nanoparticle 

quickly gained momentum.
26-34

 Recent advances in light manipulation, nanoscale computing, 

plasmon-enhanced catalysis and plasmonic solar cells further anchored the importance and 

practical applicability of plasmonic phenomena.
35-49

 

Unlike bulk properties, which are generally fully determined by a material's composition, the 

optical response of nanostructures is controlled by their size and shape; e.g. small triangles do 

not behave like cubes or large triangles. Characterization of structure-function relationships and 

developing a better understanding of structure control mechanisms are thus crucial for the 

expansion of knowledge on this fascinating phenomenon, and harness its many sensing and 

information applications. Experimentally, single particle investigations provide the opportunity 

to study phenomena typically hidden or blurred by ensemble averaging, such as polarization, 

plasmon decay, and detailed shape effects. Theoretically, analytical models provide easy access 

to shape modeling over a large range of sizes with minimal computational burden. By employing 

such methods, the work in this thesis unravels new knowledge and new tools related to  shape 

modeling and shape effects in nanoparticles. This knowledge contributes to a library of 
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nanotechnology resources aimed at providing tools to the scientist and engineers developing 

novel applications such as plasmonic sensors and devices. This library is the nanoplasmonics 

toolbox. 

This Chapter provides introductory material on plasmonic behavior and shape modeling. Section 

1.1 first describes plasmon resonances, the various factors determining their energy and decay, as 

well as what is expected from basic theories and what has been previously studies with single 

particle methods. Section 1.2 reviews previous analytical shape models, in particular those 

necessary to the understanding of the new models developed in Chapters 7 and 8.  

 

1.1 Plasmons in Small Metal Nanoparticles 

 

Materials with a negative real and a small positive imaginary dielectric constant in a given 

wavelength range, such as quasi-free electron metals, Ag, Au, etc., (Figures 1.2 and 1.3) can 

support surface plasmon resonances (SPRs) when submitted to electromagnetic radiation. The 

SPR can be of two types: propagating or localized. Propagating surface plasmons, also called 

surface plasmon polaritrons (SPP), are oscillations of electric charges travelling at a 

material/dielectric interface. Specially fabricated structures can guide these oscillations for 

distances of tens to hundreds of μm; their decay perpendicular to the interface is characterized by 

a 1/e decay length of ~200 nm, depending on the wavelength of illumination.
39,42,43
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Figure 1.2. Dielectric function of Ag and Au, showing the large negative real and small positive 

imaginary values in the visible range. Data from ref.
50

 

 

 

Figure 1.3. Approximate wavelength range of localized plasmon resonances, as characterized by 

surface-enhanced Raman activity. Reproduced from ref.
51

 

 

While special phase-matching schemes are necessary to excite SPPs propagating at flat 

interfaces, for metallic particles smaller than the wavelength of light the photon field can couple 
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directly to the electron oscillation (Figure 1.4) confined to the interior volume of the structure. 

While oscillations occur in the entire particle, the presence of strong electric fields at the metal-

dielectric interface lead to the name of this phenomenon, localized surface plasmon resonances 

(LSPR).   

 

 

Figure 1.4. Localized surface plasmon resonance (LSPR) and plasmon field distribution. Left: 

LSPR schematic showing the coherent oscillation of conduction electrons excited by the electric 

field of light. Right: calculated field distribution of the quadrupolar plasmon mode of supported 

Ag cubes,
52

 an example of short field decay length and high field concentration at the metal-

dielectric interface. 

 

The simplest model of a localized plasmon resonance can be obtained in the electrostatic limit of 

Mie theory
2
, in which the speed of light is considered infinite and thus all parts of the particles 

are subject to the same instantaneous field. For a particle with a dielectric constant ()=r()+ii() 

in a homogeneous medium described by m, the extinction efficiency Qext() of an ellipsoid with 



34   

   

   

the electric field of the incoming radiation parallel to its main axis is obtained by the so-called 

Mie-Gans
8
 theory: 

 

        
     

   

    

  

     
   

 
    

 
   

 
                                                                                   (1.1) 

 

where V is the volume of the particle, G is its projected cross-sectional area, and L is a geometric 

factor. The first part of the product affects the strength of the resonance, while the second part 

effectively determines its spectral position, as a resonance occurs when the denominator 

approaches zero. Mie theory predicts a strong LSPR frequency dependence on the surrounding 

dielectric environment, a feature commonly used in sensing applications,
30,32,33,53-73

 where a 

plasmon shift can signal the presence of, e.g., a biological marker such as calcium ions, 

antibodies, or proteins. The metal composition, i.e. the particle dielectric function, is also 

expected to affect the plasmon resonance energy; this has been confirmed experimentally for a 

variety of single metals and alloys.
52,74-79

 In fact, alloying was recognized early on by Faraday to 

alter the optical properties of very thin films, as he suggests reacting a thin gold film with 

potassium cyanide such that "to transmit a ray so luminous as to approach to white" as opposed 

to the warm green transmitted through pure gold of roughly 1/282000
th

 of an inch.
1
 A further 

ingredient in Mie-Gans theory to determine the position of the LSPR peak is particle shape, i.e., 

the L factor; analytical solutions of L are available for spheres (L=1/3), prolate (L<1/3), and 

oblate (L>1/3) ellipsoids.
80

 This approach describes the plasmon energy dependence on shape 

adequately for rods, in which a decrease of plasmon energy is observed with increasing aspect 

ratio.  
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However, the lack of analytical solutions of L for shapes other than ellipsoids severely restricts 

the applicability of Mie-Gans theory. Furthermore, the electrostatic limit used inhibit modeling 

of size effects on plasmon resonance frequency, as a constant phase around the particle is 

assumed. In reality, the LSPR energy of particles larger than ~20 nm changes with particle 

dimension because the electron oscillation has to accommodate the difference in electromagnetic 

phase between one end of the particle and the other (i.e., radiative depolarization effects, also 

called retardation effects).
81

 Experimental and numerical approaches are thus paramount to 

unraveling the relationship between size, shape, and plasmon resonance energy.
31,52,62,66,68,74,79,82-

113
 

Yet the position of the LSPR is not its only attribute: characterization, understanding, and control 

of its peak width is also important. For a bulk sample of nanoparticles in solution, the peak width 

is a convolution of inhomogeneous and homogeneous broadening. The former is due to the shape 

and size inhomogeneity of the synthesis products and can be manipulated, up to a point, by 

controlling the reaction conditions to obtain a more or less monodisperse sample. More 

interesting, however, is the intrinsic linewidth of the particle, caused by homogeneous 

broadening. The plasmon linewidth Γ is related to the plasmon dephasing time T according to the 

equation:
84

 

 

  
  

 
                                                                                                                                         (1.2) 

 

Plasmon dephasing ultimately leads to plasmon decay, which occurs via radiative and non-

radiative pathways,
110,111,114,115

 as illustrated in Figure 1.5. The relative contribution of these 
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pathways depends largely on the size of the particle. Nonradiative damping is dictated mainly by 

the metal dielectric function, which in turns is a function of the plasmon peak position. Au, for 

example, displays strong interband transitions at energies above 500 nm, such that plasmons are 

effectively impossible to observe as their lifetime is too short, i.e., their width is too large.  

 

 

Figure 1.5. Plasmon decay pathways contributing to the plasmon linewidth. Left: radiative decay. 

Right: nonradiative decay. Figure from ref.
110

 

 

For very small (<10 nm) particles, where the particle size is comparable to the conduction 

electron mean free path, electron surface scattering also becomes important. However, all 

particles studied in the current experimental work are between 50 and 300 nm, a size range in 

which radiative decay (radiative damping) dominates; this decay, in a purely dipolar regime, is 

believed to depend linearly on volume.
84,116,117

 

To fully harness plasmonic phenomena and use them in sensors and devices, it is critical to 

quantitatively understand the factors controlling the electron oscillation; this includes the energy, 

linewidth, and polarization of dipolar and higher order plasmon resonances. However, even with 
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the recent advances in the development of shape controlled syntheses of noble metal 

nanostructures,
62,85,94,95,102,104,105,107,118-145

 correlated single-particle spectroscopy and electron 

microscopy has shown to be an invaluable technique that can overcome the difficulties of 

obtaining quantitative data from the inherently inhomogeneous solution of particles generated 

from these syntheses. Indeed, single-particle analysis can yield unique information about line 

widths, polarization, and precise effects of various structural factors. Early studies on colloidal 

silver particles
108,109,146

 paved the road for more recent systematic, statistics-based publications 

on decahedra,
67,82

 cubes,
52,147

 cages,
117

 spheroids,
91,148

 and triangular nanoprisms.
84,143,149

 Such 

studies, many recently reviewed,
89,116,150,151

 provided important new findings on the effects of 

size, composition, corner rounding, interparticle coupling, and surrounding environment on the 

plasmon energy and, less commonly, on the plasmon lifetime (i.e., peak width) and polarization. 

Many of the effects discussed in Section 1.1 have been experimentally verified through such 

analyses, albeit rarely quantified.  

In this thesis, novel and improved single particle approaches are described and used to study the 

plasmonic properties of colloidal nanoparticles. 

 

1.2 Nanoparticle Shape Modeling 

 

Shape is a powerful tool to control the properties of nanoparticles for plasmonics, catalysis, and 

other applications. Therefore, much effort has been devoted to its synthetic 

control
63,87,96,97,104,106,107,109,121-148

 and modeling.
135,152-158

 However, the latter is often limited by 

computational power to small clusters, and while atomistic studies can provide invaluable 
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information, there are approximations (sometimes severe) with the potentials, structures, and/or 

density functionals used. Analytical techniques, on the other hand, are often more powerful than 

atomistic ones as they provide solutions valid for different sizes, which is often hard to extract 

from an atomistic calculation.  

One of the classic analytical models to describe  particle shape, whether small, large, free-

standing or as precipitates, is the Wulff construction,
9
 a model based upon the original 

experimental observations of natural crystals by Wulff, with further mathematical proofs by van 

Laue, Dinghas, and Herring.
5-7

 The Wulff construction, in its basic form, relates the surface 

normal of a face (h(n), as depicted in Figure 1.6) to its orientation-dependent surface free energy 

(λ(n), where n is the crystallographic orientation), according to: 

 

    

 
                                                                                                                                        (1.3) 

 

The Λ term is a constant, such that the ratio of surface energy to surface normal is the same for 

all crystallographic orientations. Therefore, faces with lower surface energy will be more 

prominent. As shown for FCC lattices in Figure 1.7, if {100} or {111} faces are the most stable, 

cubes or octahedron are produced, while cuboctahedron are formed when the surface energy of 

{111} and {100} faces is comparable. 
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Figure 1.6. Wulff shape representation for a face centered cubic single crystal, showing the 

equivalency between the surface normal (drawn lines) and the surface energy (γ labels). Left: 

view along the (010) axis. Right: view along the (-110) axis. Image provided by Jim Enterkin
159

 

based on ref.
9
. 

 

 

Figure 1.7. Representative single crystal shapes and associated surface free energies. Left: cube 

formed entirely by {100} facets, occurring when the {100} surface energy is much lower than 

that of the {111}. Middle: cuboctahedron, a mixture of {100} and {111} facets, obtained when 

the surface energies are of comparable magnitude. Right: octahedron formed entirely by {111} 

facets, occurring when the {111} surface energy is much lower than that of the {100}. 
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An extension for supported particles on a flat substrate was described by Winterbottom,
3
 and 

extended to an edge by Taylor et al. in what they called the SummerTop construction.
160

 These 

models include both an interface energy and a surface energy, such that the particle shape 

changes depending on its affinity for the substrate, as shown in Figure 1.8.   

 

 

Figure 1.8. The effects of interface and surface free energy on the shape of nanoparticles, 

modeled by the Winterbottom construction and exemplified by Pt particles on StTiO3.
3,159

 The Pt 

particles are ~2 nm in diameter. Top: trends relating the interface energy (γInt), the substrate 

surface energy (γSub) and the Pt surface energy (γPt). 
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Not all nanoparticles are single crystals, such that further extensions of the Wulff construction 

were needed to model the decahedral, icosahedral, and lamellar shapes observed in electron 

microscopy studies.
16,158,161-164

 The first two could be described as assemblies of tetrahedral 

subunits, elastically strained by ~2% and ~6% to form space-filling structures, respectively. This 

interpretation was confirmed using lattice
15

 and atomic resolution imaging.
24,25

 

The initial energetics analysis,
163

 a homogeneous strain model coupled with a surface energy 

analysis of the regular structures, provided an explanation for the stability of small icosahedral 

particles, but did not explain that of the decahedra. A generalized the surface structure of the 

particles using a variant of the Wulff construction appropriate for twinned nanoparticles, called a 

modified Wulff construction, was later developed and provides the foundation of the kinetic 

model presented in Chapter 8.
165,166

 Further development of the twinned Wulff construction have 

appeared, for example the coupling with a disclination strain model for the decahedral particles 

and a three-dimensional variant for the icosahedral particles.
167,168

  

Given the growth of nanotechnology in the last decades, significant advances in synthesis and 

characterization methods have been made, for example the discovery of new shape-control 

strategies,
63,87,96,97,104,106,107,109,121-148

 attempts to measure nanoparticle phase maps,
21,22,134,169

 as 

well as more precise structural characterization using aberration corrected high resolution 

TEM.
170-174

 Numerical modeling advances have followed experimental progress, for example 

better elasticity models
175

 and atomistic methods exploiting DFT.
134

 However, these do not 

always directly apply to the large particles used for plasmonics, and the ability to include 

variable composition is typically limited. The work in this thesis thus aims to provide novel, 

user-friendly modeling tools capable of predicting kinetic and thermodynamic shapes. Indeed, 
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kinetic growth control is becoming an important synthetic tool, and the analytical kinetic growth 

model developed in Chapter 8 provides a way to understand and predict the outcome of twinned 

nanoparticle synthesis. Additionally, a new thermodynamic model for alloys (Chapter 7) in 

alloys provides a new, more complete approach yielding novel understanding of segregation 

effects on particle shape. 
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CHAPTER 2 

 

Materials and Methods 
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2.1 Synthesis 

 

Nanoparticle syntheses were performed by a network of expert collaborators: the Huang group 

(Au cubes, Northwestern University), the Mirkin group (Ag bipyramids, all other Au structures, 

Northwestern University), and the Xia group (Ag cubes, at Georgia Tech, although the 

collaboration was active during their tenure at Washington University in St. Louis).  

 

2.1.1 Au Cubes 

 

Cetyltrimethylammoniumbromide (CTAB)-capped Au cubes were synthesized by reducing an 

aqueous solution of HAuCl4 with ascorbic acid.
176

 Side lengths ranged from 50-110 nm and 

many heavily truncated and triangular particles were present, as shown in Figure 2.1. 

Aggregation upon deposition on a substrate was noticeably worse than for PVP-capped 

nanoparticles. The cubes were stable in solution for at least a year. Attempts to obtain larger 

cubes failed.  
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Figure 2.1. SEM images of Au nanocubes. Scalebars, 1μm (left) and 300 nm (right). 

 

2.1.2 Au Decahedra, Au Truncated Bitetrahedra, Au Icosahedra 

Poly(vinylpyrrolidone) (PVP)-capped Au decahedra were produced by reduction of  hydrogen 

tetrachloroaurate (HAuCl4) following a previously reported method.
129,177

 Icosahedra and 

triangles (truncated bitetrahedra) were obtained as reaction by-products (Figure 2.2) 

 

 

Figure 2.2. TEM and SEM images of Au decahedra synthesis products, containing flat hexagons, 

truncated bitetrahedra, and icosahedra. Scalebars, 50 nm (TEM) and 300 nm (SEM). 
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2.1.3 Au Octahedra 

 

Poly(diallyldimethylammonium) (PDDA)-capped Au octahedra were synthesized following a 

previously reported procedure
178

 based on the reduction of HAuCl4 in acidified ethylene glycol. 

 

 Figure 2.3. SEM images of Au octahedra synthesis products. The particles on the left have an 

average side length of ~145 nm, the particles on the right have an average side length of ~80 nm. 

Scalebars, 300 nm. 

  

2.1.4 Ag Cubes 

 

Poly(vinylpyrrolidone) (PVP)-capped single-crystalline Ag nanocubes were synthesized using a 

previously reported method,
95,125

 where trace amounts of hydrochloric acid are added to a typical 

polyol reduction of AgNO3 in order to preferentially etch the twinned seeds, leading to a high 

yield of nanocubes, as seen in Figure 2.4. 
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Figure 2.4. TEM images of Ag nanocubes. Top left: large (100-200 nm side length) Ag cubes. 

Scalebar, 200 nm. Top right: large Ag cubes. Scalebar, 200 nm. Bottom left: small Ag cubes 

(<100 nm side length). Scalebar, 100 nm. Bottom right: small Ag cube. Scalebar, 50 nm. Bottom 

right inset: Nanodiffraction pattern of single cube showing (100) zone axis. Scalebar, 5 nm
-1

. 
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2.1.5 Ag Bipyramids 

 

Bis(p-sulfonatophenyl)-phenyl phosphine (BSPP)-capped Ag right bipyramids were produced by 

a photomediated synthesis. A basic aqueous solution of AgNO3, sodium citrate, and BSPP was 

illuminated for 8 h using a 150-W halogen lamp and a bandpass filter. Optical bandpass filters 

(550, 600, and 650 nm) controlled the excitation wavelength and the final particle size.
131,132

 

Severe aggregation problems were observed when depositing the bipyramids on TEM grids. The 

solutions were stable for less than 3 weeks. 

 

 

Figure 2.5. SEM and TEM images of Ag bipyramids. Top and bottom left: SEM images. Right: 

TEM image. Scalebars, 200 nm.  
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2.1.6. Ag-Coated Au Nanorods 

 

The starting material for the synthesis of Ag-coated Au nanorods was a solution of Au nanorods 

prepared from a standard seed-mediated growth in CTAB.
179

 CTAB was then exchanged with 

mPEG-SH, and a Ag shell was grown at room temperature from reduction of  Ag
+
 with 

hydroquinone in slightly basic solution, following a previously reported procedure.
141

 This 

synthesis was performed at the University of Melbourne by the group of Paul Mulvaney. A 

representative TEM image is presented in Figure 2.6. 

 

 

Figure 2.6. TEM image of Au rods @ Ag shell. The image was taken slightly out of focus to 

increase the visibility the rod cores. Scalebar, 100 nm. 
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2.1.7 Ag Colloids for SMSERS 

 

Ag colloids were synthesized according to the Lee and Meisel procedure, in which AgNO3 is 

reduced by sodium citrate in a boiling aqueous solution.
180

 Extreme care was taken to use clean 

(Aqua Regia) and dry glassware to avoid contamination. 

 

2.2 Instrumental Methods: Single Particle Structure-Function Measurements 

 

Through this work, a variety of single particle optical measurements were performed and 

correlated with structural data obtained from electron microscopy. Section 2.2.1 describes the 

basic method of correlated dark field microscopy and TEM, while Sections 2.2.2-2.2.7 provide 

details on variations of and additions to this technique, from refractive index sensitivity 

measurements to polarization. Related experimental/instrumental notes are presented in Section 

2.2.8. Unless otherwise stated, the experiments were performed at Northwestern University.  

 

2.2.1 Correlated LSPR/TEM 

 

A 1-5μL drop of an aqueous suspension of nanoparticles was put on the support film, which was 

held by a self closing pair of tweezers. The drop was dried in air, large drops were partially 

removed with a filter paper or lint-free cloth (Kimwipe). For carbon/Formvar (polyvinyl formal) 
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grids (type B or ultrathin type A), the particles were deposited such that they were in direct 

contact with the Formvar because amorphous carbon is hydrophilic and lossy, which leads to 

enhanced aggregation and plasmon damping,
147

 respectively. For Si3N4 grids and other etched 

membrane windows, the particles were deposited inside the etch pit and extreme care was taken 

to avoid breaking the thin membrane. Once dry, the excess surfactant present on the grids was 

rinsed by gently pouring a small amount of water from a wash bottle across the grid held by 

tweezers. Analogous procedures were followed for the preparation of nanoparticles on glass 

coverslips. 

TEM support films were placed particles facing up on 25 mm diameter no. 2 glass coverslips 

cleaned with piranha solution (sulfuric acid (H2SO4) and hydrogen peroxide (H2O2)). Samples 

prepared directly on coverslip were inserted instead of a clean coverslip, particles facing up. A 

custom-made sample holder was used to flow nitrogen in the sample chamber closed on top and 

bottom by coverslips. 

A video camera was used to obtain large area pictures (~60X50 μm) of scattering, which serve as 

maps for both the dark field and electron microscopy; examples can be found in Figures 2.7-2.8. 

For standard carbon/Formvar grids, the asymmetric grid center (see top of Figure 2.7) was used 

as the origin an x-y coordinate system, following a previously reported procedure.
147,181

 For c-

flat grids (used in correlated LSPR/SPIM/TEM, Figure 2.8), each letter was used as the center of 

a x-y coordinate system. Large area pattern-matching and corner referencing were used to 

retrieve particles for membrane windows such as Si3N4 (Figure 2.8). 
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Figure 2.7. Correlated dark field microscopy and transmission electron microscopy performed on 

standard carbon/Formvar grids. Top: asymmetric center, as seen in an optical (left) and electron 

(right) microscope. Scalebar, 100 μm. Bottom left: dark field scattering image (shown in black 

and white) of a grid square. Bottom right: low magnification TEM image of the same grid 

square.  
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Figure 2.8. Example of non-traditional TEM support films and their use in correlated 

optical/structural measurements. Top left: 500 X 500 μm Si3N4 window support film. The chip is 

3 mm wide. Top right: scattering map composed of multiple images from the black-and-white 

video camera. The image dimensions are approximately 150 X 100 μm. Bottom left: c-flat 

substrate (carbon-based, Protochips, Inc) deposited on an indexed copper grid measuring 3 mm 

across. Bottom right: real color scattering from a ~ 150 X 100 μm region. The equally spaced 

circular features are holes fabricated in the support film, white the bright blue and red spots are 

nanoparticles. 
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Single particle scattering spectra were obtained using dark field optical 

microscopy.
52,84,92,103,106,108,109,121,147,182

 In this technique, white light from a halogen lamp is sent 

through a high numerical aperture (NA) dark-field condenser, and used to illuminate the sample. 

The NA is defined as NA = n*sinθ, where n is the refractive index of the medium and θ is the 

half-angle of the maximum cone of light (Figure 2.9). The dark-field condenser is equipped with 

a circular block at the lens such that a hollow cone of light is transmitted and focused at the 

sample. The scattered light from the nanoparticles is collected through a variable NA 100X oil 

immersion objective (set to a lower NA than the dark-field condenser) and sent to a charge 

coupled device (CCD) detector coupled to a spectrometer (Figure 2.10). Because the light 

illuminated through the condenser is at an angle higher than that prescribed by the NA of the 

objective, the illumination light is not collected—only the light scattered by the nanoparticle is; 

therefore, this is a “darkfield” configuration.  

To ensure single nanoparticle spectroscopy, a single diffraction-limited spot was isolated in the 

center of the slit of the spectrometer such that no other particles were in the field of view. This 

process was repeated for each subsequent nanoparticle of interest. Acquisition times ranged from 

1 to 10 seconds, spectral accumulation was set between 5 to 10, for a total accumulation time 

typically in the 10-60 seconds range. Winspec, a software provided by Princeton Instruments, 

was programmed to acquire a background spectrum at the same time as a particle’s spectrum; 

typically they were separated by 10 pixels and each had a height of 12 pixels. The output files, 

converted from .SPE to .TXT (ASCII) had 2 columns (energy and intensity) and n X 2 rows, n 

being the number of horizontal pixels in the detector (1340 for the visible detector used). 
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Figure 2.9. Dark field microscopy setup. Right: diagram showing the conical illumination. Left: 

picture of apparatus.   

 

Figure 2.10. Inverted optical microscope with coupling to the video camera as well as the 

spectrograph/CCD. Left: diagram showing the scattered light directed in the spectrograph/CCD. 

Right: picture of apparatus. 
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The raw single particle spectra collected are not the final spectra presented here. Indeed, 

contributions from the wavelength-dependence of the lamp intensity ("lamp profile") and the 

detector readout current must be accounted for. To do so, a background spectrum, collected in 

the same way as the particle spectrum except from an area where no particles were present, was 

first subtracted from the raw particle spectrum. Then, this result was divided by the difference 

between the lamp spectrum and the detector dark current. The lamp and detector dark spectra 

must have the same acquisition parameters, but these parameters may be different than that of the 

particle and background spectra. For the lamp spectra, the objective NA was open (increased) 

such that the illuminating light was sent to the detector. Care must be taken to not saturate the 

detector; to this end, short acquisition times (0.007 seconds, 200 accumulations) were used. A 

neutral density filter can also be inserted between the objective and the detector during the lamp 

spectrum acquisition to allow a higher illumination intensity for weakly scattering particles. Of 

course, the lamp spectrum must be subsequently corrected for the presence of this filter. The 

detector dark current was collected with the microscope light output pointed away from the 

detector (e.g., in the eyepiece). An illustration of the spectral processing is presented in Figure 

2.11. The MATLAB codes developed to automate this process and further notes can be found in 

Appendix A1. 
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Figure 2.11. Spectral processing for single particle dark field scattering experiments. Note that 

normalization is optional. 

 

TEM images were obtained within days of the optical characterization (to minimize oxidation) 

on either a JEOL JEM2100 FAST TEM or a Hitachi HD-2300A STEM, both operated at 200kV. 

The TEM was preferred to the STEM as it consistently gave better images and less 

contamination. 

The possibility of performing TEM before dark field microscopy was explored for both Au and 

Ag systems, as shown in Figure 2.12. Shifts greater than 100 nm were observed for Au 

decahedra, while a complete loss of optical activity was observed for small Ag cubes. The 

former is likely due to amorphous carbon deposition, surfactant decomposition, and 

contamination, while the latter results from oxidation and degradation. Based on these highly 

reproducible results, it was concluded that TEM could only be performed after optical 

characterization. 
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Figure 2.12. Representative single particle scattering spectra before and after TEM analysis. 

Right: Au decahedron. Left: Ag cube. 

 

2.2.2 Polarization Experiments 

A polarizer was added to the dark field scattering setup to obtain polarization-dependent spectra. 

At the University of Melbourne, the polarizer was loosely placed directly on top of the dark field 

condenser, causing instabilities, as discussed in Chapter 6. At Northwestern University, the 

polarizer was solidly positioned between the light source and the dark field condenser by means 

of a 60 mm cage mount screwed on the microscope head, as depicted in Figures 2.9-2.10. The 

polarization efficiency of the setup was studied by using two identical visible light polarizers, 

placed at different positions in the beam path. The finding most relevant to this study, presented 

in Figure 2.13, is that the dark field condenser partially scrambles the polarization of the 

incoming beam. This effect is expected to be identical at the University of Melbourne, as the 

same model of polarizer and dark field condenser were used. Further studies, not shown here, 



59   

   

   

suggest that some objectives may also scramble polarization; caution should thus be taken to 

characterize the instrument used prior to obtaining polarization data in this geometry.
183

 

Despite the lower polarization of the excitation light, good results could be obtained using 

correlated pol-LSPR/SEM. Validation data was obtained on Ag chains at the University of 

Melbourne, showing the expected polarization anisotropy, perfectly aligned with the interparticle 

axis. 

 

Figure 2.13. Partial polarization scrambling due to the dark field condenser. The color on the 

right is an arbitrary intensity scale, the wavelength scale is from 400 to 900 nm, and the 

polarization ranges from 0 to 360 degrees. 

 

Since orientation in the TEM and the optical microscope are not necessarily identical, the 

orientation was calibrated with pictures of the support grid, and the polarization data was 

adjusted accordingly for the figures presented in this work. For example, if the TEM image was 
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tilted 114° from the grid orientation during LSPR measurements, 246 (360-114)° was added to 

the x-axis for the polarization plot, until 360°, then 360° was subtracted from the x-axis, 

followed by addition of 246°. This was performed to make figures more easily interpretable. 

  

 

Figure 2.14. Correlated LSPR/SEM validation of the polarization experiments performed at the 

University of Melbourne. Left: SEM images, where the 0° orientation is vertical. Scalebars, 500 

nm. Middle: scattering spectra shown at 30° intervals to highlight the large intensity variation of 

the lowest energy peak. Right: peak intensity maximum as a function of polarization.  

 

2.2.3 Correlated SEM/LSPR and SEM/LSPR/TEM 

 

Due to the large, irreversible sample damage caused by TEM imaging (Figure 2.12), it is 

impossible to identify the shape or aggregate state of nanoparticles prior to the optical 

characterization. Thus, many spectra collected are typically discarded because they result from 
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aggregates or undesired shapes. A way to overcome this challenge is to use a structural 

characterization technique which minimizes damage to screen the sample and identify particles 

of interest. SEM is a prime candidate, as it can be performed at a variety of low voltages and 

current and gives reasonably good resolution. Note that AFM could also be used to this end. To 

maintain electron transparency and ease of retrieval (x-y coordinate system), TEM grids were 

used for most SEM studies, except the validation data presented in Figure 2.14, performed on 

indium tin oxide (ITO)-coated coverslips. A TEM grid holder compatible with SEM sample 

mounts was available at the University of Melbourne; a 4-grid holder was purchased for Ted 

Pella, Inc. at Northwestern University.  

The effect of SEM imaging on the optical response of Au and Ag nanoparticles was investigated. 

Noisy before/after SEM results for Ag particles show retention of plasmonic activity (not 

shown); the strong response shown in Figure 2.14 for particles investigated by SEM prior to dark 

field microscopy also support the hypothesis of minimal damage in Ag. However, Ag 

nanoparticles are prone to oxidation and care must be taken to characterize and minimize 

oxidation effects. On the other hand, Au particles seem to withstand short imaging in SEM very 

well: results for Au decahedron and icosahedron showing no damage are presented in Figure 

2.15. Note that the degree of damage could be surfactant-specific, as some molecules may react 

differently to the electron beam. It is recommended to test every new system and not assume that 

it is not damaged by SEM imaging. 
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Figure 2.15. Optical response of Au particles before and after shape identification by SEM, 

showing no noticeable damage. Left: icosahedron. Right: decahedron. 

 

Pre-screening with SEM allows the identification of particles of interest, which can be 

particularly useful for the investigation of rare shapes, in cases where aggregation is a problem, 

for weak scatterers as well as for complex aggregates. Note that the electron beam dwell time 

must be kept to a minimum; SEM performed prior to LSPR is a screening and not an imaging 

technique (as shown in Figure 2.16) because long exposure results in the formation of a 

contamination layer that alters the optical response. 
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Figure 2.16. Example of correlated SEM/LSPR/TEM. Left: an aggregate of interest is observed 

in SEM and its position recorded in a low-magnification image. Middle: a single particle 

scattering spectrum is obtained in dark field microscopy. Right: high resolution TEM images 

provide information about interparticle distance and particle size and shape. 

 

2.2.4 Correlated LSPR/SERS/TEM 

 

Adding single particle SERS measurements to the LSPR/TEM approach was relatively 

straightforward. A laser was coupled in epi illumination geometry with the appropriate optics, as 

described elsewhere.
184

 SERS-active particles were deposited on electron-transparent 

carbon/Formvar support films, although other substrates can be used if SEM is used as the 

structural characterization tool. A scattering map was obtained to guide dark field scattering, 

SERS experiments, and TEM imaging. The SERS spectra of active particles/aggregates were 

first collected, followed by dark field scattering, to prevent the superfluous acquisition of LSPR 

spectra of inactive particles. The grids were then transferred to a TEM and the SERS-active 

aggregates were characterized.   

 



64   

   

   

2.2.5 Correlated ALD/LSPR/TEM 

 

Atomic layer deposition (ALD) of Alumina (Al2O3) was performed on c-flat and Si3N4 grids, 

both well-known for their thermal stability. Particles were deposited, dried, and studied by single 

particle dark field microscopy. The grids were then placed in a custom-built ALD reactor run by 

Natalie Ray. The ALD precursors used for Al2O3 growth were trimethylaluminum (TMA) and 

water, carried by nitrogen gas in a custom made reactor kept at 1-2 Torr. The following cycle 

was performed: dose TMA 2 s, purge 10 s, dose water 2.5 s, purge 30 s. A total of 10 cycles were 

deposited, yielding ~1.1 nm Al2O3. The deposition was performed at 50 or 100 °C, as discussed 

in the text. The samples were allowed to cool and their post-ALD optical response was analyzed 

with single particle dark field microscopy. 

 

2.2.6 Correlated LSPR/SPIM/TEM 

 

To correlate particle shape, orientation, and optical response to their photoelectron emission 

behavior, a collaboration with Andrej Grubisic in the group of David Nesbitt at U. Colorado 

Boulder was established. Special TEM grids, coated with a c-flat membrane (Figure 2.8) instead 

of carbon/Formvar were used as they gave a low photoemission background. Samples were 

prepared and characterized with dark field microscopy at Northwestern University, the mailed 

overnight in a desiccated, triple enclosed, N2-filled Ziploc bag. Scattering maps were provided 

with the samples. Grids were analyzed by SPIM, a technique described in ref. and Figure 2.17. 

The grids were then returned promptly (overnight, in dry, inert atmosphere) to Northwestern 
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University, where post-SPIM dark field microscopy and transmission electron microscopy were 

immediately performed.  

 

Figure 2.17. Schematic of the correlated LSPR/SPIM/TEM experiment. Left: scattering spectrum 

of an individual Ag nanocube (d ~ 160 nm) on a c-flat substrate. Inset: TEM image of the Ag 

nanocube responsible for the scattering spectrum. Right: scanning photoionization microscopy 

(SPIM) setup, where electron emission following ultrafast laser excitation of a single Ag 

nanocube is monitored as a function of the laser polarization in the substrate plane.  

 

2.2.7 Refractive Index Sensitivity Measurements 

 

2.2.7.1 Non-Correlated RIS Measurements 

 

Single particle refractive index sensitivity measurements were performed by depositing a drop of 

nanoparticle solution on a 25 mm no. 2 glass coverslip. The particles were dried and rinsed with 
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water. Then, the coverslip was glued on the sample holder with silicone glue. A top coverslip 

was also glued, and left overnight to form a watertight seal. Tubes were attached on both sides of 

the sample holder to deliver nitrogen or solutions of water and glycerol (up to 75 % glycerol). 

After each measurement, the solution was emptied, the cell was washed three times with the next 

solution, filled, and then measurements were carried out. The seal broke early on in ~20 % of 

experiments, otherwise the cell could be used with up to 8 different solutions, followed by water 

and a final measurement in nitrogen. The coverslips on which the particles were deposited were 

carefully scratched in a half-filled martini glass shaped pattern for easy retrieval over a large 

area; scattering maps obtained with the video camera were used for particle retrieval. Because of 

the very low scattering background (i.e. the absence of scattering from Cu grid bars), the NA of 

the objective could be open (high NA) more than usual, increasing the signal and decreasing 

acquisition times. SEM correlation would be possible, but was not carried out. For high 

resolution SEM, ITO-coated coverslips can be used, although their roughness tends to produce 

an dim, inhomogeneous scattering background. 

 

2.2.7.2 Correlated RIS/TEM 

 

Correlating the structure of a nanoparticle with its refractive index sensitivity, at the single 

particle level, has traditionally been done using SEM.
108

 However, since the initial reports, very 

few studies have been published on the subject, despite its importance for sensor development. 

The main challenges for TEM coupling is to find and immobilize an electron transparent 

substrate which can withstand the flow of multiple viscous solutions. Recently, this problem was 
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solved by a commercial product from the manufacturers of the Si3N4 windows previously 

described (Figure 2.8). This product is TEMVu, a glass coverslip fitted with soft silicone holders 

securing a silicone-based chip in which a TEM membrane is etched (Figure 2.18). The distance 

between the bottom of the coverslip and the electron-transparent membrane in the as-provided 

construct is, however, too large for dark field scattering measurements with an oil immersion 

100X objective. The product was thus specially requested  "membrane down", i.e. etch pit facing 

away from the glass coverslip, and a 50X extra-long working distance (ELWD) objective was 

used. Particles could be clearly seen (Figure 2.18), albeit this technique may be difficult for low 

scatterers. Note that unlike all the other results presented in this work, the spectra for the RIS 

measurements were not typically fit with Lorentzian line shapes. Rather, MATLAB was used to 

obtain the numerical maxima of the smoothed spectra. This was implemented because of the 

prohibitively large data sets (hundreds of spectra) obtained for each particle, and because the 

shift can be well captured with numerical peak retrieval.  
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Figure 2.18 Scattering maps and grid sample holder for RIS measurements. Left: TEMVu cell 

showing the immobilized membrane window, image provided by TEMWindows.com. Middle: 

Au decahedra on a Si3N4 membrane in a TEMVu cell, observed with a 50 X ELWD objective. 

Right: Au decahedra on a glass coverslip, observed with a 100 X oil immersion objective. The 

images in the middle and on the right have the same size, approximately 60 μm in width. 

 

2.2.8. Other Experimental Observations and Notes 

 

2.2.8.1 Reactive Ion Etching 

 

Typical colloidal synthesis products consist of nanoparticles covered with a near-monolayer of 

surfactants, which can be bound more or less tighly. Such molecules are necessary to direct the 

growth and/or stabilize the final product in solution, however their presence on the surface of 

nanoparticles can be detrimental to fundamental studies as well as applications. A difference in 

refractive index due to the variability in surfactant amounts or chemical nature can, in principle, 

alter the plasmon resonance frequency of plasmonic particles. The presence of capping ligands 

may prevent or modify surface availbility, influencing catalysis and sensing. Given such 

potential effects of surfactants, a reliable, simple way to remove them without affecting the 
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plasmonic properties would be very valuable. The use of reactive ion etching (RIE) was 

suggested based on previous work in the Van Duyne group. RIE cannot be performed on 

Formvar/carbon grids as it destroys the support film.  

Tests were performed by depositing either small Au decahedra or octahedra (two very 

homogeneous reaction mixtures) on glass coverslips and performing oxygen RIE for 5 minutes at 

standard pressure settings. A significant blueshift was observed for both structures, as can be 

seen in Figure 2.19. This may be due to the removal of ligands (lowering of the average 

refractive index around the particle). The larger shift for Au decahedra could be due to their 

larger RIS. However, rounding of the particle corners may also play a role. Further investigation 

to optimize ligand removal while ensuring that no shape change occur would add a much-needed 

tool to the nanoplasmonics toolbox. Further, the development of surface decontamination via 

RIE would allow RIS measurements before and after removal; it is thought that ligand removal 

could improve RIS in colloidal nanoparticles by freeing some of the sensing volume. Of course, 

oxygen RIE cannot be applied to Ag or Cu particles due to their tendency to oxidize.   
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Figure 2.19. Reactive ion etching effect on single Au nanostructures. A blue shift is observed for 

both shapes. 

 

2.2.8.2 Size and Corner Rounding Measurements from TEM Images. 

 

Two methods can be employed to determine the size of nanoparticles from TEM images, as 

illustrated in Figure 2.20. Lines can be drawn in Microsoft Paint and the coordinates of their 

intersections recorded; this provides information about orientation, size, and aspect ratio. 

Alternatively, ImageJ can be used to quickly determine the projected surface area of a particle, a 

process that requires calibration and homogeneous corner rounding.  
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Similarly, corner rounding can be either fit manually or with ImageJ. In the former, Microsoft 

PowerPoint is used to draw a circle matching the radius of curvature of a cube (Figure 2.20) or a 

triangle corresponding to the truncation height of a bipyramid (Figure 4.6). In the later, the size 

is determined through the coordinate system approach, and the difference between the actual area 

(imageJ) and the idealized area (coordinate system) represents the rounding. All measurements 

presented here used the coordinate system and circle fitting; future experiments may benefit from 

the ImageJ approach. 

 

 

Figure 2.20. Size and corner rounding measurement approaches. Top: coordinate system in 

Microsoft Paint. Middle: projected surface area measurement with ImageJ. Bottom: circle fitting 

in Microsoft PowerPoint. 
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2.3 Computational Methods 

 

2.3.1 Alloy Wulff Construction Code Overview 

 

A MATLAB code was written and used to calculate the value of Λ, h100, h111, bulk concentration, 

surface concentration, and total energy for a given range of initial (homogeneous) composition, 

cycling through each initial composition and each possible surface composition. The inputs were 

the number of atoms, an initial guess on Λ, the range and step size desired for the surface and 

initial concentration, as well as the parameters and functions describing the surface free energy, 

the bulk free energy, and the unit cell composition-dependence.  

Since the surface concentration was fixed in each loop, the bulk concentration could be 

calculated by knowing the shape, i.e. the number of surface atoms. In the code, h111, and h100, and 

the first approximation for Λ (after the initial guess input) were calculated by solving the basic 

Wulff model. Then, the Λ in the alloy Wulff model was twice solved for and all concentrations 

and shape parameters were recalculated at each step. It was found that this number of repetition 

was sufficient to reach convergence. Concentrations above unity or below zero were set to unity 

and zero, respectively, and parameters were calculated with those fixed concentrations. 

The lowest energy configuration for each initial concentration was found from the energy matrix 

output of the previous step by finding the numerical energy minimum. Similarly, h111/h100 ratios 

could be calculated from the output h111 and h100 matrices by knowing the lowest energy 

configuration.  
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Graphics were produced by creating an isosurface plot from a basic Wulff model, given the 

h111/h100 parameter. 

Most calculations were performed on a laptop or desktop computer. Using a computational 

cluster would speed the calculations, but a personal computer can handle them. 

All the MATLAB codes used are reported in appendix A2. The details of their usage is clearly 

outlined in Chapter 7. 

 

2.3.2 Kinetic Twinned Wulff Construction Code Overview 

 

All the calculations necessary to produce publication-quality figures were performed in 

MATLAB with the codes supplied in Appendix A3. The codes consist of the single twinned 

code, the five-fold twinned code, and the graphical user interface (GUI) code that contains both 

singly and penta-twinned codes.  

In kinetic Wulff modeling, a 3D (xyz) grid is first defined with the meshgrid function, and the 

growth front value (Exyz) is calculated for each point according to the following equation: 

 

                        
                                                                                                            (2.1) 

 

Where  

 

       
    

         
                                                               (2.2) 
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                                                                  (2.3) 

 

As explained in Chapter 8, φ is a face-specific enhancement factor and Vhkl is the growth 

velocity of the hkl face. The parameter β is a smoothing factor to soften the edges of the faces, 

lowering the number of mesh points needed to produce a reasonably smooth figure. Finally, an 

isosurface plot, i.e. a surface connecting mesh points with the same value, in three dimensions, is 

used to render the nanoparticle shape. Additional smoothing can be performed in MATLAB (and 

in the GUI provided) through box kernel smoothing, but care has to be taken not to round the 

nanoparticle edges with too aggressive smoothing. 

A personal computer was used for calculations with step size larger than 0.1; clusters were used 

for smaller step sizes and for the initial rendering of the isosurface. Once saved as a ".fig" file, 

the isosurface of a small step size data set can be easily manipulated on a personal computer.  
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CHAPTER 3 

 

Unraveling the Effects of Size, Composition, and Substrate on the LSPR Properties of Au and 

Ag Nanocubes: A Systematic Single Particle Approach 
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3.1 Introduction to Size, Composition, and Substrate Effects 

As previously discussed (Chapter 2), size, shape, composition, dielectric environment, and 

aggregation affect the plasmon resonance frequency and linewidth of metal 

nanoparticles.
2,8,31,52,60,62,66,74,79,81,84,86,89,91-94,97,98,101-103,105,106,109,112,129,185-190

 Amongst those, the 

latter two can be exploited in detection schemes,
54,55,63,64,191

 while size, shape, and composition 

can be used to tune the resonance frequency for optimized applications in, for example, surface-

enhanced spectroscopies
192-194

 and sensors based on molecular resonance interactions.
195,196

 

Despite recent synthetic advances that have allowed the production of a wide range of 

nanoparticle sizes and shapes,
62,74,85,119,122,127,129,132,134,138,187,197-199

 very few rules exist to 

quantitatively predict the effects of such factors on the plasmonic behavior.  

One of the structures for which significant synthetic progress has been made are 

nanocubes:
62,102,122,127,187

 increasingly monodisperse and size-controlled products can be 

obtained, allowing their use as SERS substrates
200-203

 and plasmonic sensors,
57,61

 for example. 

Indeed, cubic structures are interesting building blocks for supported devices, as they can sit flat 

on a substrate, their right angles and flat faces allowing them to be closely stacked next and on 

top of each other, in a random
200

 or directed fashion.
123

 

 For such supported devices, substrate selection is part of the design process; transparency, 

conductivity, and robustness are only a few of the attributes that may be required for a given 

application. Changing these properties may alter the density, i.e. refractive index of the support 

film, which in turn can affect the plasmon resonance frequency of the deposited particles. 
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In an effort to provide a predictive tool for easy tuning of the plasmonic properties of supported 

nanocubes, Au and Ag nanocubes were obtained and analyzed using single particle correlated 

LSPR/TEM. The effects of size, shape (i.e. corner rounding), composition, and substrate 

refractive index were addressed and quantified.  

 

3.2 Previous Studies on Au Nanocubes 

 

Previous work on supported Ag nanocubes highlighted the presence of a high-energy, sharp 

plasmon peak not prominent in solution.
106,147

 The spectra and structure of a single Ag nanocube 

was obtained and a good agreement with Finite-difference time-domain (FDTD) results could be 

achieved by using a size and corner rounding close to what was observed experimentally (TEM: 

85.6 X 80.9 nm, 11 and 12 nm rounding, best FDTD fit: 83 X 83 nm, 13 nm rounding). While 

limited experimental data were reported (only one cube), the extensive computational results  

provided the trends to be expected in a future, more complete study. In particular, the plasmon 

resonance frequency of both peaks was shown to shift to longer wavelengths for larger or sharper 

cubes, with the higher energy peak appearing to shift less, at least in the (non-linear) wavelength 

scale presented.  

Other calculations on the properties of plasmonic nanocubes have been published, predicting  the 

occurrence of Fano resonances,
57

 and describing high order modes,
96

 for example. The wide-

ranging, burgeoning literature on nanocubes
52,57,61,86,92,106,123,125,138,147,200-204

 (both fundamental 
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and applied) testifies of the scientific interest in such regular, sharp-cornered, and easily 

stackable shape. 

 

3.3 Experimental Results and Discussion 

 

To probe the effect of size, corner rounding, composition, and substrate dielectric constant on the 

localized surface plasmon resonance frequency and linewidth of Ag and Au nanocubes, particles 

with size (side length) ranging from 60 to 100 nm were obtained from synthesis collaborators 

(see Chapter 2). The two substrates studied were polyvinyl formal, i.e. Formvar, a polymer 

typically used as TEM grid membrane (refractive index of 1.5
205

), and the semiconductor silicon 

nitride, of approximate composition Si3N4 and refractive index 2.05.
206

 The cubes  on different 

substrates were analyzed using single particle correlated LSPR/TEM, as described in Chapter 2. 

A total of 42 (Ag, Formvar), 58 (Ag, Si3N4,), 52 (Au, Formvar), and 23 (Au, Si3N4,) nanocubes 

with a projected aspect ratio between 0.90 and 1.11, isotropic rounding, and average relative 

rounding (r/c) of less than 0.22 were obtained.  

Representative TEM image and spectra for nanocubes with c ~ 78 nm and r ~ 12 nm are 

presented in Figure 3.1. In the Ag spectra, two peaks are observed: a sharp resonance near 400 

nm and a broader one in the 500 nm region. The high-energy peak is a quadrupolar resonance 

that becomes prominent when a Ag cube is in a relatively high RI medium, i.e. as low as 1.33 

(water).
106

 Considering the fact that the configuration of a nanocube lying on a surface is a non-

symmetric, the resonance is not a true quadrupole, just as the dipole is not a true dipole. Figure 
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3.2 shows a simulated spectrum of a single nanocube on a dielectric substrate.  The higher-

energy peak (quadrupolar in origin) has strong correlations with enhanced electric fields away 

from the surface whereas the lower-energy peak (dipolar in origin) correlates with fields towards 

the substrate. Note that this quadrupolar resonance is not observed in Au nanocubes because of 

the onset of interband transitions at energies above 500 nm, as discussed in Section 3.3.2. 

 

 

Figure 3.1. Representative single particle LSPR spectra and TEM image of single Ag and Au 

nanocubes with c ~ 78 nm and r ~ 12 nm . Blue trace: Ag on Formvar. Green trace: Ag on Si3N4. 

Red trace: Au on Formvar. Purple trace: Au on Si3N4. Inset: TEM image of Ag nanocube on 

Formvar. 
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Figure 3.2. FDTD calculated optical response and electric field intensities for a c = 78 nm and r 

= 12 nm Ag nanocube on Formvar. Left: calculated scattering spectrum. Middle: Field profile for 

the quadrupolar (A) resonance at 388 nm. Right: field profile for the dipolar (B) resonance at 467 

nm. In the field profiles, the nanocube is outlined in solid white, and the substrate position is 

indicated using a dashed white line.  

 

3.3.1 Effect of Size 

 

Size is a powerful handle on plasmonic properties: generally, a redshift of the LSPR frequency is 

observed with increasing particle size because of retardation effects, a phenomenon described in 

Chapter 1.  

To quantify the effect of size on the plasmonic properties of nanocubes, 175 single particle 

spectra were obtained and fit to Lorentzian line shape function(s) (one per mode), yielding 

plasmon energy and FWHM as a function of particle size for different compositions (Ag and Au) 

and different substrates (Formvar and Si3N4), see Figure 3.3 and 3.4. From this correlated 

LSPR/TEM data, statistics related to the fit and the error for both plasmonic attributes were 

extracted. A statistically significant linear relationship between the LSPR position and the 
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nanocube side length (Figure 3.3) was found for all three resonances under consideration (Ag 

quadrupole, Ag dipole, and Au dipole). Statistics were obtained using analysis of covariance, a 

tool for analyzing groups of data which may have different slopes. The slope of the LSPR 

positions as a function of size was found to not be statistically different for a given peak on either 

substrate, having p-values of 0.37, 0.63, and 0.65 for Au proximal, Ag distal, and Ag proximal, 

respectively (Table 3.1). Note that a p-value is related to the probability that the difference 

between two groups is the result of chance, which goes from zero (not likely, or in other words a 

real effect) to one (extremely likely). A model constraining the slopes to be the same (parallel 

lines) was thus used for subsequent analysis. The results obtained, together with their standard 

deviations, are presented in Table 3.1. It can be seen that the resonance energy dependence on 

nanocube size is greatest for the Ag dipole, followed by the Ag quadrupole, and the Au dipole. 

An interesting feature of these results is that the redshifts due to the substrate are independent of 

nanocube size for a given plasmon mode (parallel lines), suggesting that an heterogeneous 

collection of nanocubes would not affect their performance if used in an application based on the 

sensitivity to substrate RI, investigating phase transitions, for example. 

While quantitative, predictive rules could be extracted from the size dependence of the LSPR 

energy, the relationship between plasmon decay (measured in terms of FWHM) and side length 

is not as conclusive (Figure 3.4). The effect of inhomogeneous corner rounding, the limited size 

range available, and small local changes in dielectric environment are likely responsible for the 

scatter in the FWHM data. Analysis of covariance (not shown) yielded large errors, with the 95% 

confidence intervals on the slopes ranging from negative to positive values (i.e. no statistically 
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significant relationships). Successful attempts at correlating the plasmon FWHM with size for 

wider particle size ranges and different shapes are presented in Chapter 4. 

 

 

Figure 3.3. Effect of nanocube composition, plasmon mode, and substrate RI (n) on the LSPR 

energy for Ag and Au nanocubes. The difference in LSPR positions on Formvar and Si3N4 are 

0.23 and 0.057 eV for the dipolar (D) modes of Ag and Au, respectively; it is 0.053 eV for the 

Ag quadrupolar (Q) mode.  Parallel slopes fit shown (see Table 3.1 for values and text for 

discussion). 
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Table 3.1. Fit parameters and p-values for the size dependence of the resonance energy of Ag 

and Au nanocubes. The data is presented in Figures 3.3.  
Sample (LSPR) Substrate Slope 

 meV/nm  

Intercept 

eV 

p-value 

Au (proximal) Si3N4 -3.9 (0.6) 2.39 (0.05) 0.37 

Au (proximal) Formvar 2.44 (0.05) 

Ag (distal) Si3N4 -4.2 (0.6) 3.36 (0.05) 0.63 

Ag (distal) Formvar 3.41 (0.05) 

Ag (proximal) Si3N4 -8.9 (0.5) 3.07 (0.04) 0.65 

Ag (proximal) Formvar 3.30 (0.04) 

Note: Standard deviation on the last digit shown in parentheses. 

 

 

 

Figure 3.4. Effect of nanocube composition, plasmon mode, and substrate RI on the LSPR 

FWHM for Ag and Au nanocubes. Separate slopes fit shown. 

 

3.3.2 Effect of Composition 

 

Ag and Au have, as discussed previously, strikingly different spectra, most notably the presence 

of a sharp quadrupole-like mode for Ag below 400 nm. Such resonance is absent of the Au 



84   

   

   

spectra because of the onset of interband transitions at energies higher than 500 nm, resulting in 

a damping of all plasmon resonances at such frequencies. This resonance nonetheless exists in 

Au, and is expected to redshift and become more noticeable upon increase of the surrounding RI.  

Indeed, a shoulder around 525 nm was consistently observed for Au nanocubes on Si3N4. Work 

with a support film of high refractive index (Si, RI ~ 4), aimed at shifting the quadrupolar 

plasmon mode away from the interband transitions, was inconclusive: only very thin (15 nm) Si 

films were available, such that the dielectric medium probed by the plasmon extends beyond the 

film, reducing the effective refractive index. This RI was further lowered by the presence of a 

thin, low density native oxide (SiOx, RI ~ 1.5) on both sides of the support film. 

While it remains impossible to compare the quadrupolar modes of Ag and Au, both dipoles are 

prominent in their spectra. The dipolar plasmon of Au is located at significantly lower energies 

than that of Ag (600 and 500 nm region, respectively), as predicted by their different dielectric 

constants; this effect can be modeled by Mie theory
2,91

 and has also been observed 

experimentally.
79

 The energy gap between Ag and Au depends on the size of the cubes and the 

substrate (Section 3.3.1, Figure 3.3); typical values for c = 85 nm are 0.43 eV and 0.26 eV on 

Formvar and Si3N4, respectively.  

Beyond understanding the effects of structure and composition on the LSPR energy, it is 

interesting to study the plasmon decay, i.e. the peak FWHM for the various resonances. Despite 

the noise in this data (Figure 3.4), it is clear that the dipolar mode of Au is sharper (lower 

FWHM) than the dipolar mod of Ag for a given substrate. Lower losses in the red region for Au 

are most likely responsible for this effect. Additionally, the quadrupolar mode in Ag is the 
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sharpest amongst the studied resonances; higher order modes tend to have sharper plasmon 

widths.
57,82,96,106

 

 

3.3.3 Effect of Substrate 

 

The resonance frequency of small metal particles is highly sensitive to the immediate dielectric 

environment surrounding them, as expected from basic models, e.g., Mie theory.
2
 This 

sensitivity, in fact, has been exploited in a number of biological and chemical sensors.
54,55,61,63-

66,68,69,73,207,208
 While modifying the substrate only alters the environment immediately adjacent to 

one of the six equivalent faces of a nanocube, this change nevertheless expected to have 

noticeable effects on its plasmonic properties.
57,186

 Substrate effects are indeed observed for all 

the plasmon modes of nanocubes, as shown in Figure 3.3. The difference in dielectric properties 

between Ag and Au, in particular the different absolute value of the real part of the dielectric 

constant in the visible region (they have a similar slope),
50,59

 give rise to their different 

sensitivities to the surrounding dielectric medium.
50,59,68,79,102

 This is reflected, in the present 

study, by the different degree of spacing between the parallel lines in Figure 3.3. The Ag dipolar 

resonance is about five times as sensitive as its Au analogue, with plasmon shifts of 0.23 and 

0.057 eV between Formvar and Si3N4, respectively. This finding is important for sensing 

applications relying on substrate-induced optical shifts (e.g., sensing of phase transitions or 

surface segregation), where Ag nanocubes should be favored due to their higher sensitivity.  
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3.3.4 Quadrupole and Dipole Modes in Ag Nanocubes 

 

Silver nanocubes supported on a substrate display two plasmon resonances, a sharp quadrupole 

around 400 nm and a dipole around 500 nm, as discussed above. The dipolar resonance is about 

five time as sensitive to the change in substrate refractive index than the quadrupolar resonance 

(0.23 and 0.053 eV), as expected from their different local environment correlations (Figure 3.2): 

the electric fields of the dipolar mode extend into the substrate, leading to high substrate RI 

sensitivity; the quadrupolar fields are concentrated away from the substrate, suggesting a higher 

sensitivity to the dielectric properties of the medium above the substrate (a property of interest 

for sensing applications). Additionally, the width of the quadrupolar peak is significantly less 

than that of the dipolar peak (Figure 3.4, another property interesting for sensing). 

 

3.3.5 Effect of Corner Rounding 

 

Due to the effects of corner rounding on plasmonic properties,
81,85,97,103,105,106,147,209

 only cubes 

with average relative rounding (r/c) of less than 0.22 were used for the statistical analysis of the 

effects of size, composition, and substrate RI (Figures 3.3 and 3.4). While the majority of Ag 

cubes fulfilled this requirement, a number of Au particles had to be rejected. Such particles can 

now be used to investigate, rather qualitatively, the influence of shape on the plasmonic 

properties. A total of 66 Au cubes, 14 rounded (r/c  > 0.25) and 52 sharp (r/c < 0.22) were 

investigated; their plasmon energy and FWHM are reported in Figure 3.5. As expected,
106,147

 a 

shift to higher resonance energy is observed for more rounded cubes. The average shift obtained 
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between the sharp and rounded group was 0.1 eV. Refractive index sensitivity measurements 

were not performed, but comparing sharp and rounded cubes, without bulk inhomogeneities, 

would certainly provide insight on the effect of tip sharpness on sensing performance, as was 

determined for their SERS activity.
201,202

 Additionally, no effect of rounding was found on the 

FWHM of the nanocubes; it is unclear whether, in this shape range, any broadening is expected 

as previous calculations did not directly address this issue.
106,147

 

 

 

Figure 3.5. Effect of corner rounding on the plasmonic properties of Au nanocubes. Left: 

example of single particle LSPR spectra and TEM pictures for sharp (r/c = 0.18) rounded (r/c = 

0.29) nanocubes of 78 nm side length (c). Middle: effect of rounding on the dipolar resonance 

energy. Right: effect of corner rounding on the dipolar resonance FWHM. Separate slopes fit 

shown.  

 

3.4 Computational Results and Discussion 

A collaboration with the Schatz group at Northwestern University was established to study  the  

plasmonic behavior of nanocubes with FDTD.
52,147,210

 Effects difficult or impossible to probe 
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experimentally were targeted, as numerical results typically yield qualitative results; reproducing 

large data sets such as that in Figures 3.3-3.5 are beyond the current computational capabilities.  

Previous calculations showed good agreement between the experimental and FDTD calculated 

spectra of Ag nanocubes on Formvar.
147

 To validate the technique with Au structures, 

calculations were performed (see ref.
52

 for details) for a variety of experimental nanocube sizes 

and rounding. The agreement between numerical and experimental spectra was typically 

acceptable: the energy matched within 50 nm, and the width and symmetry of the peaks was 

moderately well reproduced computationally. Two representative spectra, for Au on Formvar 

and Si3N4, are presented in Figure 3.6. Discrepancies are noticeable, and many factors and 

computational assumptions can be invoked to explain the mismatch, some of which are discussed 

below.  

The disparities in the interband transition region (energy above 500 nm) can be attributed to the 

low intensity of the white light at short wavelengths in the experiments, rendering the results in 

that region less reliable. Another mismatch is obvious in the Si3N4 spectra: the calculations show 

a sharp dip to zero intensity near 720 nm, not seen experimentally. This feature is believed to 

arise from an optical mode in the Si3N4 layer, which does not occur in the experiments due to 

substrate inhomogeneities (in particular thickness variations). Further calculations confirmed this 

assignment (see ref.
52

 and Section 3.4.1). While the optical response of the cube on Si3N4 is 

moderately well modeled with FDTD, both the peak shape and energy are inadequately 

reproduced for the Au nanocube on Formvar (Figure 3.6). The 10 nm shift between theory and 

experiment may be due to the clean surface assumption in FDTD, i.e. the presence of surfactants 

and contaminants around the particle was neglected. Such molecules would create a higher local 



89   

   

   

dielectric environment, leading to a blueshift of the plasmon resonance. This effect is expected to 

be more pronounced for Formvar than Si3N4, as the substrate RI is already high in the latter.  

 

 

Figure 3.6. Computational and experimental Au nanocube spectra. Right: geometry used for 

FDTD calculations. Middle: comparison of FDTD calculated and experimental scattering for a c 

= 84.0 nm and r = 15.2 nm cube on Formvar. Left: comparison of FDTD calculated and 

experimental scattering for a c = 74.2 nm and r = 12.7 cube on Si3N4.  

 

3.4.1 Effect of Substrate Composition and Layering Morphology 

 

Experimental parameters such as the substrate thickness (100 nm) and its distance from the glass 

coverslip were fixed, such that to study the effect of substrate thickness and layering, FDTD 

calculations were performed. Following the computational geometry presented in Figure 3.6, the 

optical response of a Au nanocube with c = 72 nm and r = 11 nm placed directly (h = 0) on Si3N4 

layers of varying height (hl = 25 – 200 nm), all atop infinite glass substrates, were calculated 

(Figure 3.7). Note that for these calculations, grid spacing of 1.0 nm were used to save 

computational time, as only qualitative trends were sought. As soon as the Si3N4 layer is added 
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(hl = 25 nm), the proximal LSPR shifts from 557 nm to 607 nm, equivalent to that found when 

changing the RI of an infinite layer from n = 1.5 to n = 2 (see below). Further increasing hl does 

not affect the position of the proximal LSPR, showing that only the RI of the material in the very 

near-field (~ 25 nm) of the nanoparticle is important for the dipolar response. Further 

calculations varying the layer thicknesses between 0 and 25 nm would be of interest, as they 

would unravel the form of substrate thickness dependence of the plasmon shift (linear? 

exponential?), and may help explain the results for Au cubes on thin (15 nm) Si layers.  

A minimum going to zero around 800 nm, the optical mode in the Si3N4 layer previously 

described, becomes apparent at hl = 75 – 100 nm. Confirmation of the nature of this mode comes 

from its behavior with changing hl. As hl is increased, the optical mode redshifts, eventually 

leaving the spectral range considered. Note that for thicknesses of both 100 nm and 200 nm, a 

peak near 400 nm is observed, which is likely unrelated to interband transitions, but could be 

attributed to a LSPR, or possibly another optical mode altogether. 
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Figure 3.7. Effect of substrate thickness on the optical response of a Au nanocube calculated 

using FDTD. The nanocube is directly atop a Si3N4 substrate on an infinite glass medium. Right: 

redshift of the dipolar LSPR due to the introduction of a high RI substrate (RI = 2), and the 

buildup of an optical mode with increasing thickness. Left: redshift of the optical mode with a 

further increase of thickness. 

 

 

Figure 3.8. Effect of the substrate on the optical response of a Au nanocube, calculated using 

FDTD. Left: optical responses for various substrate RI values, with nanocube resting directly 

atop the substrate. Right: optical responses of a nanocube as a function of the distance from a 

Formvar substrate. 
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The optical response (scattering) of a c = 84.0 nm and r = 15.0 nm (i.e. the parameters of the 

cube in Figure 3.6) nanocube on a infinite slabs of material of different refractive indices were 

also calculated. As expected and observed experimentally, the plasmon resonance shifts towards 

lower energies in a high refractive index medium. However, the main goal of this exercise was 

not to extract this well understood phenomenon, but rather to predict the magnitude of the shift 

and probe the appearance of the quadrupolar band on high RI substrate. Both questions were left 

half-answered. The magnitude of the FDTD calculated shift between Formvar (RI = 1.5) and 

Si3N4 (RI ~ 2) is 50 nm, while the value obtained experimentally was 16 nm. A variety of factors 

can be invoked to explain this difference, most prominently the presence of surfactant molecules 

around the particle, however it remains that the calculation performed are not adequate to predict 

the effect of substrate on the LSPR of Au nanocubes. The spectra shown in Figure 3.8 do suggest 

a small shoulder in the 500 nm region, which could be the Au analogue of the sharp Ag mode. 

However, no field distribution computation at this wavelength were performed, thus it is unclear 

whether this is indeed a quadrupole-like resonance. 

 

3.4.2 Effect of Particle-Substrate  Distance  

 

Another factor that is both difficult to probe experimentally and important for plasmonic 

properties is the particle-substrate distance. The presence of surfactant molecules around the 

nanocubes is expected to create some separation from the underlying support film; however, this 

distance is difficult to measure or control experimentally. FDTD was thus used to calculate the 
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optical response of a Au nanocube with c = 84.0 nm and r = 15.0 nm (i.e. the parameters of the 

cube in Figure 3.6) at different distances h from a Formvar substrate.  As can be seen in Figure 

3.8, The dipolar mode  shifts to lower energy as the nanocube is brought closer to the substrate, 

from 542 nm when infinitely separated (isolated in air), to 552 nm when h = 2 nm, to 562 nm 

when directly in contact with it (h = 0). The results obtained are in agreement with previous 

studies on Ag nanocubes without corner rounding
106

 as well as with the discussion above, further 

suggesting that only the near-field proximity of a material, often just a few nanometers, is 

influential on the proximal  LSPR. 

 

3.5 Conclusions 

 

The systematic study of Ag and Au nanocubes on different support films performed using 

correlated LSPR/TEM provided quantitative and predictive rules for the effects of size, 

composition, and substrate on the plasmon resonance energy.  Qualitative trends were also 

obtained using FDTD, specifically about factors difficult to control experimentally such as the 

substrate layering morphology and the particle-substrate distance. The results presented suggest 

that nanocubes could be very good optical RI sensors. In particular, the quadrupolar mode of Ag 

nanocubes is a prime candidate, as it is sharp, and has a relatively weak dependence on position 

with nanocube size, meaning slight heterogeneities would be insignificant. Additionally, based 

on its field correlations, this mode is expected to have a high sensitivity to change in RI above 

the substrate, while having a low sensitivity to the substrate itself. 
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CHAPTER 4 

 

Plasmon Length: a Universal Parameter for the Size Dependence of Plasmonic Phenomena 
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4.1 Correlated LSPR/TEM of Sharp Au Nanostructures 

  

Shape is often cited as a potent handle to tune the optical properties of metal nanoparticles, such 

that many research groups focus on developing ways to synthesize novel nanostructures, 

understand their growth, and improve size and shape 

control.
62,74,85,104,107,119,122,127,129,132,136,138,140,141,143,145,187,197-199,211

 Over the past twenty years, a 

number of increasingly effective synthesis strategies such as seed-mediated and plasmon-assisted 

growth have appeared.
62,119,122,126,127,129,132,179,187

 While plasmonics is not the sole applications of 

metal nanoparticles, many synthesis publications also include basic information about the LSPR 

behavior of the products. However, the optical response of nanoparticle solutions is blurred by 

size and shape heterogeneity.  

The high throughput correlated single particle spectroscopy and electron microscopy methods 

developed in this work has shown to be an invaluable technique that can overcome this 

ensemble-averaging difficulty and provide quantitative data from inhomogeneous reaction 

mixtures.
52,86,87,92

 Indeed, single particle analysis can yield unparalleled information about 

linewidths and precise effects of various structural factors on the LSPR behavior of 

nanostructures. Increasingly refined single particle correlated approaches have been used for the 

last ten years, to answer, either qualitatively or quantitatively, questions about the effects of 

various structural factors on the LSPR energy, and, in few cases, 

linewidth.
52,82,84,87,91,108,109,117,147,149,212

 

However, systematic shape comparisons have not been carried out, despite its leading 

importance in guiding the choice of particles for a wide range of 
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applications.
132,148,149,192,201,213,214

 To address the effect of shape on optical properties, in 

particular LSPR energy and linewidth, five Au shapes were obtained: cubes, decahedra, 

octahedra, truncated bitetrahedra, and icosahedra. Synthesis details can be found in Chapter 2. 

Different shapes of the same metal (Au) were chosen because composition plays a major role in 

determining the plasmon energy, plasmon width, and their dependence on size (Chapter 3 and 

ref.
52,68,76,79,92

). Correlated dark field optical spectroscopy (performed with unpolarized light) and 

transmission electron microscopy was performed on the particles deposited on either the 

Formvar side of ultrathin carbon type A grids or on 100 nm thick Si3N4 windows. Representative 

scattering spectra and electron micrographs of single Au nanoparticles on Formvar are presented 

in Figure 4.1. Each spectrum was fit to one or more Lorentzian line shape functions (one per 

mode present). The peak positions and linewidths of the dipolar resonances (lowest energy peak) 

were used for the analysis of covariance presented below.  
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4.1.1 Side Length as a Size Parameter: Shape-Dependent Descriptor, Shape Dependent 

Retardation Effects 

Figure 4.1. Representative TEM images and LSPR spectra for Au nanostructures on Formvar. 

Clockwise from top left: cube, decahedron, truncated bitetrahedron, octahedron, and 

icosahedron.  

 

As a first attempt to compare plasmonic nanoparticles of different shapes, the spectral 

differences of five Au structures of the same size can be examined. However, before proceeding 

with such comparison, size must be defined. How will the size of different shapes be measured? 

For some structures, an obvious parameter exists, such as the side length for cubes and diameter 

for spheres. Characterizing more complex structures is not as straightforward, however. 

Decahedra have been measured using both the pentagonal base edge length
199

 and the pentagonal 

base "apex to apex"
137

 distance, while triangles can be measured edge to corner (height), or 
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corner to corner (edge length).
103,143,149

 The most commonly used parameters, referred to as side 

lengths from now onwards, were chosen for this analysis (Figure 4.2 and 4.3), however there 

remain subjectivity in this assignment. Not surprisingly this parameter is also the easiest to 

measure experimentally from TEM images (Figure 4.2). 

 

 

Figure 4.2. Representative TEM images and side length measurements for, from left to right, a 

cube, decahedron, octahedron, truncated bitetrahedron, and icosahedron. 

 

Comparing particles of the same size using this arbitrary side length parameter does not provide 

much information, however. As one might expect, particles of different shapes have different 

spectra, as illustrated for a truncated bitetrahedron (triangle), decahedron, and icosahedron in 

Figure 4.3. Shape-specific LSPR behavior can be obtained, however, and may prove useful. In 

fact, quantitative values for the size-dependence of plasmon energy and linewidth can be 

extracted for all the five shapes studied, as shown in Figure 4.4 and Table 4.1. Analysis of 

covariance was performed in MATLAB, using the correlated single particle scattering/TEM data 

obtained on 50 cubes, 245 decahedra, 40 icosahedra, 139 triangles, and 200 octahedra. Note that 

the error for cubes is significantly higher than that of other structures because of the small size 

range available. P-values are also reported in Table 4.1: they indicates whether the difference 

between two groups is the result of chance (with 0 being a real difference and 1 being a chance, 
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or random, event). Two of the five p-values for the side length dependence of energy and 

linewidth are below 0.05 (Table 4.1), indicating that size effects are significantly different for 

different shapes when described by the side length. While such quantitative rules can be useful 

for specific shapes,  the disparity of values for the various shapes makes this study a case-by-

case analysis, where predictive rules will be empirical. 

 

Table 4.1. Fit parameters for the side length fit to dipolar LSPR energy and full width at half 

maximum (analysis of covariance). 
 Energy Dependence on Side Length  FWHM Dependence on Side Length 

Shape Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p- 

value 

Slope 

(meV/nm) 

p- 

value 

Intercept 

(eV) 

p-

value 

Cubes -2.4 (9) 0.082 2.32 (7) 0.10 3.1(13) 0.64 0.02 (11) 0.64 

Triangles -2.8 (2) 0 2.41 (2) 0.23 2.4 (4) 0 -0.10 (3) 0.047 

Icosahedra -6.3 (4) 0 2.53 (4) 0.0093 5.0 (6) 0.027 0.03 (5) 0.27 

Decahedra -3.9 (3) 0.96 2.40 (3) 0.12 3.8 (4) 0.90 -0.02 (3) 0.68 

Octahedra -4.2 (2) 0.26 2.53 (2) 0 4.4 (4) 0.075 -0.09 (3) 0.090 

Note: standard error on last digit(s) in parentheses. When the standard error has two digits, it 

represents the error on the last two digits. P-values less than 0.0005 are reported as 0. 

 

4.1.2 Plasmon Length: a Universal Parameter to Describe Size Effects  

 

Figure 4.3 and 4.4, as well as the analysis discussed above show that using an arbitrary size 

parameter to characterize the size of Au nanostructures leads to arbitrary values for the size-

dependence of plasmonic properties. Such relationships may of course be useful to predict the 

plasmonic behavior of nanoparticles of a given shape; however, they do not improve our 

understanding of shape effects, the ultimate goal of this study. 
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Figure 4.3. Side length and plasmon length as descriptors of nanoparticle size. Top left: side 

length definition. Top right: plasmon length definition. Bottom panels: representative single 

particle spectra for Au triangles (blue), decahedra (green) and icosahedra (red). Bottom Left: 

particles of similar side length. Right: particles of similar plasmon length. 

 

Another way to approach the study of shape effects is to use a size parameter that reflects the 

plasmon resonance of the particle rather than the length of some repeating geometric unit. 

Because the electron oscillation frequency is expected to depend on the separation between 

charges for a dipolar mode, the distance relevant to characterize particle size is the distance 

between poles of inverse charge, as depicted in Figure 4.3. To determine this length for specific 

shapes, results from numerical calculations and experimental plasmon mapping experiments 

were used, and the regions of opposite charges were deduced from visual inspection. The 

computed vector plots of the induced polarization in octahedra presented by Li et al.
178

 clearly 

show apex to apex oscillation for the dipolar mode. A number of groups have published field 
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maps for triangles (a good review can be found in ref.
143

), the work of Kelly et al.
214

 and Brioude 

and Pileni
215

 was most useful. The face-to-face mode of nanocubes (i.e. edge length and plasmon 

length are equivalent) is obvious in the work of McMahon et al,.
147

 Sherry et al.,
106

 and Ringe et 

al..
52

 The plasmon length for decahedral particles, from edge to apex of the decahedral base, was 

assigned following a number of publications from the Liz-Marzán group.
67,82,199

 No information 

was found on the plasmonic properties of icosahedra, as this seems to be the first systematic 

structure-function analysis for this shape. Its plasmon length was deduced by analogy to 

octahedral and spherical particles, i.e. taken to be apex to apex.  

 

Table 4.2. Fit parameters for the plasmon length fit to dipolar LSPR energy and full width at half 

maximum (analysis of covariance, unconstrained slopes). 
 Energy Dependence on Plasmon Length  FWHM Dependence on Plasmon 

Length 

Shape Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p-

value 

Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p-

value 

Cubes -2.4 (9) 0.50 2.32 (7) 0.10 3.1 (13) 0.87 0.02 (11) 0.64 

Triangles -3.2 (2) 0.31 2.41 (2) 0.23 2.8 (3) 0.79 -0.10 (3) 0.047 

Icosahedra -3.3 (3) 0.21 2.53 (4) 0.009 2.6 (4) 0.46 0.03 (5) 0.27 

Decahedra -3.0 (2) 0.89 2.40 (2) 0.12 2.9 (4) 0.97 -0.02 (3) 0.68 

Octahedra -3.0 (2) 0.97 2.53 (2) 0 3.1 (3) 0.58 -0.09 (3) 0.089 

Note: standard error on last digit(s) in parentheses. P-values less than 0.0005 are reported as 0. 

 

Table 4.3. Fit parameters for the plasmon length fit to dipolar LSPR energy and full width at half 

maximum (Analysis of Covariance, slope set equal for all shapes). 
 Energy Dependence on Plasmon 

Length  

FWHM Dependence on Plasmon 

Length 

Shape Slope  

(meV/nm) 

Intercept  

(eV) 

p-

value 

Slope  

(meV/nm) 

Intercept  

(eV) 

p-

value 

Cubes 3.08 (4) 
2.374 (6) 0 

2.96 (6) 

 

0.036 (9) 0 

Triangles 2.384 (4) 0 -0.122 (6) 0 

Icosahedra 2.485 (6) 0 -0.035 (9) 0.56 

Decahedra 2.411 (3) 0 -0.023 (5) 0 

Octahedra 2.550 (4) 0 -0.058 (5) 9*10-4 

Note: standard error on last digit(s) in parentheses. P-values less than 0.0005 are reported as 0. 
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Figure 4.4. Statistical analysis of size effects using side and plasmon length for Au cubes (black 

squares), decahedra (green stars), icosahedra (red circles), triangles (blue triangles), and 

octahedra (orange diamonds). Clockwise from top left: dipolar plasmon energy dependence on 

side length, dipolar plasmon energy dependence on plasmon length, full width at half maximum 

(FWHM) dependence on side length, FWHM dependence on plasmon length. Parallel slopes in 

the right panels were obtained from analysis of covariance. 
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The results presented in Figure 4.3 show that particles with different shapes, but comparable 

plasmon lengths, have similar LSPR spectra. Analysis of covariance, performed for the 674 

single Au nanoparticles using the plasmon length as size descriptor (Tables 4.2-4.3), yields a 

homogeneous size-dependence of the dipolar plasmon energy and linewidth. The size-

dependence of energy and linewidth now all have p-values over 0.2 (Table 4.2), i.e. the slopes 

are not significantly different, in sharp contrast with the side length analysis presented above. 

This phenomenon can be understood by considering that retardation effects are mostly 

determined by the increase in distance between regions of opposite oscillation-induced charge, 

i.e. increase in plasmon length. A model constraining the slopes to be the same (parallel lines), 

the statistically relevant model for this system, was used to compute the universal size-

dependence of plasmon energy and linewidth shown in Table 4.3. Note, however, that the 

intercepts obtained for constrained slopes are significantly different (p-values less than 0.0005 

for all structures, Table 4.3). 

Linear trends for the dipolar plasmon energy variation with size can also be extracted from 

previously published data on fixed aspect ratio structures, obtained experimentally for structures 

such as silver cubes and decahedra,
52,96,137

 and computationally for silver truncated tetrahedral.
143

 

However, the experimental data commonly used to obtain such trends are based on bulk 

measurements; the assumption of constant shape composition, aspect ratio and corner rounding 

between the reaction mixtures producing different sizes must be perfectly obeyed to make bulk 

trends quantitative. This is rarely the case: a good example can be found for the corner rounding 

of Ag nanocubes, Section 4.3. Therefore, these trends cannot be claimed to be quantitative or 

predictive. Another major drawback of bulk measurements is the inherent inability to obtain 
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information about the plasmon linewidth because of inhomogeneous broadening, i.e. broadening 

due to the shape and size inhomogeneity of the particles in the sample. The current results are 

truly a first in this field; never before has such large sample size been so successfully used to 

provide quantitative, statistically significant relationships between size, shape, and plasmon 

linewidth such as those presented in Figure 4.4. 

 

4.1.3 Substrate Effects on Au Nanostructures  

  

While size effects seem to be independent of shape for dipolar modes, given that the plasmon 

length is used, other factors known to influence LSPR behavior may affect the size- and shape-

dependence of the plasmon energy and linewidth. Amongst those, the effect of substrate can be 

readily probed by acquiring data on different electron-transparent support films, in this case 

Formvar (RI = 1.5
205

) and Si3N4 (RI ~ 2
206

). This study was performed, such that in addition to 

the 26 Au nanocubes already discussed in Chapter 3, the plasmon response of 69 Au decahedra, 

7 Au icosahedra, and 10 Au truncated bitetrahedra on the Si3N4 were obtained. 
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Figure 4.5. Effect of substrate refractive index on the plasmon energy and FWHM of Au 

nanostructures. Colored data points are for a substrate with RI = 1.5 (Formvar), while black 

symbols are for particles on Si3N4 (RI ~ 2). From left to right, decahedra, icosahedra, and 

truncated bitetrahedra. Top row: dipolar plasmon energy. Bottom row: dipolar plasmon FWHM. 

The statistically relevant fit is shown, i.e. a parallel line fit for the LSPR energy and a same line 

fit for the FWHM. 
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Table 4.4. Fit parameters for the plasmon length fit to dipolar LSPR energy and full width at half 

maximum for Au nanostructures on Formvar (RI = 1.5) and Si3N4 (RI ~ 2) (pair wise analysis of 

covariance, unconstrained slopes). 
  Energy Dependence on Plasmon 

Length  

FWHM Dependence on Plasmon 

Length 

Shape N Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p-

value 

Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p-

value 

Cubes 

Formvar 

52 -2.4(5) 0.011 2.31(4) 0.053 0.0031(5) 0.07 0.02(4) 0.001 

Cubes  

Si3N4 

23 -5.2(5) 0.011 2.49(4) 0.053 -0.0011(5) 0.07 0.33(4) 0.001 

Decahedra 

Formvar 

245 -2.95(9) 0.58 2.403(11) 0 0.0029 0.10 -0.02(2) 0.29 

Decahedra

Si3N4 

69 -3.05(9) 0.58 2.279(11) 0 0.0023 0.10 0.03(2) 0.29 

Icosahedra 

Formvar 

40 -3.3(9) 0.84 2.53(11) 0.63 0.0025(9) 0.31 0.05(11) 0.43 

Icosahedra

Si3N4 

7 -3.7(9) 0.84 2.42 (11) 0.63 0.0007(9) 0.31 0.23(11) 0.43 

Triangles 

Formvar 

139 -3.3(4) 0.93 2.41(6) 0.53 -0.09(8) 0.21 0.0027(6) 0.29 

Triangles 

Si3N4 

10 -3.3(4) 0.93 2.33(6) 0.53 0.13(8) 0.21 0.0015(6) 0.29 

Note: standard error on last digit(s) in parentheses. P-values less than 0.0005 are reported as 0. 
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Table 4.5. Fit parameters for plasmon length fit to dipolar LSPR energy and full width at half 

maximum for Au nanostructures on Formvar (RI = 1.5) and Si3N4 (RI ~ 2) (pair wise analysis of 

covariance, constrained slopes). 
  Energy Dependence on Plasmon 

Length  

FWHM Dependence on Plasmon Length 

Shape N Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p-

value 

Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p- 

value 

Cubes, 

Formvar 

52 -3.1(5) 0 2.37(4) 0 1.1(6) 0.078 0.194(4) 0 

Cubes,  

Si3N4 

23 2.31(4) 0 0.1536(4) 0 

Decahedra, 

Formvar 

245 -3.00(5) 0 2.402(6) 0 2.90(10) 0 -0.009(3) 0.0002 

Decahedra, 

Si3N4 

69 2.291(6) 0 -0.035(3) 0.0002 

Icosahedra, 

Formvar 

40 -3.3(2) 0 2.532(13) 0 2.5(3) 0 0.02(2) 0.27 

Icosahedra, 

Si3N4 

7 2.376(13) 0 0.04(2) 0.27 

Triangles, 

Formvar 

139 -3.20(9) 0 2.411(17) 0 2.80(11) 0 -0.046(12) 0.10 

Triangles, 

Si3N4 

10 2.324(17) 0 -0.086(12) 0.10 

Note: standard error on last digit(s) in parentheses. P-values less than 0.0005 are reported as 0. 
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Table 4.6. Fit parameters for plasmon length fit to dipolar LSPR energy and full width at half 

maximum for Au nanostructures on Formvar (RI = 1.5) and Si3N4 (RI ~ 2) (global analysis of 

covariance). 
  Energy Dependence on Plasmon 

Length, Unconstrained Slopes 

Energy Dependence on Plasmon 

Length, Constrained Slopes 

Shape N Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p-

value 

Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p-

value 

Cubes, 

Formvar 

52 

-2.6(9) 0.50 2.34(7) 0.54 

-3.20(5) 0 

2.382(6) 

0.25 

Cubes,  

Si3N4 

23 

-3.6(10) 0.68 2.36(8) 0.73 2.318(8) 

0 

Decahedra, 

Formvar 

245 

-3.0(3) 0.46 2.40(3) 0.52 2.422(4) 

0 

Decahedra, 

Si3N4 

69 

-2.9(4) 0.40 2.28(4) 0.011 2.309(5) 

0 

Icosahedra, 

Formvar 

40 

-3.3(3) 0.72 2.53(4) 

0.000

2 2.500(7) 

0 

Icosahedra, 

Si3N4 

7 

-3.7(12) 0.69 2.42(15) 0.80 2.355(13) 

0.13 

Triangles, 

Formvar 

139 

-3.2(3) 0.997 2.41(3) 0.37 2.399(5) 

0 

Triangles, 

Si3N4 

10 

-3.3(6) 0.89 2.33(7) 0.50 2.315(11) 

0 

Note: standard error on last digit(s) in parentheses. P-values less than 0.0005 are reported as 0. 
 

 

As observed in Chapter 3, the plasmon resonance energy decreases with an increase in the 

refractive index of the underlying substrate. The shift for cubes, decahedra, icosahedra, and 

truncated bitetrahedra, obtained for the pair wise constrained slope analysis of covariance (Table 

4.5) are 0.06, 0.11, 0.16, and 0.087 eV, respectively; for the global constrained slope analysis of 

covariance, the difference in LSPR energy are 0.06, 0.11, 0.14, and 0.084 eV. To evaluate the 

error on this substrate effects, standard error propagation methods were employed, where the 

error of a sum (or difference) is the square root of the sum of the square of the individual errors. 

This approach applied to the global analysis of covariance results yields the following 95 % 

confidence intervals: 0.06(2), 0.114(13), 0.14(3), and 0.084(2) eV for cubes, decahedra, 
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icosahedra, and truncated bitetrahedra, respectively. The latter three do not have a significantly 

different shift, while the cubes do. Differences are indeed expected as refractive index sensitivity 

is strongly shape-dependent (as seen in Chapter 5).  

Despite having a variance larger than that of the energy data, the FWHM information obtained 

for the different substrates is worthy of statistical analysis, results of which are presented in 

Tables 4.4-4.5. The constrained slopes pair wise fit for the FWHM dependence on size show 

mixed results for the substrate effects. On one hand, icosahedra and triangles have no significant 

differences between their intercept for the particles on Formvar and Si3N4, suggesting no effect 

of substrate on plasmon decay under these conditions. On the other hand, cubes and decahedra, 

the particles with the largest data set on Si3N4, have significantly different FWHM for the 

different substrate, with a shift of 0.040(8) and 0.026(8) eV, respectively (95 % confidence 

interval in parentheses). Further experiments would clarify this finding. 

Another interesting result, obvious in Figure 4.5 and Table 4.4, is that the substrate does not have 

a statistically significant effect on the size dependence of the LSPR energy and width (i.e. the 

slope in Figure 4.5). However, numerical analysis (e.g., ref.
81

) that a shift in the size-dependence 

of the plasmon energy is expected for different dielectric environments. The change in the 

surrounding medium in the current experiments must thus be too small to produce effects other 

than a size-independent plasmon shifts; this is probably true for most sensing applications as 

well. This results suggest that for Au nanostructures subjected to a small change in refractive 

index, one can neglect the change in the slope of the LSPR energy as a function of size.  
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4.1.4 Important Findings, Advantages and Limitations of the Plasmon Length Parameter 

 

The concept of plasmon length, an intrinsic property of the nanoparticle, offers the opportunity to 

predict the dipolar plasmon energy and linewidth dependence on size without having to rely on 

experiments or detailed calculations; it also provides a powerful framework to compare various 

shapes, real or hypothetical. The data presented in this Section demonstrated and explained how 

plasmon length describes size effects in a assortment of Au nanoparticles shapes, yielding shape-

independent variations of the plasmon energy and linewidth. Also, both size and FWHM 

dependence on size were found to be substrate-independent for rather large substrate refractive 

index change (1.5 to 2), implying that this effect can be neglected in practical sensor 

applications. 

However, the validity of the plasmon length approach was only shown for the dipolar mode of 

particles with fixed aspect ratio,  well-formed vertices, and with homogeneous, small corner 

rounding for all sizes. For large corner rounding heterogeneities, other parameters are needed in 

order to fully describe the simultaneous effects of size and rounding on the plasmon energy and 

decay (Section 4.2). Higher order modes, beyond the dipolar resonance, can be modeled with 

some variation of the plasmon mode concept (Section 4.3).  

A possible extension of this work is the study of Ag shapes, as shape and size effects have not 

yet been systematically studied for this material. Because of the different absolute values of the 

real part of the dielectric constant in the visible range (slopes are similar),
50,59

 plasmon resonance 

frequencies in Ag nanoparticles are expected to have a more acute size dependence than their Au 

counterparts (as is observed in Chapter 3). Studies have been performed on size effects in Ag 
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nanoparticles,
31,84,85,103,109,132,143,149

 however the vast differences in experimental conditions (in 

solution/air, bulk/single particle, etc) in the published data severely limits our ability to perform 

any comparison.  

 

4.2 Effective Plasmon Length: Going Beyond a Single-Parameter Model to Describe Corner 

Rounding and Size Effects  

 

Amongst the many factors affecting the plasmon frequency, shape has been shown to be an 

important one. Albeit it does not affect the size-dependence of the dipolar plasmon energy and 

width, as seen in the previous section, it influences their absolute values
84,103,106,209

 as well as 

changing the electric field distribution around the particle.
90,147,216

 It has been shown using EELS 

mapping that the field intensity at sharp triangular corners is higher than at rounded ones,
216

 and 

numerical results revealed that the field at the tips of ellipsoids acutely depends on their tip 

geometry and aspect ratio.
213

 Such near-field changes typically result in significant far-field 

effects; examples exist in the literature for, amongst others, cubes,
106,147

 triangles,
31,84,103,143,215

 

and bipyramids.
132

  

While it is well known that varying the corner rounding affects the LSPR 

position,
52,87,103,106,147,149,214

 it remains unclear how the corner rounding affects the size 

dependence of plasmon energy and width. This effect is difficult to properly probe 

computationally, because of the need to sample a large range of sizes and shapes. High 

throughput correlated experiments such as the ones pioneered in this work provide an efficient 

tool to address this question. 
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4.2.1 Correlated LSPR/TEM on Ag Bipyramids 

 

BSPP-capped silver right bipyramids
132

 (see Chapter 2 for synthesis details) were deposited on 

the Formvar side of carbon type B grids (Ted Pella, Inc) and analyzed using correlated dark field 

optical and transmission electron microscopy. Right triangular bipyramids are a planar {111} 

twinned structure with six equivalent triangular {100} faces and an equilateral triangular base,
132

 

as can be seen in the SEM picture and model in Figure 4.6. The side length of the equilateral 

triangular base and the truncation of the equatorial corners for each bipyramid were obtained by 

drawing a perfect bipyramid overlay and corner fillings on top of the 2-dimensional projection 

obtained in TEM, as depicted in Figure 4.6. Note that the relationship between a and a' (and t 

and t') is a = √3a'/2. 

Typical bipyramid spectra, showing two main resonances, are presented in Figure 4.7. Previous 

calculations have assigned the origin of such peaks based on their shift upon corner truncation.
132

 

In short, the high energy peak around 420 nm is the transverse dipolar resonance, an electron 

oscillation perpendicular to the equilateral pyramid base, while the low energy peak in the 600 

nm region is the longitudinal (or equatorial) dipolar resonance, an electron motion parallel to the 

equilateral triangular base (the {111} twin plane). The spectra in Figure 4.7 are in excellent 

agreement with previously calculated spectra for truncated bipyramids.
132
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Figure 4.6. Representative images and structural parameters of Ag bipyramids. Left: SEM image. 

Scalebar, 500 nm. Top Middle: 3D model of a right bipyramid showing the measured edge 

length as a’. Bottom middle: example of structural measurements on a TEM image where a’ is 

the measured edge length and t’ is the measured corner truncation. Right: view of the equilateral 

base, i.e. the {111} twin plane, and depiction of the structural parameters used in the paper: the 

height of the triangle a, the measured side length a', the corner truncation t, and the measured 

corner truncation t'.  

 

 

Figure 4.7. Effect of size and corner rounding on the spectra of individual Ag bipyramids. Left: 

redshift of the equatorial plasmon with size increase for bipyramids with equivalent relative 

corner rounding. Right: redshift of both plasmon modes with increased corner sharpness for 

particles of the same size. Scalebars, 50 nm. 
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4.2.1.1 Single Particle Comparisons 

 

Comparing a few single particle data obtained through correlated optical/structural 

measurements can provide trends on the effect of various structural factors on the LSPR 

resonances in those particles. In fact, many of the early papers
108,109

 and practically all of the 

published numerical approaches
82,97,103,106,132,143,147,149,214

 compare a few spectra to deduce 

qualitative yet useful trends. In the current data set, such qualitative relationships can also be 

obtained. As shown in the left panel of Figure 4.7, a size increase results in a lowering of the 

plasmon resonance energy (redshift). This can be explained by retardation effects, as discussed 

in Chapter 1 and observed in the previous Section. The effect of corner rounding can be deduced 

from comparing the two spectra in the right panel of Figure 4.7; an increase in LSPR energy 

(blueshift) is observed for increasing corner rounding, as suggested in Chapter 3. 

 

4.2.1.2 Single Parameter Fits 

 

While the qualitative trends presented in Figure 4.7 may be useful, they are rather obvious and 

do not provide the quantitative guidance useful in the plasmon tuning that is so critical in 

applications such as surface-enhanced spectroscopies
192-194,217-219

 and resonant interaction-based 

sensors.
195,196

 To obtain such trends, an approach similar to that used in the previous Section and 

in Chapter 3 can be applied to the large (123 particles) data set obtained on Ag bipyramids. The 

correlation between LSPR frequency and FWHM with corner truncation and particle size is 

presented in Figure 4.8, note that relative truncation is defined as t/a. The results from linear 
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regression on single parameter effects are reported in Table 4.7. Clearly, the fit for the plasmon 

energy is superior to that of the decay. The latter indeed has no significant relationship to the 

corner truncation, but its value increases, as understood through retardation effects, with 

increased particle size. No further, 2-parameter analysis, was performed on the FWHM because 

the data can only be used to correlate it to a single parameter, the size of the particle. The 

plasmon energy, however, convincingly depends on both the size and corner truncation (Figure 

4.8, top panels). A very basic way to quantify how much a factor explains the variation of the 

dependent variable is the R-square value. While R-square is not a measure of error, it is a useful 

number in that it assesses what fraction of the variation in the data set is due to a given parameter 

(here, size or truncation). A R-square of 1 (or 100 %) means that there are no other parameters to 

consider, and a R-square of 0 means that this parameter has no effect on the results. The R-

square values fir the plasmon energy are 75 % for the size effect, and 49 % for the truncation 

effect. This clearly indicates that both parameter have a significant contribution yet neither 

parameter alone is sufficient to describe the variation in plasmon energy. 
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Figure 4.8. Single parameter effects on the longitudinal dipolar resonance energy and FWHM of 

Ag bipyramids, showing the inadequacy of either parameter to truly describe the variation. Top 

left: effect of size on the LSPR energy. Top right: effect of truncation on the LSPR energy. 

Bottom left: effect of size on the plasmon FWHM. Bottom right: effect of truncation on the 

plasmon FWHM. 

 

Table 4.7. Linear fit parameters for the effect of size and corner truncation on plasmon energy 

and FWHM.  
Relationship Slope  Intercept (eV) 

Size effect on energy -4.4(5) meV/nm 2.84(8) 

Truncation effect on energy 6.0 (11) eV 1.56(9) 

Size effect on FWHM 1.4(4) meV/nm 0.29(6) 

Truncation effect on energy -0.7(7) eV 0.59(6) 

Note: The fits follow the equation y = mx+b; size is in nm; relative truncation is used (t/a); 

FWHM and energy are in eV;  95 % confidence intervals on the last digit(s) are shown in 

parentheses. 
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Single parameter data can also be used to extract distribution information; such analysis may be 

the end goal of the study
83

 or some sanity check on the sample.
91

 For the current analysis the 

latter is appropriate; the histograms of size, relative rounding, plasmon energy, and FWHM are 

reported in Figure 4.9. A distribution close to normal is present, despite the particles being 

synthesized in multiple batches. Of course, correlated data is not required to obtain such 

histograms, but a more reliable correspondence can be made between histograms if they report 

the same data set. For example, the small asymmetry towards larger sizes in the top left panel of 

Figure 4.9 correlates well with the plasmon FWHM and energy asymmetry. The relative 

rounding does not show this feature, pointing towards a size-independent distribution of edge 

sharpness amongst the samples (as is obvious in Figure 4.11). 
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Figure 4.9. Single parameter distribution for the 123 bipyramids studied. Clockwise from top 

left: size, relative rounding, LSPR FWHM, and LSPR energy. 

 

4.2.1.3 Multiple Parameter Fits 

  

While the correlation observed between size, corner rounding, and the longitudinal plasmon 

resonance energy presented in Figure 4.8 is rather convincing, a significant amount of “noise” 

remains present in both top panels. 

Given the large number of experimental data points (123), it is possible to go beyond a single 

parameter model and answer questions otherwise impossible to address. However, as the number 



119   

   

   

of parameters in the model increases, so does the number of ways to represent the fit. For 

completeness, three ways will be used and discussed here; note that all lead to the same general 

conclusions but different people may better understand them from one of the given 

representations.  

 

4.2.1.3.1 Grouped Fit 

 

A simple way to understand the simultaneous effects of two parameters (x and y) is through a 

simple linear plot for parameter x, with the data grouped according to parameter y. This has been 

done for the plasmon linewidth of triangles
84

 and the plasmon energy of cubes with different 

degrees of rounding (Chapter 3). To use this model on the current data set, bipyramids were 

divided into three groups on the basis of relative corner truncation.  

Two approaches were taken to group the sample into three rounding categories. The first 

approach, published previously,
92

 selects the groups by an arbitrary round number for the relative 

corner truncation, setting the group boundaries at t/a = 0.08 and 0.095. As can be seen in Table 

4.8 and Figure 4.10, the slope of the sharp group is significantly different than that of the 

rounded group, pointing to an effect of corner rounding on the size-dependence of the LSPR 

energy. This simple grouping approach indicates an interesting phenomenon, but cannot quantify 

it. Furthermore, shifting the group boundaries does not change the different slopes trend, but it 

may annihilate the statistical relevance of such differences, leading to a potential type II error 

(the null hypothesis being that the slopes are all the same). Given the qualitative nature of this 

approach an its potential pitfalls, it is not recommended except as an initial analysis of the 
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experimental data. Note that for numerical data, this is the approach of choice when multiple 

variables are under consideration: it has been employed to analyze the effect of size, corner 

rounding, and aspect ratio on the optical response nanorods, for instance.
99,209

 

 

 

Figure 4.10. Grouped fits for the analysis of the simultaneous effect of size and truncation on the 

equatorial LSPR energy of Ag bipyramids. 

 

Table 4.8. Ag bipyramids fit parameters for the grouped approaches presented in Figure 4.10.  
Sharpness grouping by value N Slope (meV/nm) Intercept (eV) 

Sharp (t/a<0.08) 60 -4.2(4) 2.76(8) 

Average (0.08<t/a<0.095) 38 -3.5(9) 2.70(16) 

Rounded (t/a>0.95) 25 -2.4(7) 2.58(10) 

    

Sharpness grouping by counts N Slope (meV/nm) Intercept (eV) 

Sharp (t/a<0.073) 41 -4.1(5) 2.75(9) 

Average (0.073<t/a<0.087) 41 -3.9(9) 2.72(16) 

Rounded (t/a>0.87) 41 -3.4(6) 2.71(10) 

Note: The second set of boundaries represents an equal number of particles in each group. The 

fits follow the equation y=mx+b; 95% confidence intervals on the last digit(s) in parentheses. 

The average relative truncation of the data set is 0.082, with a standard deviation of 0.015; the 

average size is 180 nm with a 26 nm standard deviation (Figure 4.9). 
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4.2.1.3.2 Plane Fit 

 

A rigorous, and perhaps an obvious (at least statistically), way to fit a variable that depends on 

two independent variables is a plane fit, i.e. a regression analysis. This can be easily performed 

in MATLAB using the surface fitting tool. Any equation relating the variables can be input, 

although in this case the simplest first-order formula gave the best results. The longitudinal 

plasmon energy was found to be related to the size and corner truncation following the equation: 

 

LSPR(eV) = -0.0051(3)*a(nm) + 0.019(3)*t(nm) + 2.69(6)                                                             (4.1) 

 

The tight 95 % confidence bounds on the fit coefficients (in parenthesis, on the last digit) 

indicate low errors associated with the model, while the R-square value of 0.88 signify that this 

planar fit  explains 88 % of the variation in the experimental data. The rigor of this model, its 

attractive visual representation in three dimensions, as well as the easy visualization of pair wise 

interactions (Figure 4.11) make the planar fit an interesting way of displaying and analyzing 

large data sets involving multiple parameters. Surprisingly, only one example of such 

simultaneous 2-parameter analysis has been carried out, to our knowledge and that of our 

reviewers; the system studies in that case was core-shell Ag-Ag2O particles, where the optical 

properties are influenced by both the core radius and the shell thickness.
220,221
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Figure 4.11. Planar fit approach to describe the simultaneous LSPR energy dependence on size 

and corner rounding, fit described by equation 4.1. The two dimensional plots show pair wise 

correlations between energy and rounding, energy and size, and size and rounding. 

 

4.2.1.3.3 Effective Plasmon Length Fit 

 

While the planar fit (Section 4.2.1.3.2) represents a quantitative improvement over the grouping 

approach (Section 4.2.1.3.1), the former is not as intuitive as the latter. Indeed, the lower slope of 

the LSPR energy for more rounded particles, seen as an incline of the plane, could easily remain 

unnoticed after a quick glance. The third fitting approach aims at re-establishing the intuitiveness 

of the grouped model while preserving the rigor of the planar fit. As mentioned earlier, 

regression can be performed on any type of mathematical equation, i.e. it is not limited to the 

basic z = a*x+b*y+c. Inspired by the concept developed in Section 4.1, a modified plasmon 

length was sought, which must be account for both size and corner truncation. A linear 

relationship, akin those of Section 4.1, is then expected between the effective plasmon length 
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(PLeff) and the LSPR energy. The following equations, with 95% confidence levels in 

parenthesis, describe this fit (Figure 4.12):  

 

LSPR(eV) = -0.0051(3)PLeff + 2.69(6)                                                                                         (4.2) 

PLeff = a(nm) - 3.7(6)*t(nm)                                                                                                           (4.3) 

 

 

Figure 4.12. Effective plasmon length approach describing the simultaneous size and shape 

effects in Ag bipyramids. The left panels are identical to Figure 4.8. Right panel: fit described by 

Equations 4.2 and 4.3. 

 

The effective plasmon length approach provides an intuitive way, akin the plasmon length, to 

linearize the size effects on LSPR energy, while taking corner truncation into account. It is 

obvious from the fit parameters that the effect of truncation is not only geometric. Indeed, if it 
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were the case, and truncation would simply lower the plasmon length value, the coefficient of t 

in equation 4.3 would be 1 (and the coefficient of t in Equation 4.2 would be equal in magnitude 

and opposite in sign to the coefficient of a), i.e. a fit relating the plasmon energy to the truncated 

height (a-t) would be best. Clearly, variations in tip sharpness also change the charge 

distribution, such that for rounded particles opposite charges become even closer than from this 

geometrical argument only. This field distribution difference is responsible for the difference in 

size-dependence of the plasmon energy for different truncation groups (obvious in Figure 4.10).  

 

4.2.1.4 Bipyramids Fits Discussion 

 

The high R-square value of the planar and PLeff fits indicate that size and corner rounding 

comprehensively dictate the position of the plasmon resonance frequency. The remaining noise 

in Figures 4.11 and 4.12 can be attributed to variation in the transverse corner truncation; 

calculations have shown that the geometry of these tips can slightly affect the transverse 

plasmon,
132

 and was not accounted for in this study because of the experimental difficulties 

associated with obtaining accurate structural information on the transverse tips. The plasmon 

FWHM was not as effectively modeled by size or shape; in fact no statistically significant 

relationship between the FWHM and relative corner truncation was obtained, albeit one might be 

expected due to the change in the near field electric charge distribution.
106,116,147

 The larger 

variance in the FWHM data, leading to larger uncertainties in the fit, may be due to a number of 

factors such as small changes in the dielectric environment, surface oxidation, transverse tip 

truncation, and the possible apparition of higher order modes (not included in the peak fitting). 
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4.2.2 Correlated LSPR/TEM on Nanocubes 

 

4.2.2.1 Au Nanocubes 

 

Another structure with a large range of corner rounding is Au nanocubes (Chapter 3). Figure 3.5 

is in fact a grouped fit analysis where the nanocubes were divided in "sharp" and "rounded" 

groups. Without rejecting the rounded cubes (as was done in Chapter 3), the R-square value for 

the size and relative corner rounding effect on the LSPR energy is 12 and 40 %, respectively. 

The fit in Figure 3.5 qualitatively indicates an effect of corner rounding on the LSPR energy. 

Could more information of the simultaneous effects of size and corner rounding be extracted 

from this data using the multiple parameter fits that were successful with Ag bipyramids? 

To answer this question, the nanocubes data were analyzed using a planar fit and a effective 

plasmon length fit. The parameters for the single factor fits (Figure 4.13, left panels) are reported 

in Table 4.9. The plasmon energy data was adequately described by a plane fit (R
2 

= 49 %) 

following the equation: 

 

LSPR(eV) = -0.0039(15)*a(nm) + 0.007(2)*t(nm) + 2.34(12)                                                         (4.4) 

 

The effective plasmon length fit (Figure 4.13, right panel), followed the equations 

 

LSPR(eV) = -0.0039(15)*PLeff + 2.34(12)                                                                                   (4.5) 

PLeff = a(nm) – 1.8(8)*t(nm)                                                                                                           (4.6) 
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Note that due to the large variance (Figure 3.5) and small size range probed, the plasmon decay 

of Au nanostructures was not included in this analysis.  

 

Table 4.9. Size and shape effect on the LSPR energy of Au and Ag nanocubes.  
Composition, Parameter, Mode N Slope  Intercept (eV) R-Square 

Au, Size, Dipole 64 -2.8(19) meV/nm 2.37(16) 12% 

Au, Relative Rounding, Dipole 64 0.6(2) meV 2.01(4) 40% 

Ag, Size, Dipole 119 -10.8(5) meV/nm 3.48(7) 93% 

Ag, Relative Rounding, Dipole 119 10.3(13) meV 0.84(16) 68% 

Ag, Size, Quadrupole 118 -6.5(5) meV/nm 3.64(6) 87% 

Ag, Relative Rounding, Quadrupole 118 6.2(8) meV 2.04(10) 66% 

Note: 95 % confidence intervals on the last digit(s) in parentheses. 

 

 

 

Table 4.10. Size and shape effect on the LSPR FWHM of Ag nanocubes.  

Composition, Parameter, Mode N Slope  Intercept (eV) R-Square 

Ag, Size, Dipole 119 7.0(14) meV/nm 0.04(19) 44% 

Ag, Relative Rounding, Dipole 119 -6.4(18) meV 1.7(2) 30% 

Ag, Size, Quadrupole 118 5.5(6) meV/nm -0.26(8) 76% 

Ag, Relative Rounding, Quadrupole 118 -4.9(9) meV 1.05(11) 49% 

Note: 95 % confidence intervals on the last digit(s) in parentheses. 
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Figure 4.13. Effect of size and corner rounding on the LSPR energy of Au nanocubes. Left: 

single parameter effects. Top left: Size effect on LSPR energy. Middle left: Size and corner 

rounding correlation. Bottom left: Rounding effect on LSPR energy. Middle: plane fit, described 

by Equation 4.4. Right: Effective plasmon length fit, described by Equations 4.5 and 4.6. 

 

4.2.2.2 Ag Nanocubes 

 

A very large size range was available for Ag nanocubes (some results have already been 

discussed in Chapter 3, some will be discussed in Section 4.3), such that a multiparameter fit 

akin that performed for Au cubes and Ag bipyramids is possible. Such analysis is interesting as it 

would provide an interesting comparison with other structures on the basis of shape (Ag cubes 

and bipyramids) and composition (Ag and Au cubes).  
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4.2.2.2.1 Single Parameter Fits on the Energy and FWHM of the Dipolar and Quadrupolar 

Resonances 

 

The single parameter fits for the energy and FWHM of both dipolar and quadrupolar resonances 

are presented in Figure 4.14 and Tables 4.9-4.10. The correlation between energy and edge 

length (R
2 

= 93 % and 87 %) and energy and relative rounding (R
2 

= 68 % and 66 %) is 

remarkable for both the dipolar and quadrupolar plasmon modes. The plasmon decay of the 

quadrupolar mode also correlates well with side length and relative rounding (R
2 

= 76 % and 49 

%). However, the width of the dipolar resonance is noisier and does not appear to vary linearly 

with size. Experimental differences between the small (< 100 nm) and large cubes may be 

responsible; indeed, the data on large cubes was acquired over a year after that of the small 

cubes, and they were produced in two different batches, such that experimental and synthetic an 

differences may be present. For example, the dielectric environment (critical to plasmon decay) 

may vary between the two samples, as rinsing was not performed on the small cubes, leaving a 

larger number of surfactant molecules on the particles, and the cubes were deposited on the 

Formvar side of different types of grids, small ones on carbon type B and large ones on ultrathin 

carbon type A. The former contains significantly more plasmon-damping amorphous 

carbon.
106,147

 Also, measurements for small cubes were performed in air and not carried out 

particularly efficiently, while larger cubes were kept under dry nitrogen and measured quickly. 

The refractive index difference between air and nitrogen is not expected to significantly affect 

the optical response but surface oxidation is; in addition to these experimental differences, small 

cubes are intrinsically more prone to oxidation. Because of these effect and their implications on 
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the significance of the statistical analysis, the FWHM of the dipolar resonance will not be 

analyzed further. 

 

Figure 4.14. Correlation between size, corner rounding, dipolar energy and  the dipolar (red) and 

quadrupolar (blue) LSPR energy and FWHM of Ag nanocubes. Clockwise from top left: size 

effect on LSPR energy, rounding effect on LSPR energy, correlation between rounding and size, 

size effect on LSPR FWHM, rounding effect on LSPR FWHM.  
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4.2.2.2.2 Multiparameter Fits: Planar and Effective Plasmon Length Approach 

 

The data presented thus far provide insight on the effect of size and shape on the optical response 

of Ag nanocubes, however the graphical representation in Figure 4.14 hides a trend that 

invalidates this single parameter analysis. As can be seen in the bottom panel of Figure 4.14, 

there is a correlation between cube size and relative rounding, large cubes being sharper than 

small ones. Thus, pair wise correlations are flawed and do not provide predictive information on 

size or shape effects as the rules obtained are sample-specific. For example, the sharper large 

cubes in the current data set skew the slope of the LSPR energy as a function of size towards a 

larger value than it would be for homogeneous rounding. In such cases, a multiparameter fit is 

the best approach. Despite the unequal sampling of the parameter space (e.g., there are few very 

rounded large cubes), a multiparameter fit provides quantitative, predictive equations relating 

optical response and structural parameters for any combination of size and corner rounding.  

 

4.2.2.2.2.1 LSPR Energy 

 

The dipolar and quadrupolar modes can be well described by a plane fit (Figure 4.15), according 

to the equations (95 % confidence levels on the last digit(s) in parenthesis; a is the cube side 

length, t is the absolute corner rounding) 

Energy(Dipole, eV) = -0.0112(6)*a(nm) + 0.011(7)*t(nm) + 3.38(10); R
2 
= 94 %                              (4.7) 

Energy(Quadrupole, eV) = -0.0070(5)*a(nm) + 0.014(5)*t(nm) + 3.49(8); R
2 
= 89 %                           (4.8) 
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Figure 4.15. Planar fit on the simultaneous effects of size and corner rounding on the dipolar (red 

circles) and quadrupolar (black diamonds) plasmon energy of Ag nanocubes. The two 

dimensional plots show pair wise correlations between energy and rounding, energy and size, 

and size and rounding. The empty black diamonds are the quadrupolar resonance analyzed with a 

size equal to the half of the side length, see Section 4.3 for discussion of higher order modes. 

 

The effective plasmon length fit (Figure 4.16), follows the equations 

 

Energy(Dipole, eV) = -0.0112(6)*(PLeff) + 3.38(10); R
2 
= 94 %                                                     (4.9) 

PLeff = a(nm) - 1.0(6)*t(nm)                                                                                                          (4.10) 

 

Energy(Quadrupole, eV) = -0.0070(5)*(PLeff) + 3.49(8); R
2 
= 89 %                                                (4.11) 

PLeff = a(nm) - 2.1(8)*t(nm)                                                                                                          (4.12) 
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Figure 4.16. Simultaneous effects of size and corner rounding on the dipolar (red) and 

quadrupolar (blue) plasmon energy of Ag nanocubes. Left: single parameter fit (side length). 

Right: effective plasmon length fit described by Equations 4.9-4.12. The increase in correlation 

is modest, but the effective plasmon length approach provides sample-independent predictive 

rules, as discussed in the text. 

 

Corner rounding plays a statistically significant role in determining the position of both the 

dipolar and quadrupolar resonance of Ag nanocubes. However, it may be tempting to dismiss its 

effect due to the minimal increase in R-square obtained with the plane fit. As shown in Table 4.9, 

the correlation between plasmon energy and size is very high, with R
-
square of 93 % and 87 % 

for the dipolar and quadrupolar resonances. One may wonder if it is worth perform 

multidimensional analysis to gain a mere 1 % and 2 %. In this case, the modest gain in R-square 

is not the motivation for including multiple parameters. Rather, the more rigorous analysis is 

mandatory to circumvent the correlation between size and corner rounding present in the sample 

analyzed. 
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4.2.2.2.2.2 Plasmon Linewidth 

 

Multiparameter fits on the FWHM of the dipolar mode yield the following plane equation 

FWHM(Quadrupole, eV) = 0.0055(6)*a(nm) + 0.003(7)*t(nm) - 0.29(11); R
2 
= 76 %                        (4.13) 

 

Alternatively, this can be expressed as the effective plasmon length 

FWHM(Quadrupole, eV) = 0.0055(6)*(PLeff) - 0.29(11); R
2 
= 76 %                                               (4.14) 

PLeff = a(nm) + 0.5(1.4)*t(nm)                                                                                                      (4.15) 

 

In the above Equation, the 95 % confidence interval on the corner rounding coefficient is larger 

than the coefficient itself; i.e. no statistically significant relationship exists between corner 

truncation and FWHM for the quadrupolar mode of Ag nanocubes. In other words, one can say 

with 95 % confidence that the coefficient of t is between -0.0048 and 0.010 eV/nm: zero being 

part of this interval, no significant relationship exists; the same is true for the effective plasmon 

length equation, of course.  

This is a prime example of two common traps of statistical data analysis. First, the single 

parameter study (middle right panel of Figure 4.14) showed a seemingly valid correlation 

between truncation and FWHM, which broke down when analyzed more rigorously. Second, the 

R-square value of  Equations 4.14-4.15, 76 %, seems rather satisfactory, yet this multiparameter 

fit is not the relevant one to use. The correct way to describe the quadrupolar FWHM of Ag 

nanocubes is that it has no statistically significant dependence on corner rounding, and thus size 

effects can accurately be described in a single parameter model as presented in the bottom left 
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panel of Figure 4.14. Of course, this lack of observed corner rounding effect does not necessarily 

imply that such effect does not exist for any size or shape. Rather,  it indicates that the linewidth 

variance is high and that the small range of corner rounding in the current sample is not a 

significant contributor to this variance.  

 

4.2.2.3 Multiparameter Modeling in Nanocubes: Effect of Composition and Discussion 

 

Nanocubes of both Ag and Au have been analyzed using single particle spectroscopy and TEM. 

Single and multiparameter fits were performed to better understand the simultaneous effects of 

size and corner rounding on the LSPR energy and FWHM. The LSPR energy of both structures 

have a statistically significant relationship to both the size and the corner rounding. Because of 

differences in dielectric constants, Au and Ag have significantly different slopes for the size-

dependence of LSPR frequency, -0.0039(15) and -0.0112(6) eV/nm from the planar fits, 

respectively. An interesting and novel analysis the experimental data allows is the comparison of 

the effects of corner rounding for the two metals. The coefficient of t in the effective plasmon 

length equations (Equations 4.6 and 4.10) gives the ratio between size and corner rounding 

effects, regardless of the magnitude of the size effects; its value is -1.8(8) and  -1.0(6) eV/nm for 

Au and Ag, respectively. These parameters are not significantly different, suggesting that corner 

rounding may play an equivalent effect for both compositions. Of course, since the magnitude of 

size effects are higher in Ag, the absolute value of the rounding effects are higher as well, as is 

suggested by the plane fit parameters in Equations 4.4 and 4.7 (Au: 0.007(2) eV/nm, Ag: 

0.011(7) eV/nm).  
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The simultaneous effects of size and corner rounding on the plasmon resonance frequency of 

cubes can be compared to what has been calculated for rods of aspect ratio 2, based on the Leff 

values calculated by Prescott & Mulvaney
209

 and the dielectric constant for Ag and Au reported 

by Johnson & Christy.
50

 Using these inputs, Mie-Gans theory was used to calculate the plasmon 

energy for a range of rod length (L) and corner rounding (b) (values reported in Table 4.11 and 

Figure 4.17). Note that only the longitudinal plasmon mode (along the rod long axis) was 

considered.  

 

Table 4.11. Calculated LSPR energies for the longitudinal plasmon mode of rounded Ag and Au 

rods. 
L (nm) b (nm) E (eV)  

Ag Rods 

E (eV)  

Au Rods 

10 

10 

10 

20 

20 

20 

30 

30 

30 

40 

40 

40 

4.3 

3.0 

1.6 

8.7 

6.0 

3.1 

13.0 

9.0 

4.7 

17.3 

12.0 

6.2 

2.76 

2.71 

2.64 

2.71 

2.66 

2.58 

2.64 

2.58 

2.50 

2.54 

2.50 

2.41 

2.18 

2.16 

2.13 

2.16 

2.13 

2.10 

2.13 

2.10 

2.06 

2.07 

2.04 

2.00 

 

The correlation between the rod length L, the height of ellipsoidal cap b, and longitudinal plasmon energy 

can be expressed as (95 % confidence intervals on the last digit(s) in parentheses): 

 

Ag Rods:  

Energy(eV) = -0.012(2)*L(nm) + 0.016(6)*b(nm) + 2.79(4), R
2 
= 97 %                                       (4.16)  

Energy(eV) = -0.012(2)*(PLeff) + 2.79(4), R
2 
= 97 %                                                                (4.17) 
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PLeff = a(nm) - 1.3(5)*t(nm)                                                                                                          (4.18) 

  

 

Au Rods:  

Energy(eV) = -0.0063(11)*L(nm) + 0.008(3)*b(nm) + 2.20(2), R
2 
= 96 %                                   (4.19)    

Energy(eV) = -0.0063(11)*(PLeff) + 2.20(2); R
2 
= 96 %                                                            (4.20) 

PLeff = a(nm) - 1.3(5)*t(nm)                                                                                                          (4.21) 

               

 

Figure 4.17. Effect of size and corner rounding on the longitudinal dipolar resonance of 

ellipsoidally capped Ag (circles, top plane) and Au (diamonds, bottom plane) nanorods
209

 (fits 

described by Equations 4.16-4.17). 

 

Interestingly, the coefficient of t in the effective plasmon length fits for short rods (Equations 

4.18 and 4.21) are not significantly different than that obtained experimentally for nanocubes 

(Au cubes:-1.8(8) eV/nm, Ag cubes:  -1.0(6) eV/nm, both rods: -1.3(5) eV/nm). The size 
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dependence of the LSPR energy for nanocubes and nanorods are also not significantly different 

for Ag (cubes: -0.0112(6) eV/nm, rods: -0.012(2) eV/nm) and Au particles (cubes: -0.0039(15) 

eV/nm, rods: -0.0063(11) eV/nm). The structural dependence of the calculated optical response 

of short rods is thus comparable to that of cubes, supporting the experimental findings on 

retardation and corner rounding effects. Note that experimental studies on short rods would be 

very interesting to cement this claim; their feasibility, however, depends on the ability to 

synthesize a large size range of particles with fixed aspect ratio.  

This analysis also enables the comparison of the size-dependence of the energy of the dipolar 

and quadrupolar resonances of Ag nanocubes. The size-dependence of the latter is almost half of 

the former, with values, from Equations 4.9 and 4.11, of -0.0112(6) and -0.0070(5) eV/nm. This 

interesting effect will be discussed in detail in the next section. The relative contributions of size 

and corner rounding to the LSPR energy for the two modes are also within a factor of two of 

each other, although they are not statistically different: the coefficient of t in Equations 4.10 

(dipole) and 4.12 (quadrupole) is -1.0(6) and - 2.1(8) eV/nm, respectively. A true difference is 

expected to exists because of the dissimilar electric field distribution around the particle, in 

particular in the corner regions, for the dipolar and quadrupolar modes. 

 

4.2.3 Origin of Simultaneous Rounding and Size Effects and Shape Comparisons 

 

The analysis above clearly point to cooperative effects between size and corner truncation going 

beyond simple geometric arguments. The work of Prescott and Mulvaney
209

 and Bryant et al.,
99

 

and Slaughter et al.
222

 have observed similar effects on the calculated optical response of Au 
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nanorods. Indeed, each report hints, in different ways and with different degree of completeness, 

at a smaller decrease of the plasmon resonance energy with size for more rounded nanorods. 

Note that, as previously mentioned, the low scattering and the experimental difficulties 

associated with producing a large size range of rods of the same aspect ratio make this 

cooperative effect challenging to probe experimentally. The latter could, however, be 

surmounted by adding a third parameter to the fit, i.e., modeling the simultaneous effects of size, 

aspect ratio, and corner rounding on optical response. A new generation of high throughput 

measurements would be needed to obtain enough data for this fit. 

This multi-parameter, cooperative effect of size and corner rounding on the size dependence of 

the plasmon energy can be partially understood from a simple geometric argument. Indeed, for a 

bipyramids of edge length a and truncation t, the tip-to-edge distance (real height) is a-t, i.e. 

smaller for more rounded particles. Retardation effects (phase differences between the particle 

tips) are responsible for the size-dependence of plasmon frequency. Retardation is less present in 

a more round particle because of the shorter real height, explaining the blue shift observed with 

increased truncation. Additionally, as a is doubled, the idealized height is also doubled, but the 

true (truncated, a-t) distance is not: the absolute increase is smaller for more rounded bipyramids. 

However, if this effect was solely responsible for the observed trend, the coefficient of t in the 

planar fit equations would be equal in magnitude and opposite in sign to the coefficient of a, 

such that a fit relating the plasmon energy to the truncated height (a-t) would be best. Clearly, 

variations in tip sharpness also change the charge distribution, such that for rounded particles 

opposite charges become even closer than from this geometrical argument only. The phase 

difference between the tips (geometric size effect) and the charge distribution not changing 



139   

   

   

equivalently thus leads to dissimilar increase in retardation for the same (idealized) size increase 

in rounded and sharp particles. Consequently, the plasmon frequency of rounded particles is less 

dependent on size than that of sharp particles, as experimentally observed.  

Shape may not affect the size-dependence of the plasmon energy and FWHM (Section 4.1 and 

ref.
86

), but it does change the relative contribution of corner rounding and size. Indeed, the 

coefficient of t in the effective plasmon length equations, expressing the relative contribution of 

the two parameters, is significantly different for Ag cubes and bipyramids, with values of -1.0(6) 

and - 3.7(6), respectively. This disparity arises from the geometry of the plasmon oscillation 

path, in other words the electric field distribution. Indeed, the bipyramid equatorial plasmon is an 

oscillation along the equilateral triangle base, from apex to edge. The plasmon path passes by the 

apex, thus the plasmon mode energy is significantly more influenced by tip geometry than for a 

mode oscillating from face to face such as the dipolar resonance in cubes. Unlike the effects 

observed for homogeneously sharp Au particles in Section 4.1, shape does seem to affect the 

plasmon dependence on size for Ag particles, although the corner truncation are very large and 

different for cubes and bipyramids. Further studies of Ag shapes are needed to draw any 

conclusions on the universality of size effects for this metal. 

 

4.3 Plasmon Length Applications to High Order Modes in Ag and Au Nanoparticles 

 

As plasmonic particles become larger, they can support an increasing number of resonance 

modes beyond the low energy dipole, such that in spheres larger than 100 nm, for example, the 

quadrupole tends to dominate the spectra. For large Ag cubes (> 120 nm plasmon length), up to 
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four modes can be present, as shown in Figure 4.18. Gold particles typically do not support as 

many high order modes because of the interband transitions at energies above 500 nm, such that 

large decahedra have up to three prominent modes.  

 

4.3.1 High Order Modes in Ag Nanocubes 

 

 

Figure 4.18. Plasmon modes in Ag cubes. Left: small Ag cube with 2 plasmon modes, the dipole 

(lowest energy, peak 1) and the quadrupole (highest energy, peak 2). Right: large Ag cube 

showing all four plasmon peaks, labeled 1 to 4. 

 

The size dependence of the plasmon energy of the four resonant modes of Ag nanocubes is 

presented in Figure 4.19. As expected, the plasmon energy decreases with increasing particle size 

for all modes because of retardation effects. However, a large difference in the slope of this 

decrease exists between the modes, as reported in Table 4.12. Interestingly, the slope seems to 

halve between each mode. This observation lead us to the analysis presented in Table 4.13 and 

Figure 4.19, where the plasmon length is defined as side length/mode number; the mode double 
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for each peak, i.e. dipole = mode number 1, quadrupole = 2, peak 3 = 4, peak 4 = 8. The plasmon 

length of the dipole is thus equal to the side length, and that of the quadrupole, to half of the side 

length, etc. Physically, this implies that for a quadrupole, the plasmon goes through a “node” 

akin that of a resonant string mode (in which the length of each oscillator becomes the length of 

the string divided by the number of node plus one), and likewise for higher orders.  

 

Table 4.12. Fit parameters for the plasmon energy dependence on side length for the four 

plasmon modes of Ag nanocubes. (unconstrained slopes, analysis of covariance). 
Peak # Slope 

(meV/nm) 

p-value Intercept 

(eV) 

p-value 

1 (Dipole) -10.6(3) 0.89 3.46(5) 0 

2 

(Quadrupole) -6.5(3) 0.0008 3.62(5) 0 

3 -2.8(4) 0.66 3.42(6) 0 

4 -1.3(8) 0.26 3.31(13) 0 

Note: standard error on last digit(s) in parentheses. P-values less than 0.0005 are reported as 0. 

 

 

Figure 4.19. Statistical analysis of size effects on the plasmon energy of Ag nanocubes using side 

(left) and plasmon length (right) for peak 1 (dipole, blue circles), peak 2 (quadrupole, green 

diamonds), peak 3 (red triangles), and peak 4 (grey stars). Parallel slopes in the right panels were 

obtained from analysis of covariance; the parameters are reported in Table 4.13. 
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Table 4.13. Fit parameters for the plasmon energy dependence on plasmon length (side 

length/(mode number)) of Ag nanocubes (unconstrained and constrained slopes, analysis of 

covariance). 
 Energy Dependence on Plasmon Length, 

Unconstrained Slopes 

Energy Dependence on Plasmon 

Length, Constrained Slopes 

Shape Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p-

value 

Slope 

(meV/nm) 

p-

value 

Intercept 

(eV) 

p-

value 

Peak 1 (Dipole) 

Mode 1 -12(2) 0.89 3.46(5) 0.90 

 

-11.1(16) 

 

0 3.518(12) 

 

0 

Peak 2 

(Quadrupole) 

Mode 2 -9(2) 0.42 3.62(5) 0.0008 3.507(6) 

 

 

0 

Peak 3 

Mode 4 -11(2) 0.98 3.42(7) 0.66 3.419(8) 

 

0.003 

Peak 4 

Mode 8 -10(6) 0.84 3.31(13) 0.27 3.333(12) 

 

0 

Note: standard error on last digit(s) in parentheses. P-values less than 0.0005 are reported as 0. 

 

While some caution is required when interpreting the result in Figure 4.19 and Table 4.13 

because of the correlation between size and rounding in the sample used, the data strongly 

suggest that the effective plasmon mode approach can be applied to the experimental analysis of 

high order modes. Some previous work by Zhou et al.
96

 calculated the plasmonic behavior of 

untruncated Ag nanocubes in vacuum over a large size range between 15 and 200 nm: an almost 

linear relationship between plasmon energy and cube size was found for cubes larger than 80 nm, 

although the data is presented in wavelength, a non-linear energy unit. The slope of the dipole 

was roughly half of that of the quadrupole, consistent with the current results. Surprisingly, Zhou 

et al. found no size-dependence of the energy of the peak located around 400 nm. This peak may 

be equivalent to either peak 3 or 4 in this work; the field distribution calculated in the Zhou et al. 

paper clearly shows 3 nodes of in the plasmon oscillation. While this may help assigning the 

mode to peak 4, any comparison must be done cautiously, as the calculations were performed for 

perfect cubes in an homogeneous vacuum environment. Developing analytical models for the 
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optical response of nanocubes, which should be achievable due to their high symmetry, would 

greatly advance the field by providing easy, intuitive modeling.  

 

4.3.2 High Order Modes in Au Decahedra 

 

 

Figure 4.20. Plasmon modes in Au Decahedra. Red: small decahedron (100 nm side length) 

scattering spectrum, dominated by the equatorial dipolar resonance (the quadrupole appears as a 

shoulder around 560 nm). Blue: large Au decahedron (190 nm side length) showing a broad 

equatorial dipolar and a strong quadrupolar resonance.  

 

Large Au decahedra can be efficiently synthesized by reduction of HAuCl4 in PVP and 

diethylene glycol (see Chapter 2 for details), such that a large size range between 50 and 300 nm 

was available for experiments. Previous work by the Liz-Marzàn group showed that the lowest 

energy resonance is the equatorial dipole (along the pentagonal plane), followed by the 

equatorial quadrupole and the weak transverse dipole (perpendicular to the pentagonal plane).
67

 

The latter appears as a shoulder for large decahedra, the quadrupole is obvious in all but very 
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small particles, and the equatorial dipole is typically broad and well separated from the other 

modes, as can be seen in Figure 4.20. 

 

Table 4.14. Fit parameters for the plasmon energy dependence on dipolar plasmon length for the 

dipolar and quadrupolar resonances in Au decahedra on Formvar and Si3N4 (unconstrained 

slopes, analysis of covariance). 
Peak, Substrate N Slope (meV/nm) p-value Intercept (eV) p-value 

Dipole, Formvar 245 -3.02(10) 0 2.403(13) 0 

Quadrupole, Formvar 22 -1.20(12) 0 2.39(2) 0.10 

Dipole, Si3N4 69 -2.92(16) 0 2.28(2) 0 

Quadrupole, Si3N4 44 -1.0(2) 0 2.35(3) 0.84 

Note: standard error on last digit(s) in parentheses. P-values less than 0.0005 are reported as 0. 

 

Statistical analysis results on the size-dependence of the energy of the dipolar and quadrupolar 

modes of  Au decahedra are presented in Table 4.14 and Figure 4.21. A total of 245, 22, 69, and 

44 particles were studies for the dipolar resonance on Formvar, quadrupolar resonance on 

Formvar, dipolar resonance on Si3N4, and quadrupolar resonance on Si3N4, respectively. The 

plasmon FWHM dependence on size for the dipolar and quadrupolar modes are not statistically 

different, with respective values of 2.90(10) and 3.2(4) meV/nm on Formvar, as can be seen in 

Figure 4.21. This result is reminiscent of the behavior of Ag cubes (Figure 4.14), as is the 

significantly lower absolute value of the slope of the quadrupolar resonance energy dependence 

on size compared to the dipolar resonance. This finding agrees with previous experimental and 

numerical results for Au decahedra with side length ranging from 40 to 170 nm.
82

 Only 

qualitative comparisons can be made, however, because of the lack of statistical analysis in the 

previous reports. Unlike the plasmon resonances of nanocubes, the effective plasmon length for 

the quadrupolar mode of Au decahedra is not 1/2 but 0.37 times the dipolar plasmon length 
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(average between Formvar and Si3N4 substrates). Of course, not all particle shapes have a 

symmetry as high as nanocubes, hence not all quadrupolar modes will have the same relative 

plasmon length. In the case of decahedra, 0.37 may be consistent with the decahedral symmetry 

and the oscillation mode depicted in ref.
199

 However, the latter numerical analysis, was 

performed on bicones, and further computational work using accurate shapes and substrates 

would more precisely reveal the symmetry of the mode involved. This knowledge could also be 

gained experimentally through plasmon field mapping, as can be done with, e.g., EELS.
216

 This 

would yield a more accurate understand the geometric origin of the quadrupole plasmon length 

obtained from the current far-field approach.  

 

Figure 4.21. Size-dependence of the energy and width of the equatorial dipolar (blue) and 

quadrupolar (green) resonances in Au decahedra on Formvar. Left: plasmon energy. Right: 

plasmon FWHM. 
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4.3.3 Higher Order Modes and Sensing Applications 

 

Because of the different size-dependence of plasmon modes, quantitative, predictive rules can 

help determine the degree of separation between the different modes, an important parameter for 

sensor design and harnessing of the plasmon-induced electric fields around the particle. This 

higher order mode analysis, performed here on cubes, an exceptional high symmetry structure, 

and decahedra, may prove useful for a variety of other shapes. However, as seen in the decahedra 

case, it may not be straightforward because of lower symmetry, ill-defined quadrupolar 

resonance field distributions and potential coupling with the substrate. Additionally, the 

possibility of multiple modes of the same order may complicate the analysis; transverse and 

longitudinal modes in nanorods, and equatorial and transverse modes in bipyramids are all 

dipolar resonances, for instance.  

 

4.4 Conclusions 

 

The plasmon length concept has been used in both basic and modified forms to describe the size-

dependence of plasmonic properties of metal nanoparticles. When the plasmon length, the 

distance between region of plasmon-induced opposite charge, is used for Au nanostructures, the 

size-dependence of LSPR energy and FWHM was found to be shape-independent (Section 4.1). 

For shapes with larger corner rounding inhomogeneities, the concept of effective plasmon length 

has been developed to provide a platform to compare the relative effects of rounding an size on 

various shapes, in this case Ag bipyramids, Ag nanocubes, and Au nanocubes Section 4.2). It 
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was found that Ag bipyramids were more affected by corner rounding than nanocubes and that 

the composition of the latter did not influence the relative contribution of size and corner 

rounding to the plasmon energy. Furthermore, a higher order plasmon length parameter was used 

to analyze the plasmonic behavior of Ag nanocubes, yielding mode-independent size effects 

(Section 4.3).  

Both the plasmon energy and FWHM for all the particles studied vary linearly with plasmon 

length. The latter is surprising, as radiative damping, the dominant decay mechanism in large 

particles, is generally expected to depend on size such that the FWHM varies linear with volume, 

not side length.
84,110,116,117

 This work consistently finds the latter over large sizes ranges for 

multiple different shapes, different plasmon modes, and two different compositions. A likely 

explanation of this phenomenon is simultaneous size-dependence of radiative damping damping 

and the dielectric function; the large redshift of the plasmon energy with size modifies the 

imaginary part of the metal dielectric function, i.e. other plasmon damping phenomenon such as 

interband transitions are reduced. 

Overall, the plasmon length approach to size characterization, taking into account the plasmon 

mode, provides a useful tool to describe the linear dependence of LSPR energy and width with 

particle size. These findings are expected to make a significant impact in the plasmonic 

community because of the prevalence of LSPR tuning through size and shape 

control.
31,54,67,82,84,104,107-109,122,130,132,133,143,187,198,199,223
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CHAPTER 5 

 

Sensing Using Plasmon Resonances and Plasmon-Enabled Spectroscopy 
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5.1 Au and Ag Nanostructures for Localized Surface Plasmon Resonance Sensors  

As seen in previous chapters, many factors influence the localized surface plasmon resonance 

frequency in noble metal nanoparticles. In Chapters 3 and 4, the effect of size, composition, and 

shape on the plasmonic properties was systematically analyzed.. Another critical factor, the 

refractive index of the surrounding medium, was studied via a substrate change in Chapters 3and 

4. The plasmon frequency sensitivity to the dielectric environment (as predicted by Mie theory, 

see Chapter 1) provides a sensing mechanism that has been exploited in a range of biological and 

chemical detection schemes.
54,55,61,63,64,69,73,208

  

The efficiency of a plasmonic sensor depends on the magnitude of the optical signal change 

induced by the presence of the analyte. For a LSPR-based technique, this parameter is the bulk 

refractive index sensitivity m, the plasmon resonance frequency shift per refractive index unit. 

This relationship is linear over the typical RI range of interest (for aqueous solution, between 

1.33 and 1.5,
54,64,66

 for gases, between 1 and 1.1
53

). Values of m range from 70 to 500 

nm/RUI,
53,58,59,61,63-67,108,224

 although ever larger ones have been reported for hollow, core-shell, 

star-shaped, and irregular structures.
58,63-67,72,73,103,105,106,108,224

 

Despite its importance, the refractive index sensitivity (m-value or RIS) is not the only factor to 

consider when determining potential usefulness for sensing applications: the sensing figure of 

merit, RI sensitivity divided by peak FWHM (both in eV),
106

 is a better parameter to describe 

sensing capacity, as shifts are easier to detect for sharp peaks. Since both sensitivity and peak 

width generally increase with particle size, a maximum in the figure of merit for a given shape 

should exist at the size where peak widening overcomes the benefit of increased RI sensitivity. 

Because of its reliance on FWHM, the intrinsic FOM for a particle of a given shape and size can 
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only be determined by single particle analysis. Indeed, as discussed in Chapter 1, the linewidth of 

a bulk sample is a convolution of homogeneous and inhomogeneous broadening, the latter due to 

the unavoidable variety of shapes and sizes in the sample. 

 

5.1.1 Single Particle Refractive Index Sensitivity 

 

5.1.1.1 Correlated Single Particle Refractive Index Sensitivity Measurements of Au Decahedra, 

Au Truncated Bitetrahedra, and Ag Colloids 

 

To study the relationships between size, shape, refractive index sensitivity, and sensing FOM, 

single particle correlated RIS/TEM was performed with Si3N4 TEMVu grids. The decahedra 

reaction mixture was chosen because of the stability and high scattering efficiency of the Au 

structures. Particles were immersed in glycerol-water solutions (refractive indices shown in 

Table 5.1) and a total of 42 single decahedra and 5 single truncated bitetrahedra were analyzed. 

Representative spectra and TEM images are reported in Figures 5.1 and 5.2. The size-

dependence of the decahedra RIS and FOM is presented in Figure 5.3. There is no statistically 

significant relationship between RIS or FOM and size in the range studied. More data is needed 

to draw conclusions, as will be discussed in Section 5.1.1.2.  
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Table 5.1. Refractive indices of glycerol-water solutions, from ref.
225

 
Glycerol % Refractive Index (RIU) 

0 1.33303 

6.25 1.34209 

8 1.34238 

12.5 1.35142 

16 1.35233 

25 1.36404 

40 1.38413 

50 1.39809 

75 1.43534 

80 1.44290 

100 1.47399 

 

 

 

Figure 5.1. Refractive index sensitivity measurements of a single Au decahedra. Left: spectra in 

different glycerol/water solutions. Top right: TEM picture. Bottom right: linear relationship 

between the RI and LSPR energy; the m-value for this particle is -0.89 eV/RIU (350 nm/RIU). 
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Figure 5.2. Refractive index sensitivity measurements of a single Au truncated bitetrahedra. Left: 

spectra in different glycerol/water solutions. Top right: TEM picture. Bottom right: linear 

relationship between the RI and LSPR energy; the m-value for this particle is -0.60 eV/RIU (270 

nm/RIU). 

 

 

Figure 5.3. Refractive index sensitivity values (m) and figures of merit (FOM) for single 

decahedra (left) and triangles (truncated bitetrahedra, right) obtained from correlated RIS/TEM. 
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The large amount of data obtained on single particles in different media can also be used to study 

retardation effects. Indeed, calculations on spheroids predict that the plasmon energy size 

dependence will be more acute for particles in a higher refractive index media.
81

 This effect was 

not observed for particles on different substrates (Chapters 3 and 4). The effective refractive 

index change between air and water immersion is much larger than for the substrates previously 

studied, providing a better testing ground for this theory. As expected, the size dependence of the 

LSPR energy was statistically different for the two media. As shown in Table 5.2, the plasmon 

energy variation with particle size for single Au decahedra in air is -3.1(3) meV/nm, a value 

significantly different than that of any of the glycerol-water mixtures (p-value: 0.0042). No 

statistically significant slope differences were observed for the glycerol-water mixtures, likely 

due to the similarity of their RI (1.33 to 1.44); as can be seen in Table 5.3, the p-values for these 

slopes are all over 0.4. A constrained slope model was thus applied to the water-glycerol 

mixtures; results are reported in Table 5.4. As expected from the refractive index dependence of 

the LSPR energy, the intercept of the energy vs. size lines, in a constrained slopes model, are 

statistically different (Table 5.4). These intercepts can be used to calculate the average m value 

for Au decahedra, -0.99 eV/nm. This value may seem like a bulk result; it is not. Actually, it 

would be impossible to obtain it from bulk measurements because of the shape inhomogeneities 

and the presence of aggregates in the reaction mixture (Figure 2.2). 

This shape inhomogeneity can be useful for fundamental research: in this case it allowed the 

most common by-product in the decahedra synthesis, truncated bitetrahedra, to be studied. Data 

on five nanoparticles, suggesting lower m-values (range: -0.42 to -0.70 eV/RIU) and FOM 

(range: 1.3-2.8) than for decahedra, are presented in Figures 5.2-5.3. This lower sensitivity is 
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attributed to the positioning of the particle on the substrate and the tip geometry. Indeed, 

decahedra sit at an angle with respect to the substrate, fully exposing three equatorial tips and a 

pyramid apex to the surrounding medium. Also, the decahedra obtained were very sharp, with 

well-defined facets and corners, allowing a high field intensity at all the exposed tips. However, 

these are qualitative observations, and due to the small data set on truncated bitetrahedra , no 

statistical analysis was performed.  

 

Table 5.2. Fit parameters for the plasmon energy dependence on plasmon length for various 

refractive index environments (unconstrained slopes, analysis of covariance). 
Glycerol % Slope 

(meV/nm) 

p-value Intercept 

(eV) 

p-value 

0 %, air -3.1(3) 0.0042 2.30(3) 0.42 

0 %, water -4.1(3) 0.20 2.39(3) 0.0001 

8 % -3.9(3) 0.60 2.29(3) 0.68 

16 % -3.9(3) 0.60 2.28(3) 0.87 

25 % -3.9(3) 0.83 2.26(3) 0.66 

40 % -3.8(3) 0.98 2.24(3) 0.27 

50 % -3.9(3) 0.78 2.24(3) 0.24 

80 % -3.8(3) 0.93 2.20(3) 0.044 

Note: standard error on last digit in parentheses. 

 

 

Table 5.3. Fit parameters for the plasmon energy dependence on plasmon length for various 

refractive index environments, excluding air (unconstrained slopes, analysis of covariance). 
Glycerol % Slope 

(meV/nm) 

p-value Intercept 

(eV) 

p-value 

0 %, water -4.1(3) 0.40 2.39(3) 0.0001 

8 % -3.9(3) 0.89 2.29(3) 0.61 

16 % -3.9(3) 0.88 2.28(3) 0.79 

25 % -3.9(3) 0.85 2.26(3) 0.76 

40 % -3.8(3) 0.73 2.24(3) 0.34 

50 % -3.9(3) 0.93 2.23(3) 0.29 

80 % -3.8(3) 0.68 2.20(4) 0.063 

Note: standard error on last digit in parentheses. 
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Table 5.4. Fit parameters for the plasmon energy dependence on plasmon length for various 

refractive index environments, excluding air (unconstrained slopes, analysis of covariance). 
Glycerol % Slope 

(meV/nm) 

p-value Intercept 

(eV) 

p-value 

0 %, water -3.90(11) 

 

 

 

 

 

 

0 

 

 

 

 

 

 

 

2.362(4) 0 

8 % 2.284(4) 0.008 

16 % 2.276(4) 0.39 

25 % 2.268(4) 0.38 

40 % 2.252(4) 0 

50 % 2.241(4) 0 

80 % 2.220(5) 0 

Note: standard error on last digit(s) in parentheses. 

 

Single particle refractive index sensitivity measurements on Ag colloids were also performed, on 

the same type of substrate used for the decahedra studies (Si3N4 TEMVu). Difficulties due to 

their very low scattering intensity, which was worsened by the use of a 50 X objective (instead of 

the usual 100 X, see Chapter 2 for RIS measurements details), and possible oxidation rendered 

the results unusable. Most particles investigated were large aggregates, with complex spectra 

showing little trend in the different refractive index environments. Typical results are presented 

in Figure 5.4, for completeness. 

 

 

 

 



156   

   

   

 

Figure 5.4. Correlated RIS/TEM measurement of Ag nanoparticles aggregates. Left: TEM 

image. Scalebar, 100 nm. Middle: spectra acquired in various concentrations of aqueous 

glycerol. Right: peak position as a function of refractive index. 

 

5.1.1.2 Uncorrelated Single Particle Refractive Index Sensitivity Measurements of Au Decahedra 

 

To obtain more information on the refractive index sensitivity of decahedra over a large size 

range, measurements were performed on glass coverslips and were not correlated with structural 

analysis. Other structures and aggregates were present in the reaction mixture, albeit they were 

be identified by their spectral signature and rejected from the data set. The dipolar resonance of 

very large decahedra was typically, once immersed in water, outside the range of the detector. In 

such cases, the RIS of the dominant quadrupole peak was recorded. Figure 5.5 reports the 

refractive index sensitivity of single Au decahedra as a function of their plasmon energy in 

water. A statistically significant relationship between RIS and LSPR energy is present, in 

contrast with the lack of relationship in Section 5.1.1.1; the latter is due to the large variance in 

the data, which obscures relationships over small size ranges. Note that there is no sensitivity 
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difference between the decahedra studied on Si3N4 (Section 5.1.1.1, dotted circles in Figure 5.5) 

and those on glass (this section), thus they are both included in Figure 5.5. 

 

Figure 5.5. Refractive index sensitivity (m-values) and sensing figures of merit (FOM) of single 

Au decahedra as a function of the LSPR energy in water. Dotted circles represent the particles 

studied in Section 5.1.1.1. Left: RIS, note that the majority of the data points in the 2 eV/-0.6 

eV/RIU region are from measurements on glass. Right: FOM, defined by RIS/FWHM (both in 

eV), note the lower FOM for the particles on Si3N4. 

 

5.1.1.3 Guidelines for Sensor Applications Based on Single Particle Studies 

 

Figure 5.5 clearly shows that decahedra with lower dipolar resonance energies, i.e., larger 

particles, are  more sensitive to the surrounding dielectric environment than smaller ones. 

However, as previously discussed, the performance of a sensor depends on both the RIS and the 

FWHM of the plasmon peak. FOM values for single particles, calculated with the FWHM of the 

peak in water, are thus also reported in Figure 5.5. Interestingly, the suggestion that larger 
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particles are better sensors (because of their larger m-values) is not supported by the FOM 

values. When considering only particles on glass (empty circles), the FOM have similar values 

for all LSPR energies, with more variance for the lager decahedra. Given this similarity, other 

factors must be used to choose the ideal sensing platform; in this case the superior size control 

achieved in the synthesis of small decahedra and their simpler, singly-peaked spectra make them 

more desirable.  

A unexpected feature observed in Figure 5.5 is the consistently lower FOM for particles on 

Si3N4. These particles have similar or lower RIS for a given plasmon energy than those on glass, 

such that the redshift caused by the substrate is likely the main factor giving rise to such effect. 

Smaller, less sensitive particles would thus have the same LSPR energy on Si3N4 as larger, more 

sensitive particles on glass, yielding higher FOM for the latter. However, corner rounding effects 

cannot be ruled out, as the decahedra  were from different batches and no structural data is 

available for the particles on glass.  

The quadrupolar resonance, which becomes dominant in large particles, has a much lower RIS 

(m ~ -0.5 eV/RIU, Figure 5.5), but it is much narrower than the dipole by a factor of three; 

typical FWHM values are around 0.3 eV. Despite this small width, the quadrupole FOM are 

around unity, a value much smaller than the dipole FOM. Based on this analysis, the quadrupolar 

resonance is a poor candidate for RI sensors, although its different field distribution may be 

useful in specialized applications such as surface-enhanced spectroscopy. 
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5.1.2 Alumina Coating on Single Nanoparticles 

 

Au and Ag particles have proven useful as plasmonic sensors in chemical and biological 

systems;
53-55,61,63,64,66,69,73,207,226

 however, their surface chemistry is limited by their metallic 

composition, and their stability in solvents, air, or oxidizing media can be an issue. An efficient 

way to provide new surface anchoring capabilities and improve stability is by covering the 

particle with a thin (few nm) metal oxide layer deposited via atomic layer deposition (ALD), a 

layer-by-layer, self-limiting growth technique.
70,227,228

  

To investigate the effects of an inorganic coating on the optical response of Au decahedra and 

Ag nanocubes, a series of experiments were performed, focused on characterization of the 

plasmon energy, refractive index sensitivity, and long-term stability of Al2O3-coated particles. 

Control experiments were performed with bare particles.  

 

5.1.2.1 Effect of Alumina Coating on LSPR Energy 

 

5.1.2.1.1 Au Decahedra 

 

Ten cycles of alumina (Al2O3) with a well-characterized typical thickness of 1.1 nm, was 

deposited on Au nanoparticles supported on c-flat grids. The ALD process was performed at 

100°C; further experimental details are available in Chapter 2. The scattering spectra of single 

Au decahedra were recorded before and after ALD; their structure was confirmed by TEM 

analysis. A heat control experiment was performed to characterize the effect of heating the 
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particles for 5 minutes at 100 °C in nitrogen atmosphere, in the ALD chamber (conditions 

equivalent to the ALD deposition). No significant shift was observed: the average for 162 Au 

decahedra is -2 nm, with a standard deviation of 2 nm (Figure 5.6). 

 

 

Figure 5.6. Effect of heating Au decahedra for 5 minutes at 100 °C in conditions equivalent to 

ALD deposition. The average shift is -2 nm, standard deviation of 2 nm. 

 

A thin layer of alumina  is expected to redshift the LSPR frequency of nanoparticles because its 

refractive index is larger than that of air (1.57
70

 vs. 1.0003
229,230

). This shift is indeed observed, 

as shown for a small fraction of the data in Figure 5.7 (complete data set reported in Table 5.5). 

The heat control experiments (Figure 5.6) confirm that this shift is due to alumina and not other 

factors. The average LSPR shift induced by the deposition of 1.1 nm Al2O3 is 15 nm for small 

decahedra and 67 nm for larger ones (Table 5.5). The shift difference for different sizes can be 

attributed to the higher RIS of large particles (studied in Section 5.1.1). However, the same shift 

was unexpectedly observed for particles with side length ~ 65 and ~ 105 nm, despite their 

strikingly different RIS (65 nm particles: m = -0.65 eV/RIU, N = 39, standard deviation = 0.05, 
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105 nm particles: m = -1.22 eV/RIU, N = 46, standard deviation = 0.14, data from Section 5.1.1). 

A possible reason for this effect is the degradation of one of the two reaction mixtures, although 

ALD and RIS were investigated in the same few months. A different PVP coverage may be 

responsible, lowering the RIS of the smallest particles while not contributing to the ALD-

induced shift. Indeed, it is believed that the highly reactive aluminum precursor 

(trimethylaluminum) effectively removes the surfactants and start Al2O3 growth directly on the 

metal surface.  

 

 

Figure 5.7. Example of the plasmon redshift observed following the deposition of 1.1 nm Al2O3 

on Au decahedra (partial data). The TEM picture and single particle LSPR spectra on the right 

are marked with the arrow on the left. 
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Table 5.5. Effect of 10 layers Al2O3 ALD (1.1 nm) on the dipolar plasmon resonance of Au 

decahedra deposited on c-flat grids. 
Approximate 

Side Length (nm) 

N Pre-ALD peak 

Energy (nm) 

Peak Shift 

(nm) 

65  9  576(5)  15(2)  

105 193 628(12) 16(3) 

150-210  15  728(19)  67(15)  

Note: standard deviation on the last digit(s) in parentheses. 

 

A common equation used in plasmonic sensing relates the plasmon shift (Δλmax) to the particle's 

refractive index sensitivity (m), the change in refractive index induced by the adsorbate (Al2O3 in 

this case, Δn), the effective adsorbate layer thickness (d), and the plasmon field decay length (ld): 

 

             
   

  
 

                                                                                                      (5.1) 

 

Due to the large data set on the ~105 nm particles, they will be used in the following analysis. 

The RIS (m) for this batch of particles was found to be 510 nm/RIU (N = 46, standard deviation 

= 62 nm/RIU). The layer thickness d is 1.1 nm (10 Al2O3 ALD cycles). This leaves Δn and ld as 

variables. Assuming a Δn of 0.57 RIU (1.57-1.00) yields a rather large ld of 39 nm (a value of 5 -

6 nm was previously deduced for nanotriangles
71

). An analogous analysis for the small (65 nm) 

particles yields ld = 16 nm; a ld value could not be obtained for the large particles due to high 

variations in both Δλmax and RIS. The obvious flaw in this analysis is to assume that Δn is 0.57: 

the particles are covered with a thin layer (0.5 nm? 1nm?) of PVP (of unknown refractive index), 

which is replaced by Al2O3 in the ALD chamber. The range of guesses that can be made for the 

PVP thickness and RI would allow any reasonable value of ld to be obtained; however, these 

would still remain pure guesses. If the shift values for the 65 nm and 105 nm decahedra agreed 
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better with their RIS, they could provide the 2 data points needed to solve simultaneously for ld 

and Δn; however, their values are too disparate to allow such analysis. 

 

5.1.2.1.2 Ag Nanocubes 

 

Ag nanocubes are heavily studied for their LSPR sensing and SERS 

capabilities
52,57,61,92,106,123,147,200-203,231-233

 despite being prone to oxidation, a phenomenon limiting 

their practical applications. A stable and protective layer of metal oxide can be applied to protect 

plasmonic nanoparticles, a strategy previously demonstrated for, e.g., nanotriangles.
234

 The effect 

of alumina coating on Ag nanocubes was thus studied to demonstrate its feasibility and provide 

an additional tool for robust device design. 

On the first ALD trial, small (50 - 100 nm side length) nanocubes were coated with 10 layers of 

alumina in a custom-built reactor at 100 °C. The cubes displayed major spectral changes after 

oxide deposition, beyond the expected shift, accompanied with loss of the high energy peak, as 

shown in Figure 5.8. Subsequent ALD depositions were performed at 50 °C to avoid any 

possible oxidation or heat-induced transformations; at this temperature no spectral changes other 

than a shift were observed (Figure 5.8), and the average particle shape was confirmed to remain 

cubic. 
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Figure 5.8. Representative spectra of single Ag nanocubes on c-flat grids before and after 10 

layers of alumina ALD deposition. Left: deposition performed at 100°C resulting in damage to 

the particle. Right: spectral shift observed for the deposition performed at 50°C. 

 

A total of 73 single Ag nanocubes were optically characterized before and after coating 1.1 nm 

Al2O3 at 50 °C. Cubic morphology was confirmed by TEM analysis. The average (standard 

deviation in parenthesis) shift for the quadrupolar and dipolar resonance was 8(3) nm and 15(5) 

nm, respectively. Their pre-ALD resonance energy was 403(4) nm and 473(11) nm, respectively. 

The quadrupolar resonance sensitivity to the small layer of alumina was thus roughly half of that 

of the dipolar resonance sensitivity (also half when considered in eV: 0.03 and 0.06 eV). This 

lower quadrupolar shift disagrees with early calculations,
106

 but is supported by recent 

experimental results on the RIS of cubes,
231

 as well as that of other shapes such as prisms
235

 and 

decahedra (Section 5.1.1). 
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Figure 5.9. Plasmon resonance shift caused by the deposition of 10 cycles (1.1 nm) Al2O3 on ~80 

nm side length Ag nanocubes. 

 

As shown in Figure 5.9, there is no correlation with ALD-induced plasmon resonance energy 

shift and LSPR energy (i.e., cube size) over the narrow range of size studied. However, larger 

cubes are expected to have larger RIS (m-values), yielding a larger plasmon shift when coated 

with a high refractive index material such as alumina. 

A representative scattering spectrum from a single Ag cube coated with alumina left in air for a 

month is presented in Figure 5.10. The cubes appear to fully retain their plasmonic activity when 

protected with a thin layer of metal oxide; without it, large spectral changes are observed after 

less than a day for 50-100 nm cubes. Alumina ALD is thus successful at preventing oxidation in 

the studied Ag nanoparticles, and constitutes a useful addition to the nanoplasmonics toolbox. 

 



166   

   

   

 

Figure 5.10. Representative spectrum and black and white scattering map of ALD-coated Ag 

nanocube after 1 month in moist air. The scattering spectrum on the right is from the particle 

circled on the map shown on the left. Note that the majority particles with the same scattering 

intensity as the circled one were plasmonically-active single Ag nanocubes. 

 

5.1.2.2 Effect of Alumina Coating on Refractive Index Sensitivity 

 

Plasmonic particles such as Au decahedra and Ag cubes are potential refractive index sensors; 

the effects of covering them with a thin layer of alumina, to diversify anchoring chemistry and 

improve stability, has been explored to aid in device development. Further studies assessing the 

RIS of ALD-coated and bare Au decahedra on glass are presented in this section; all decahedra 

used were from the same batch. The RIS of coated Au decahedra is significantly lower than for 

uncoated ones, with average (standard deviation) RIS of -0.75(10) and -1.23(14) eV/RIU, 

respectively (Figure 5.11). The corresponding average FOM decreases from 3.0 to 1.9. The 
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plasmon energy shift due to ALD deposition is also clearly visible from the horizontal offset 

between the two groups in the right panel of Figure 5.11; the dipolar resonance FWHM does not 

change significantly.  

 

Figure 5.11. Refractive index sensitivity of Au decahedra with and without 1.1 nm Al2O3. Left: 

example of the linear relationship between RI and LSPR energy for two single Au decahedra. 

Right: RIS of 54 (with ALD) and 46 (without ALD) single Au decahedra on glass. 

 

5.2 Plasmon-Enabled Sensing: Single Molecule, Single Particle Surface-Enhanced Raman 

Spectroscopy of Crystal Violet 

 

Single molecule SERS (SMSERS) has been a subject of intense research and debate in the last 

15 years,
26,27,184,236-242

 during which most SMSERS signals have been observed from random 

aggregates of Ag colloids. A number of SMSERS studies have been performed in the Van Duyne 

group
237-239

 and are beyond the scope of this thesis. The current contribution to this wide research 

effort is the large data set of correlated SMSERS/LSPR/HRTEM obtained on SM-active 
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aggregates. For this work, SMSERS spectra were obtained for crystal violet (CV) or deuterated 

CV adsorbed on Ag aggregates deposited on standard TEM grids, followed by dark field 

microscopy and high resolution transmission electron microscopy (as described in Chapter 2). 

Representative data from correlated SMSERS/LSPR/TEM are presented in Figure 5.12. One of 

the two aggregates is a dimer, while the other is composed of at least 10 nanoparticles, 

demonstrating the structural variety of SMERS-active nanoparticle clusters. This can also be 

seen in Figure 5.13, where additional SMERS-active TEM images (without spectra) are reported.  
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Figure 5.12. Representative data from correlated SMSERS/LSPR/TEM from aggregates of Ag 

colloids. Top right: TEM image and scattering spectrum of the dimer giving rise to the crystal 

violet SMSER spectrum in the bottom left panel. Top left: : TEM image and scattering spectrum 

of the large aggregate giving rise to the deuterated crystal violet SMSER spectrum in the bottom 

right panel.  SMER spectra were obtained with 75.9 W/cm
2
 power, 532 nm laser excitation 

wavelength, and acquisition time of 30 s. 
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Figure 5.13. SMSERS-active Ag colloid aggregates. The bottom row are high magnification 

images of the region between nanoparticles for the dimers in the third row. 
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 The data acquired show no evidence of a relationship between aggregate morphology (number 

of particles and arrangement) and  identity of the isotopologue observed in SMERS. Previous 

reports suggest that all SMERS-active clusters are multiparticle aggregates, necessary to create 

“hot spots” of high electric field enhancements in the interparticle region. Consistent with those 

results, SMSERS was not observed from single particles; the smallest aggregates giving rise to 

SMSERS signal were composed of two particles (four dimers observed out of ~ 40 SMSERS-

active aggregates), and all of them were heterodimers, i.e. of disparately sized nanoparticles (> 

10 % difference in radius of individual particles). However, it was more common to find 

SMSERS-active clusters composed of three or more Ag nanoparticles because clusters composed 

of 3or more nanoparticles are more common than dimers in the sample studied, and there are on 

average more molecules in larger aggregate, thus a greater chance of exhibiting SMSERS.  

Another interesting finding that could be unraveled by correlated structural measurements is the 

lack of  relationship between SMSERS signal intensity and number of nanoparticles in an 

SMSERS-active cluster. Additionally, correlating scattering and Raman spectroscopy revealed 

no correlation between the location, shape, or breadth of the scattering peaks associated with 

SMSERS-active clusters and SMSERS signal intensity, consistent with previous work.
243

 

This first example of a large collection of correlated structure, SMSERS, and scattering spectra 

provides a tool to study, characterize, and rationally design  SERS and SMSERS substrates to be 

used in chemical and biological sensing.   
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CHAPTER 6 

 

Single Particle Studies of Polarization Effects in Plasmon Resonances   
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6.1 Polarization Phenomena in Localized Surface Plasmon Resonances 

 

Plasmon energy and linewidth can be controlled by changing the size, shape, composition, and 

environment of a plasmonic nanoparticle (Chapter 3-5 and references herein). Such tuning tools 

allow optimization of the plasmonic properties for use in sensors and devices such as refractive 

index sensors,
30,33,53-68,70-73,77,207,208,226,231,235

 substrates for surface-enhanced 

spectroscopies,
26,27,148,184,192-194,201-203,218,219,236-239,241,243,244

 and optical signal transducers.
36,39,41-

43,49,245
 However, plasmonic control is not necessarily simple or straightforward, as an increase in 

the particle size typically leads to the appearance of higher order modes,
67,82,92,96,139,199

 while an 

increase in anisotropy (particle shape) commonly lifts the degeneracy of the dipolar 

resonances.
97,126,132,144,179,246

 A well-known example of the latter is the presence of a transverse 

and a longitudinal mode in nanorods
68,179

. Both higher order modes and degeneracy splitting lead 

to spectral broadening, a undesirable effect in sensing. On the positive side, new modes may be 

sharper or more sensitive to their surroundings, improving the sensing potential. Additionally, 

the position and number of modes can be used to spectrally identify nanoparticle shape.
87,100,106

 

Selective excitation of plasmon modes is achieved using polarized light; excitation profiles are 

expected to reflect the particle shape and the symmetry of the oscillation modes probed. For 

example, the longitudinal plasmon mode in a nanorod is excited by light polarized along the long 

axis of the particle, while the transverse mode is excited by light polarized perpendicular to the 

long axis.
68,81,209,222

 It is thus possible to determine the orientation of single particles or 

aggregates based on their polarization-dependent spectra. Polarization studies, which reveal 

mode symmetry and particle anisotropy, cannot typically be performed on ensembles because of 
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the random particle orientation. It is possible, however, to obtain polarization-dependent spectra 

from templated or oriented particles.
104

 Yet to study the magnitude of the intrinsic polarization-

induced scattering intensity variation, mode selectivity, and orientation dependence of the 

plasmon resonance, single particle studies are arguably a superior approach as they overcome all 

heterogeneous effects (from size and shape to orientation and composition). Methods to correlate 

the polarization-dependent spectrum and the structure and orientation of single nanoparticles 

were developed (details in Chapter 2), and the results are presented in this Chapter. Single 

particles, bimetallic particles, particle chains, and random aggregates are discussed, followed by 

the correlated, polarization-dependent scattering and 2-photon photoemission of silver 

nanocubes. Through this work, polarization effects on individual plasmon modes is quantified as 

the polarization anisotropy, (Imax,λ-Imin,λ)/Iaverage,λ,
100

 where Imax,λ, Imin,λ, and Iaverage,λ are the 

maximum, minimum, and average polarization-dependent peak intensity, respectively. 

 

6.2 Plasmon Polarization in Isolated Au Nanostructures 

 

Polarization-dependent scattering spectra of single Au decahedra and truncated bitetrahedra were 

obtained by adding a polarizer to a typical dark field microscopy setup (details in Chapter 2). 

Both structures were present in the same reaction mixture, and thus were studied in the same 

experimental manipulation. Representative spectra and TEM images of Au decahedra and 

truncated bitetrahedra are presented in Figures 6.1 and 6.2, respectively. 
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6.2.1 Au Decahedra 

 

Figure 6.1 Representative correlated polarization-dependent scattering spectra and TEM images 

of single Au decahedra. Clockwise from top left, the polarization anisotropy is 17, 15, 35, and 29 

%. The average polarization anisotropy for the nine decahedra measured was 21 %. The vertical 

axis in the picture corresponds to 0° polarization. Scalebars, 50 nm.  

 

Computational results on the effects of the angle of incidence on the plasmonic behavior of 

single decahedra have been published previously,
82

 although the calculation geometry and the 

current experimental setup are not equivalent. Rodríguez-Fernández et al.
82

 calculated the 

spectral variation, at constant polarization, for angles of incidence starting from apex to apex and 

ending along the plane of the pentagonal base (from corner to edge). Their fixed polarization was 

perpendicular to one of the pentagonal base edge. The current experiments differ in that they 

have a constant range of simultaneous angles of incidence and a variable polarization. The 

former is defined by the particle tilt, 35.3° from the surface (laying flat on a {111} face), and the 
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orientation of the geometry of illumination (the hollow cone of light formed by the dark field 

condenser is oriented ~60° from the surface normal). Simultaneous angles of incidence ranging 

from (60-35) to (60+35)° (from the apex-apex orientation) are thus formed, unlike the single 

angle of incidence in the calculations of Rodríguez-Fernández et al.. Despite such differences, a 

180°-period (peak repeats twice within 360°) was observed in both cases, as is expected for a 

uniaxial dipolar resonance (as in nanorods). The dipolar plasmon resonance of the nine 

decahedra studied peaked around 600 nm (average: 608 nm, min: 591 nm, max: 633 nm, st. dev.: 

15 nm); this peak resonance energy was very stable against polarization changes, with an 

average maximum energy difference (λmax-λmin) of 3.4 nm (min: 1.8 nm, max: 6.7 nm, st. dev.: 

1.54 nm, determined by numerical maximum value finding in MATLAB). A total of nine 

decahedra were studied, yielding a non negligible polarization anisotropy average of 21% (min: 

10 %, max: 35 %, st. dev.: 7 %). This is in quite good agreement with boundary element method 

(BEM) calculations performed by Rodríguez-Fernández et al..
82

  

As for many other plasmonic attributes, size is expected to contribute to the degree of 

polarization anisotropy, with larger polarization anisotropy associated with increased decahedra 

size;
82

 this effect was not observed in the current work due to the limited range of sizes studied. 

An interesting future experiment involves studying the size-dependence of polarization 

anisotropy. Smaller step sizes (10° or 5°, compared to the current 20°) are not expected to reveal 

different patterns, but likely would reduce the polarization anisotropy variation between particles 

of comparable sizes.  
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6.1.2 Au Truncated Bitetrahedra 

 

Truncated bitetrahedra were also studied with correlated pol-LSPR/TEM. Two dipolar modes 

have been proposed for a similar structure, flat nanoprisms: one oscillating from edge to apex, 

and one from apex to apex.
100,149

 In this context, a peak corresponding to the edge to apex mode 

should appear every 120°, and a peak corresponding to the apex to apex mode should appear 

every 120°, offset from the other mode by 60°. A total of 6 peaks should thus been observed, one 

every 60°. Given that peaks are not excited solely when the polarization is perfectly matched (but 

rather over a range), some overlap is expected. In addition, calculations
149,214

 predict a rather 

small difference in energy between such modes, further reducing the expected polarization 

dependence.  

The four truncated bitetrahedra studied (Figure 6.2) indeed have negligible peak wavelength 

fluctuations, with all the peaks for a given particle within 2 nm of each other for all polarizations. 

The polarization anisotropies is also very small: 3.5, 5.7, 6.1, and 4.3 %. This lack of intensity 

variation, unlike what is expected for thin triangular platelets, may be due to the effects of the 

(undetermined) thickness of the particles and the tilted illumination geometry. 
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Figure 6.2 Correlated polarization-dependent scattering spectra and TEM images for the four 

single Au truncated bitetrahedra observed. Clockwise from top left, the polarization anisotropy is 

3.5, 5.7, 4.3, and 6.7 %. The presence of a higher background signal for the particle in the lower 

right corner is likely due to the proximity of a strong scatterer (grid bar, small dust particle, or 

large nanoparticle aggregate).  Scalebars, 50 nm. 

 

Thin triangular platelets being a well-researched shape,
100,103,143,149,216,247-249

 a number of 

contradicting results are present in the literature. Unlike the previously discussed predictions, the 

work of Schubert et al.
100

 suggests that the polarization dependent spectrum should have two 

peaks of different energy repeating every 180°, offset by 60° from one another. This finding 

seems to not match the 3-fold symmetry of the particle, and no such pattern was observed, either 

in intensity or energy, in the current experiments on truncated bitetrahedra. 
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6.2 Plasmon Polarization in Single Bimetallic Nanostructures: Hiding Anisotropy 

 

Polarization dependence of anisotropic nanoparticles has been studied here and elsewhere,
82,100

 

and is known to acutely depend on the symmetry of the particle shape and aggregate geometry. 

Recently, an interesting structure was synthesized: gold rods encapsulated in a quasi-spherical 

silver shell.
141

 Such structure is similar to the well-known silica-encapsulated Au nanorods.
120,250

 

Silica is a dielectric material not participating in the plasmon oscillation, and the result of the 

encapsulation is a simple red-shift of the LSPR frequency due to the increased refractive index 

around the rod; the scattering signal retains its polarization-dependent behavior. For Ag 

encapsulation, whether the plasmon scattering remains anisotropic is an interesting question that 

was approached in this work. 

The bulk solution LSPR spectrum of Au rods @ Ag shells, initially published alongside the 

synthesis,
141

 shows one strong plasmon peak located between 400 and 500 nm, significantly 

blue-shifted from the initial uncoated rod longitudinal peak at 800 - 900 nm. Additionally, the 

two modes, longitudinal and transverse, slowly merge into a single intense mode as the particle 

becomes isotropically covered with the Ag shell. However, as discussed above, no polarization 

information could be obtained from such ensemble measurements. 

 

6.2.1 Correlated pol-LSPR/TEM of Au rods @ Ag shells  

 

To elucidate whether anisotropy can be hidden by an isotropic shell of plasmonic material, single 

Au rods @ Ag shell synthesized according to ref.
141

 were studied using correlated pol-
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LSPR/TEM using the instrumentation available at the University of Melbourne. The difference 

in contrast between Ag and Au in the transmission electron microscope allows the identification 

of the Au rod orientation within the Ag shell, as can be seen in Figures 6.3-6.4. The solution 

spectrum is presented in Figure 6.3; typical single particle spectra and TEM pictures are reported 

in Figure 6.4. 

 

Figure 6.3. Representative TEM image (left) and solution spectrum (right) for Au rods @ Ag 

shell particles. Scalebar, 50 nm. 
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Figure 6.4. Representative single particle correlated pol-LSPR/TEM results on Au rods @ Ag 

shell deposited on Formvar substrate. The polarization angle in the pol-LSPR plots on the left are 

aligned with the TEM images in the middle, with the vertical axis corresponding to 0°. The 

polarization anisotropy is, from top to bottom, 20, 83, and 133 %. The LSPR spectra on the left 

were obtained with unpolarized light. Scalebar, 50 nm.  

 

Several experimental difficulties were encountered while trying to characterize single Ag rods @ 

Au shell particles. The first trials, aiming to correlate the polarization anisotropy, LSPR 

frequency, rod orientation, and particle size, were performed on standard Formvar-coated TEM 

grids. However, the scattering intensity of the single particles was very low: visual alignment in 
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the optical microscope was rather difficult. Instrumental limitations further complicated this 

approach: the numerical aperture of the 60X objective used was such that an intense background 

from the grid scattering was collected alongside the particle signal, and the detector quantum 

efficiency in the blue region was low, adding to the noise. Several reasonable quality single 

particle spectra and TEM images were successfully acquired, yet not enough polarization data 

could be obtained to prove or disprove the presence of polarization anisotropy. In Figure 6.4, for 

example, no anisotropy is apparent for the top particle (rod aligned 90°), while a strong 

anisotropy is surprisingly observed perpendicular to the rod axis for the middle particle. The 

bottom particle also shows anisotropy, although 90° from what would be expected from the rod 

orientation. Such inconclusive results prompted the acquisition of more statistics through simpler 

experiments. 

 

6.2.2 Single Particle pol-LSPR of Au rods @ Ag shells  

 

In order to reduce the background noise, particles were deposited and dried on glass coverslips 

and an oil immersion 100 X objective was borrowed from another group and used. Structural 

correlation was forgone, but single particles could be identified by eye because of their dim blue 

color. This visual identification was confirmed by comparing the spectra of known single 

particles with the spectra of particles obtained on glass. This approach allowed the collection of 

19 single particle polarization spectra, an example of which is presented in Figure 6.5. The 

average polarization anisotropy of the single particles is 12.8 % with a standard deviation of 7 % 

(Figure 6.5). This small anisotropy (given the anisotropy of other types of particles and the 
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instrumental limitations) suggest that Au rods are indeed very well hidden inside the Au shell, as 

suggested by the presence of a plasmon resonance in the blue region. 

 

 

Figure 6.5. Plasmon polarization of single Au rods @ Ag shell nanoparticles. Left: particles on 

glass, where the dim blue spots on the bottom of the image are single particles. Middle: example 

of pol-LSPR data. Right: polarization anisotropy distribution. 

 

6.3 Plasmon Polarization in Chains and Aggregates of Spheroid Au Particles 

 

As a proof-of-concept for correlated SEM/LSPR/TEM of rare structures, the optical response of 

random particle chains deposited on standard Formvar/carbon TEM grids were studied. Au 

nanoparticles of approximately spherical shape with ~ 50 nm diameter were deposited on a 

standard Formvar/carbon TEM grid. The particles were identified using low magnification SEM, 

which has been shown to minimally affect the plasmon resonance (Chapter 2). Scattering spectra 

were then obtained with dark field microscopy (LSPR and pol-LSPR), followed by detailed 

structural characterization in a TEM. Note that the scattering of single monomers, at ~540 nm, 

was typically too weak to be observed with the current instrument. These experiments were 

performed at the University of Melbourne. 
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6.3.1 Plasmon Polarization in Dimers of Spheroid Au Particles 

 

Five dimers were observed; they have, as expected, two main resonances (Figure 6.6).
251,252

 The 

lowest energy resonance is red-shifted with respect to the monomer resonance, and represents the 

oscillation along the interparticle axis. Polarization experiments on similar Ag structures 

confirmed this assignment (Chapter 2). The second resonance represents oscillation 

perpendicular to the interparticle axis and has a higher energy due to the weaker interparticle 

coupling. 

  

 

Figure 6.6. Example of correlated LSPR/TEM on Au dimers. Left: TEM images. Right: 

scattering spectra showing the two main plasmon resonances. Scalebars for the images and 

inserts, 50 and 5 nm, respectively 
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6.3.1 Plasmon Polarization in Aggregates of 3 or More Spheroid Au Particles 

 

 

Figure 6.7. Plasmonic properties of three of the five Au T-shaped trimers studied by 

SEM/LSPR/TEM. An intense plasmon resonance slightly red-shifted from the dimer resonance, 

and a broad peak located close to the transverse mode in dimer structures can be seen. Scalebars, 

50 nm. 
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Two types of trimers exist, linear and T-shaped aggregates; both were observed. Typical T-

shaped trimer spectra and electron micrographs are reported in Figure 6.7. Two bands are present 

in the spectra of T-shaped trimers: the most intense peak at an energy slightly red-shifted from 

the dimer resonance, and a broader, less intense resonance located close to the transverse mode 

of the dimers (~ 550 nm, see Figure 6.6). No formal peak assignment was done because no 

polarization experiments were performed on those structures.  

The linear trimers have various degree of interparticle spacing, making them interesting to study 

interparticle coupling in structures other than dimers. A strong peak is present in all the trimer 

spectra (Figure 6.8). The dimer + particle structure also has another weaker peak at higher 

energy. The most intense peak significantly redshifts when monomers are brought closer 

together: the lowest energy resonance decreases from 3 separated monomer (570 nm) to a 

monomer and a dimer (705 nm) to a nearly touching linear trimer (785 and 810 nm). Based on 

the polarization experiments summarized in Figure 6.9, this main peak was associated with an 

oscillation along the interparticle axis. The higher energy peak in the dimer + particle structure 

cannot be attributed to the transverse dimer mode as it does not have the expected 90° offset 

from the main resonance; it is likely a modified transverse mode that also involves the adjacent 

monomer. The magnitude of the polarization anisotropy for the separated monomers is non-

negligible, 52 %, as expected for moderately interacting particles (interparticle distance ~ 

particle diameter). Dimers and trimers have much stronger polarization anisotropy, 155 % and 76 

% for the chains in Figure 6.9. A linear quadrumer was also observed, with a plasmon energy of 

830 nm and a polarization anisotropy of 157 %; its constituent monomers were smaller than 

average (Figure 6.9). As expected, the polarization anisotropy increase with the number of 
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particles in (i.e. the length of) a near-touching linear aggregate. However, to properly compare 

such structures, monomers of a similar size need to be examined, which is not the case for the 

limited number of results presented here. Additionally, structural instabilities in the mounting of 

the polarizer at the University of Melbourne make quantitative analysis difficult. 

 

 

Figure 6.8 Plasmonic properties of Au linear trimers with various interparticle separation studied 

by SEM/LSPR/TEM. Scalebars, 50 nm. 
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Figure 6.9 Polarization dependence of the scattering of linear Au trimers and quadrumer. The 

particles were rotated to match the grid orientation. The polarization anisotropy for the main 

mode is, from top to bottom, 52, 155, 76, and 157 %. Scalebars, 50 nm. 
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6.4 Plasmon Polarization in Aggregates of Sharp Au Particles 

 

Nanostructure aggregates form spontaneously on substrates upon drying. While such structures 

were not the subject of this study, the results are nonetheless interesting and confirm the efficacy 

of the pol-LSPR setup used at Northwestern University. In all the observed aggregates, the most 

intense mode is the lowest energy oscillation, along the longest axis of the aggregate.  

 

6.4.1 Plasmon Polarization in Dimers of Sharp Au Particles 

 

In the case of a dimer, the dominant mode along the interparticle axis is typically accompanied 

by a weaker mode at higher energy, which has a polarization perpendicular to the interparticle 

axis. Such modes do repeat every 180° as expected.
89

 Figure 6.10 shows the polarization 

dependence of the LSPR spectrum as well as TEM images of small aggregates.  
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Figure 6.10 Scattering intensity dependence on incoming light polarization for Au dimer 

structures. The highest scattering intensity (deep red) is obtained when the polarization is 

approximately along the interparticle axis. Zero degree corresponds to the vertical axis.  

Scalebars, 50 nm. 
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6.4.2 Plasmon Polarization in Aggregates of 3 or More Sharp Au Particles 

 

 

Figure 6.11 Scattering intensity dependence on incoming light polarization for Au nanoparticle 

aggregates. Note that the lowest energy mode present is along the interparticle axis. Scalebars, 

50 nm. 
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6.5 Plasmon Polarization in Ag and Au Nanostructures: Comparison of one-Photon and 

Multiphoton Techniques Reveals Photoemission Mechanism 

 

Single particle studies are a powerful tool to describe and quantify the effect of various structural 

factors on their optical response, in particular plasmon energy, width, and polarization-

dependence. As discussed in Chapter 2, plasmon resonances lead to an enhancement of the 

electric field near the surface of the particle, a phenomenon at the basis of surface enhanced 

spectroscopies and other applications.
29,184,192-194,202,218,236,237,239,243

 In individual nanoparticles 

near-field enhancement factors as much as |E|/|E0| = 10
2
 can be observed, where |E| is the field 

intensity around the particle, and |E0| is the applied field intensity. Values as high as |E|/|E0| = 10
3
 

can be attained in the interparticle junctions of specially designed nanostructures.
253,254

  

Recently, the large local electric field enhancements provided by plasmonic phenomena have 

been proposed to underlie more exotic processes such as the generation of high kinetic energy 

(up to keV) electrons and THz radiation upon ultrafast laser illumination of metallic surfaces and 

metallic nanostructures, respectively.
255,256

 In such cases the observed phenomena are necessarily 

accompanied by electron emission - a process poorly understood for metallic nanoparticles and 

nanostructures irradiated with ultrafast laser pulses at a photon energy (Eph) below the material 

work function (Φ). In particular, the exact role of the localized surface plasmon in augmenting 

the electron emission is presently unclear.
257-263
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6.5.1 Possible Photoemission Mechanisms 

 

Two families of mechanisms are often invoked to explain electron emission from metallic 

surfaces upon ultrafast excitation with sub-work function photon energies (i.e., Eph < Φ). In 

thermionic emission models,
264,265

 the laser momentarily heats up the conduction electrons, thus 

promoting a fraction of electrons in the Fermi-Dirac distribution above the metal work function, 

whereupon they are emitted. Alternatively, the electron emission can be described in terms of a 

multiphoton photoelectric effect, where a particular electron is emitted after absorbing n > Φ/Eph 

photons either simultaneously (i.e., a coherent/direct process) or sequentially (i.e., an 

incoherent/indirect process).
266-270

  

The experimentally observed enhancement of electron emission from metallic nanoparticles 

upon resonant excitation of a plasmon can in principle be rationalized via either thermionic or 

multiphoton mechanism. For example, in thermionic emission models the plasmon could 

facilitate incident light absorption due to an increased particle linear absorption cross-section 

σABS, thus leading to an increased electron gas temperature, and consequently an enhancement in 

thermionic emissivity. On the other hand, in multiphoton photoelectron emission (MPPE) 

models, the build-up of coherent oscillations could lead to near-field enhancement (|E|/|E0|) of 

the incident electric field and thus result in increased photoelectron yields.  
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6.5.2 Experimental Approach to Determine the Photoemission Mechanism in Ag Nanocubes 

 

In the current work, we have devised an experiment that distinguishes between the two possible 

plasmon roles, and consequently the two mechanisms, by studying the polarization-dependence 

of the electron emission from individual, supported Ag nanocubes
125

 (edge length, d ~ 160 nm). 

The four-fold symmetry, well-defined positioning on the substrate (i.e., face down) and relatively 

simple scattering spectra in the visible spectral range make nanocubes ideal for this experiment. 

Single Ag nanocubes exhibit two main plasmon resonances, a dipolar and a quadrupolar mode, 

as discussed in Chapters 3 and 4. This work focuses on the dipolar resonance, as it is the sole 

mode excited at 800 nm, the excitation laser wavelength (intensity contribution > 99.9 % for all 

cubes studied). Typical scattering spectra for single silver nanocubes can be found in Figures 

6.12 and 4.18.  
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Figure 6.12. Scattering spectrum of an individual Ag nanocube (d ~ 160 nm) on a c-flat substrate 

and SPIM excitation wavelength. The two prominent peaks correspond to a quadrupolar (λ = 480 

nm) and a dipolar (λ = 690 nm) plasmon resonance. The charge distribution for the two 

resonances is schematically depicted at the top of the Figure for the indicated incident 

electromagnetic radiation. Inset: TEM image of the Ag nanocube responsible for the scattering 

spectrum. 

 

The electron emission studies were performed in a scanning photoionization microscope (SPIM, 

see ref.
261,262,271,272

 and Figure 2.17). Briefly, ultrafast laser pulses with center wavelength λ = 

800 nm are focused by an in-vacuo microscope objective onto a supported particle, momentarily 

generating high laser intensities (I ~ 10
9
 W/cm

2
) that lead to electron emission. The two models 



196   

   

   

described above predict substantially different behavior for the electron yield from Ag nanocubes 

as a function of the excitation laser polarization orientation in the substrate plane, such that 

single particle correlated experiments provide a powerful tool to differentiate between them. 

In the thermionic emission case, where the electron gas temperature is of utmost importance, the 

electron emission pattern upon varying the laser polarization direction is expected to reflect the 

underlying polarization dependence of the particle’s linear absorption cross-section. However 

any linear process (i.e., light absorption or scattering) in structures with 3-fold symmetry or 

higher is independent of the laser polarization, because every excited mode can be expressed as a 

linear combination of two (or more) degenerate modes.
273

 Consequently, thermionic emission 

from symmetric structures such as cubes is insensitive to laser polarization (Figure 6.13). 
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Figure 6.13. Electric field intensity and expected polarization dependence of the electron 

emission of Ag nanocubes. Left: Distribution of the electric near-field component normal to the 

particle surface (2 nm from cube surface) for four select orientations of the incident electric field 

vector. Due to the n-photon nature of the process (n = 4), the enhancement factor |E|/|E0| raised to 

the 8
th

 (2 X 4) power is used as a metric approximating multiphoton photoelectron emissivity. 

Right: anticipated laser polarization dependence of the electron emission from individual 

nanocubes if thermionic emission (NTE - red trace) or photoelectron emission (NPE - blue trace) 

mechanism dominates 

 

On the other hand, the multiphoton photoelectron emission rate depends on the local electric 

field component normal to the particle surface raised to the power 2n, where n is the minimum 

number of photons required to overcome the material work function (i.e., n > Φ/Eph). Given the 

Ag work function, ΦAg = 4.74 eV,
274

 a minimum of four (n = 4) photons are thus necessary for 

electron emission at λ = 800 nm (Eph = 1.55 eV). Since a plasmon resonance enhances the local 

electric-field intensity, multiphoton photoelectron emission will scale roughly with |E|/|E0| to the 

8
th

 power. Therefore, numerical electrodynamics calculations of the quantity |E|/|E0|
8
, which 

serves as a metric for multiphoton photoemissivity, were performed at select excitation laser 
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polarization orientations (Figure 6.13). From the images, the corners can be clearly identified as 

the dominant electron sources, in agreement with previous studies that found maximum near-

field enhancements at cube corners.
52,106,129,147

 More importantly, stronger local electric field 

enhancement arises at the corners when the excitation polarization aligns with the cube diagonals 

than when it points parallel with the square facets of the cube. This implies that multiphoton 

photoelectron emission will be sensitive to the laser polarization direction and resemble the four-

lobe pattern shown in Figure 6.13. Moreover, the laser polarization directions resulting in 

maximum electron emission are thus expected to be aligned with the cube diagonals/corners.   

Correlated LSPR/SPIM/TEM (see Chapter 2 for details) was used to differentiate between the 

two mechanisms. Typical diffraction limited SPIM and DFM images, as well as low- and high-

magnification TEM pictures are presented in Figure 6.14. 
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Figure 6.14. Correlated LSPR/SPIM/TEM of Ag cubes. Top left: SPIM. Top right: scattering 

image from dark field microscopy. The black and white image is shown with inverted colors, 

while the real color image is unprocessed. Bottom left: low magnification TEM image. Bottom 

right: high-magnification TEM images of the four nanocubes (A-D) present in the SPIM and 

DFM images. 

 

6.5.3 Results from Polarization Experiments  

 

The polarization-dependence of the scattering of Ag nanocubes was studied using correlated 

LSPR/TEM. Twenty cubes of side length 140-180 nm were studied. The peak intensity was 
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measured at the dipole position for each nanocube. The average polarization anisotropy, or peak 

intensity variation (calculated as previously, (Imax,λ-Imin,λ)/Iaverage,λ,
100

) was 9 % with a standard 

deviation of 3 %, N = 20 (Figure 6.15). 

 

 

Figure 6.15. Polarization anisotropy of supported Ag nanocubes. 

 

The small polarization-dependence of the intensity produced a pattern showing two maxima and 

two minima over 360° (Figure 6.16). The average intensity variation for cubes (9 %) was 

significantly smaller than for an elongated particle (71 %, Figure 6.16) found in the reaction 

mixture, or other anisotropic particles and aggregates studied on the same instrumental setup 

(previous sections). Note that this elongated particle was not included in the data presented in 

Figures 6.15 and 6.17.  

No correlation was found between the corner orientation and the polarization giving the highest 

intensity (Figure 6.17). The origin of  the small intensity variation with polarization remains 

unclear but it cannot be attributed to the cubes themselves and is likely due to instrument 
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positioning and other small instrumental contributions. The predominance of highest peak 

intensity positions between 90 and 180° also supports this claim. 

 

 

Figure 6.16. Representative polarization-dependent spectra and TEM pictures of Ag nanocubes. 

Left: LSPR spectra, where the polarization anisotropy for cubes a, b, c, and d is 8.7, 5.5, 8.7, and 

71 %, respectively. Right: TEM images. Scalebars, 50 nm. The peak intensity maximum is 100, 

160, 120, and 180°, while the corner orientation is 74, 17, 27, and 45° for cubes a, b, c, and d, 

respectively. 

 



202   

   

   

 

Figure 6.17. Correlation between the polarization giving the highest peak intensity and the cube 

corner orientation. N = 20. 

 

The observed lack of polarization-dependence of the scattering intensity of the dipolar mode is in 

agreement with previous observations and calculations as well as with the expectations based on 

the particle symmetry.
100

 The electron emission from Ag nanocubes, however, was observed to 

strongly depend on the laser polarization, as can be seen in Figure 6.18 for the same cube. Since 

the electron current resulting from a thermionic emission mechanism should be independent of 

the incident laser polarization (Figure 6.13), the finding clearly indicates that the multiphoton 

photoelectric effect is responsible for the observed electron emission signal. The multiphoton 

nature of this process was further confirmed by a power law dependence of the electron emission 

rate on laser intensity at λ = 800 nm, where the expected ensemble-averaged exponent value n = 

4.0(1) was measured in a sample of N = 7 cubes.  
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Figure 6.18. Measured photoelectron emission rate, PE, as a function of the laser intensity using 

circularly polarized λ = 800 nm light. The main plot shows data for a representative Ag 

nanocube (red) and C-Flat substrate (black), together with a least-square fit to equation PE = A x 

I
m

. Inset shows a histogram of fitted m values for N = 7 Ag nanocubes, yielding an ensemble-

averaged value <m> = 4.0 ± 0.1. 
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Figure 6.19. Polarization dependence of scattering and multiphoton photoemission. Top left: 

scattering intensity from a Ag nanocube as a function of the polarization of the illuminating light 

(λ = 800 nm). Top right: electron emission from the same Ag nanocube as a function of 

excitation laser polarization (center wavelength, λ = 800 nm). Bottom left: TEM image of single 

Ag nanocube studied. Bottom right: sequence of raw SPIM images of the nanocube recorded at 

indicated laser polarization angles and intensity I = 4.5 x 10
9
 W/cm

2
. 

 

Since photoelectron emission is strongly influenced by the local electric field at the particle 

surface, the electron emission yield would be expected to peak when the laser polarization aligns 

with the regions of highest electric field enhancement, i.e., cube corners.
92,96,106,129,147

 This is 
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precisely what was experimentally observed in correlated SPIM/TEM measurements on 11 Ag 

nanocubes (Figure 6.20). Note that in an earlier study a marked increase in the SERS signal, 

which is also directly related to the local electric field intensity, was observed if the laser 

polarization aligns with the corners of the nanocubes.
204

 The current finding identifies the local 

electric field enhancement induced by the localized surface plasmon resonance as critical for 

efficient electron emission, providing strong evidence for the multiphoton photoelectron 

emission (MPPE) mechanism. 

 

 

Figure 6.20. Correspondence between the direction of the cube corners (θCorner) and the laser 

polarization that results in maximum electron emission ( MAX

SPIM ). 
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6.5.4 Corner Rounding Effects on Photoemission Intensity  

 

The MPPE signal depends sensitively on the local electric field distribution (|E|/|E0|
8
) and 

consequently all factors that affect the electric near-field. For example, structure dramatically 

influences the particle near-field, suggesting that the MPPE yield will depend sensitively on tiny 

differences in topography of the particle surface. These structural variations are likely 

responsible for the observed imperfections in the four-lobed patterns of MPPE rate vs. excitation 

laser polarization (Figure 6.19), where one lobal pair is generally stronger than the other. The 

typically observed 3- to 5-fold differences between the adjacent lobe pairs translate into only ~ 

20 % (~ 5
1/8

 = 1.22) variability in |E|/|E0| for neighboring cube corners, which could easily arise 

due to slight topological dissimilarities between them. 

Since the curvature of cube corners is a dominant structural factor influencing the local electric 

field enhancement in their vicinity, the inferred variation in |E|/|E0| within the same cube implies 

that the roundness of neighboring corners may slightly differ. We explored the link between the 

observed photoelectron emission rates and the measured corner radii of 8 different cubes and 

interestingly found no clear correlation (Figure 6.21). This surprising result may suggest that 

corner features smaller than a typical HRTEM resolution of ~ 1-2 nm significantly contribute to 

the overall photoemission signal. Alternatively, since the corner radius was not measured 

directly, but rather inferred from the roundness of the edges, the dominant electron sources 

contributing to the observed MPPE signal could simply have been unobservable. However, they 

may be identifiable in HRTEM by tilting the sample, whereby the detailed corner morphology 

may be revealed, and will be looked at in greater detail in the future.  
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Figure 6.21. Experimental four-photon photoelectron emission cross-section for 8 Ag nanocubes 

as a function of measured cube corner rounding, r (black). The smallest radius value of the two 

aligned with a particular preferred polarization direction is used, because it is presumed to be the 

stronger electron emitter. The expected dependence is shown in red, where 

  

NPA

PE dAEE
8

0

)4( |||| . The surface integral of (|E|/|E0|)
8
 over the particle boundary ANP (2 nm 

away from the actual particle surface) is evaluated, see ref.
272

 for details. 

 

6.5.5 Conclusions  

 

In summary, correlated DFM/TEM/SPIM studies of individual nanoparticles provide a unique 

insight into the electron emission process following excitation with high-intensity ultrashort laser 

pulses. By offering a well-controlled environment necessary for quantification, these studies 

identified multiphoton photoelectron emission as the most probable mechanism responsible for 
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electron emission from Ag nanocubes, and likely metal nanoparticles in general, when 

employing ultrafast excitation with Eph < Φ. The photoelectron emission rate depends sensitively 

on |E|/|E0| by scaling approximately with (|E|/|E0|)
2n
, where n > Φ/Eph. The presence of a plasmon 

can therefore dramatically enhance the total photoelectron yield even by increasing the incident 

electric field near the particle surface only slightly. The strong sensitivity of the MPPE yield to 

the local electric field enhancement thus opens up the possibility of mapping and experimentally 

quantifying the local near-field enhancement factors in metallic nanoparticles and 

nanostructures. 
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CHAPTER 7 

 

The Wulff Construction for Alloy Nanoparticles 
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7.1 Introduction to Alloy Nanoparticles 

 

In the previous chapters, the effect of many different factors such as size, shape, and corner 

rounding, on plasmonic properties have been studied. Another handle on plasmonics is 

composition, as seen in Chapter 3 with the strikingly different properties of Au and Ag 

nanocubes, is composition. Indeed, not only do Ag and Au have different optical responses, but 

several studies have shown that the resonance energy varies smoothly with composition when 

AgAu alloys are formed.
75,79,275

   

Additionally, alloying can drastically improve the performance of catalytic materials, where the 

activity rarely varies linearly with composition.
11,136,276-290

 Examples abound, but to name a few, 

cyclohexane dehydrogenation on CuNi is rather insensitive to composition in the 10-80 % Cu 

range, with a sharp activity drops are observed for both pure metals;
11

 CO hydrogenation 

produces 10 times more methanol when a 20/80 Fe/Pd alloy is used than when either pure metals 

are used;
278

 Benzyl alcohol oxidation proceeds at a nearly 100 % conversion rate for any AuCu 

alloys, but drops to 40 - 50 % for Au or Cu alone.
277,291

  

It is well-known, however, that shape is also a factor influencing both catalysis and plasmonics 

behavior.
65,68,86,92,109,187,197,248,292-295

 Catalysis occurs on the outermost layer of a particle, hence 

the exact composition at the surface is absolutely critical. This composition can be different than 

that of the bulk due to migration of atoms to the surface, an effect called segregation.
156,290,296-302

 

A shape-predictive model for alloys, including surface composition analysis, would thus be a 

useful tool for the nanotechnology community, supplementing the widely used Wulff, modified 

Wulff, Winterbottom, and Summertop constructions discussed in Chapter 1.    
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In this chapter, the  analytic solution for the thermodynamic equilibrium shape and surface 

composition of an alloy nanoparticle is derived. The modeled nanoparticle shapes obtained when 

including segregation are rather different from what is found for a single component system or 

non-segregating alloy. Previous models and approaches are first discussed (Section 7.2), 

followed by a complete mathematical derivation of the alloy Wulff construction (Section 7.3). 

Four different alloys (AgPd, AuPd, AgAu, and CuAu) are explored, their shape and composition 

profiles are characterized, and some of interesting shape-dependent effects are observed in 

Section 7.4. Finally, in Section 7.5, results from the alloy Wulff construction are compared with 

published experiments, and its limitations and potential extensions are discussed. 

 

7.2 Previous Modeling of Alloy Nanoparticle Shape 

 

The shape of alloy nanoparticles is relevant to a number of properties such as catalysis and 

plasmonics,
65,68,86,92,109,187,197,248,292-295

 such that many approaches have been developed to predict 

and understand it, with a range of simplifications and assumptions. Numerical methods such as 

Monte Carlo and embedded atom simulations have been used, however because of computing 

limitations, shapes are either fixed (with variable atomic distribution) or the particles modeled 

are very small.
297,298,303-306

 While such studies can provide useful information, their limitations 

and approximations (on potentials, structures, and/or density functionals) reduce their 

applicability. In addition, analytical techniques are often more powerful than atomistic ones as 

they provide solutions valid for different sizes, which is often hard to extract from an atomistic 

calculation. 
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The simplest analytical model that can be used to predict the shape of alloy nanoparticles is the 

Wulff construction, discussed in Chapter 1. In this approach, it is assumed that no segregation 

occurs, and the surface energy is taken for the composition corresponding to the overall particle 

composition (herein referred to homogeneous concentration). This work refers to this approach 

as the “basic Wulff”.  

Some of the oversimplifications used in the basic Wulff model have been addressed using the 

“infinite reservoir approximation” (Figure 7.1). In this approach, the surface composition (hence 

surface free energy) is variable, while the internal composition is fixed to that of the initial 

(herein referred to as initial or homogeneous) concentration. Bulk composition and bulk free 

energy changes are neglected, and the surface free energy is computed with the initial bulk 

composition as underlying concentration.  

For nanoparticles, the small number of atoms make the infinite reservoir approximation 

inapplicable. Indeed, how can one ignore the change of bulk concentration due to segregation in 

a 3 nm diameter (1,000 atoms) particle, in which roughly a third of the atoms are on the surface? 

The goal of the current effort is thus to develop a rigorous approach to alloy nanoparticle shape 

modeling, which include the effects of bulk and surface composition changes.  

Note that the change in bulk composition due to a change in surface concentration is herein 

called "starvation", because segregation effectively starves the bulk of the atom(s) that 

preferentially go to the surface. Looking at it the opposite way, "starvation" could have also been 

called "enrichment", in this case enrichment of the non-segregating atom. Starvation seemed to 

provide a more graphic description of the phenomenon and thus was chosen. 
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Figure 7.1. Properties of the three Wulff models discussed: the basic Wulff model, the infinite 

reservoir approximation, and the alloy Wulff model. 

 

7.3 Mathematical Derivation of the Alloy Wulff Construction 

 

7.3.1 Parameters Definition 

 

Surface free energy is defined as the excess energy per unit area due to the presence of a 

surface.
307-309

 For the basic Wulff construction, this is a fixed number determined solely by the 

initial, homogeneous particle composition. For the infinite reservoir approximation and the alloy 

Wulff, this number depends both on the composition of the surface (variable in both models; 

segregation) and the underlying composition (variable only in the alloy Wulff). Indeed, a surface 

of composition A on bulk of composition A does not have the same energy as a surface of 

composition A on a bulk of composition B, if A ≠ B. The amount with which it differs is 

represented by the last term in Equation 7.1.  
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Bulk free energy is defined as the material’s free energy per unit volume. The term used in the 

alloy Wulff construction, and absent in both the basic Wulff and the infinite reservoir 

approximation, is the change in bulk free energy. This term is linked to starvation, i.e. the bulk 

energy varies because of the bulk composition changes induced by segregation. 

Bulk free energy and surface free energies can be calculated or experimentally measured; the 

values published in ref. 
296,307,309-314

 were used in the present study, see Section 7.4.1. 

 

7.3.2 Bulk and Surface Energy Definition and Derivations 

 

The face- and concentration-dependent surface free energy must include a term correcting for the 

difference between bulk and surface composition, as discussed previously, i.e.  

 

      
    

    
    

           
    

           
    

         
    

                                                      (7.1) 

 

Where  is the surface thickness,       
    

     is the free energy of a surface of crystallographic 

orientation n and concentration   
    

    (subscript 1 = element 1, subscript 2 = element 2, etc) 

on a bulk of the same concentration, and       
    

    
    

     is the free energy of a surface of 

concentration   
    

    on a bulk of concentration   
    

    . The bulk free energy, G, is 

defined as the deviation from a linear variation of bulk free energy between two pure compounds 

(Figure 7.2) 
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Expanding this term via a truncated Taylor expansion for a small change in surface composition 

  
  yields 

 

      
    

    
    

    
    

            
    

    
    

      
  

     
    

    
    

    

    
  

   
                                       (7.2) 

 

The surface chemical potential is defined as the derivative of the free energy with respect to 

concentration, 
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Thus 

 

      
    

    
    

    
    

            
    

    
    

        
    

                                                           (7.4)  

 

 

The total surface energy of the particle, E
S
, is the sum of surface free energies over the entire 

particle surface, 
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Analogously, the bulk free energy can be expressed as a Taylor series for a small change in bulk 

composition   
 , 

 

    
    

    
    

         
    

          
    

          
    

      
  

   
    

    

    
  

   
                        (7.6)            

 

Where the   
  terms refer to the initial concentration assuming equal bulk and surface 

composition; we refer to this as the homogeneous concentration. 

 

The bulk chemical potential is defined as 
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Thus   

 

    
    

    
    

         
    

           
    

          
    

        
    

                                   (7.8) 

 

The change in bulk energy, E
V
, is expressed as 

 

           
    

                                                                                                         (7.9) 
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Where the bulk free energy term G is the difference between the free energy of the final bulk 

concentration   
    

    and that of the initial composition   
    

   , 

 

       
    

         
    

                                                                                                      (7.10) 

 

7.3.3 Energy Minimization and Final Equation Derivation 

We first apply a conservation of mass constraint, 

 

         
    

      
    

          
    

                                                             (7.11) 

 

And a constant volume constraint, 

 

                                                                                                                                       (7.12) 

 

The global problem can thus be written as minimizing via the Lagrangian multipliers   and   , 

 

                                                                    (7.13) 

 

Where A and Bi are constants. 
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Composition conservation requires that  

 

  

   
                                                 (7.14) 

 

Such that  

 

                                                                                         (7.15) 

 

Equation 7.14 thus becomes 

 

                                                                                       (7.16) 

 

Combining Equations. 7.5, 7.9, and 7.16 and rearranging yields 

 

          
    

    
    

        
    

               
    

                                (7.17) 

 

The derivative of the energy with respect to a change in composition, in the bulk or the surface, 

must be zero at equilibrium, i.e. 

 

  

   
  

  

   
                                                                                                                             (7.18) 
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This greatly simplifies Equation 7.17, which becomes 

 

         
    

    
    

                                                                                     (7.19) 

 

Noting that the conventional Wulff problem (without alloying) is minimizing 

 

                                                                                          (7.20) 

 

i.e.  

 

                                                                                       (7.21) 

 

with a solution 

 

                                                                                                    (7.22) 

 

We immediately obtain the solution of Equation 7.1, 
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Rearranging gives the alloy nanoparticle Wulff construction 

 

 
     

    
    

    
    

      
                                                                                                                    (7.24) 

 

Which dictates the face-dependent equilibrium surface normal h(n), i.e. the particle shape, as a 

function of surface composition, bulk composition, and particle size.  

 

Neglecting change in bulk concentration due to surface segregation, i.e. setting G = 0 leads as 

expected to a form analogous to the traditional Wulff construction, 

 

 
     

    
    

    
    

 
                                                                                                                    (7.25) 

 

The thermodynamic equilibrium energy is then simply the sum of surface free energy and change 

in bulk energy, 

 

                  
    

                                                                                  (7.26) 

 

7.4 Results of Shape Modeling Using the Alloy Wulff Construction: CuAu, AuPd, AgAu, and 

AgPd 

 

7.4.1 Energy and Unit Cell Parameter Values Used 
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7.4.1.1 Bulk Free Energy 

 

Bulk free energy from literature values
179-181,184

 (experimental when available, calculations 

otherwise) was fit by a polynomial. 

 

For CuAu, AuPd, and AgAu: 

 

                                                                                                          (7.27) 

 

For AgPd: 

 

                                                                                              (7.28) 

 

The bulk free energy of AgPd was fit by a fourth order polynomial because of the too large error 

introduced by a third order fit. 
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Figure 7.2 Composition-dependent bulk free energy of the studied alloys CuAu (blue), AuPd 

(red), AgAu (green), and AgPd (pink),
309-311,314

 Equation 7.27-7.28. 

 

7.4.1.2 Unit Cell Parameter (c) 

  

The unit cell parameter was assumed to vary linearly between that of pure components. 

Experimental values were used. 

 

For CuAu, AuPd, and AgAu: 

 

                                                                                                                               (7.29) 
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For AgPd: 

 

                                                                                                                               (7.30) 

 

7.4.1.3 Homogeneous Surface Free Energy 

 

Surface free energy values, taken from published material
296,307,309-314

 (experimental when 

available, calculations otherwise), were assumed to vary linearly between pure components. 

 

For CuAu, AuPd, and AgAu:  

 

      
    

                                                                                                                (7.31) 

 

For AgPd: 

 

      
    

                                                                                                                (7.32) 
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Figure 7.3 Composition and orientation dependence of the surface free energy of CuAu (blue), 

AuPd (red), AgAu (green), and AgPd (pink),
 165,177,179-184

 Equations 7.31-7.32. 

 

 

 

Figure 7.4 Composition-dependence of the surface energy ratio of the studied alloys CuAu 

(blue), AuPd (red), AgAu (green), and AgPd (pink). 
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Table 7.1. Parameters used for the computation of the bulk free energy (A-D, Equations 7.25-

7.26) and the unit cell parameter (E-F, Equations 7.29-7.30) of CuAu, AuPd, AgAu and 

AgPd.
296,307,309-314

 The concentration used are unitless fractions, thus the coefficients do not 

contain concentration units. 

 

 

Table 7.2. Parameters used for the computation of the surface free energy (-, Equations 7.31-

7.32) of CuAu, AuPd, AgAu and AgPd
296,307,309-314

. The concentration used are unitless fractions, 

thus the coefficients do not contain concentration units. 
 

 

 

 

 

 

 

7.4.2 Equilibrium Bulk and Surface Composition  

 

Surface composition is a critical factor in catalysis, and the alloy Wulff construction can 

uniquely model it. To this end, the code wulffmodel3 (see appendix A; note that functions are 

italicized, and matrices are underlined in the text) was used to obtain the Energy and auSout 

matrices. These matrices were then used as inputs to minauS, yielding a 2-column matrix, in 

which the first column is the homogeneous concentration, and the second column is the lowest-

energy surface composition. For the equilibrium bulk concentration, the minauV function was 

used. 

 T 

(K) 

A  

(109 J/m3) 

B 

(109 J/m3) 

C 

(109 J/m3) 

D 

(109 J/m3) 

E  

(10-10 m) 

F  

(10-10 m) 

CuAu 720 - -2.293 5.7414 -3.4458 0.4645 3.663 

AuPd 600 - 0 1.667 -16.67 0.2083 3.907 

AgAu 600 - 0 0.9686 -0.9705 0.01070 4.104 

AgPd 915 3.194 -6.957 6.253 -2.480 -0.2089 4.133 

 T  

(K) 
(100) 

(J/m2) 

β(100) 

(J/m2) 
(111) 

(J/m2) 

β(111) 

(J/m2) 

CuAu 720 -0.2946 1.184 -0.3657 1.067 

AuPd 600 -0.1260 1.001 -0.1931 0.8870 

AgAu 600 0.2310 0.6490 0.0600 0.6339 

AgPd 915 0.3390 0.6164 0.2404 0.6020 
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For comparison purposes, the lowest energy configurations in the basic Wulff and infinite 

reservoir models were obtained and are presented in Figure 7.5. The basic Wulff surface 

concentration is set by the model as being always equal to the homogeneous concentration, such 

that no calculations were necessary. For the infinite reservoir model, the 

wulffmodel2nostarvenergy code was used to obtain the Energy and auSout matrices that were 

then used as inputs in the minauS function, yielding a matrix of equilibrium surface energy as a 

function of homogeneous concentration. 

 

Figure 7.5 Equilibrium surface composition for AgAu and CuAu modeled using the basic Wulff 

construction (black line), the infinite reservoir approximation (green dashed line), and the alloy 

Wulff construction (red line). 

 

The results of the equilibrium surface concentration as a function of homogeneous concentration 

for all 3 models are presented in Figure 7.5. Since segregation is not allowed in the basic Wulff, 

the surface concentration is simply a straight line of slope 1. In the infinite reservoir model, the 
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surface composition is always equal to the lowest energy surface, a constant. However, an issue 

arise in this approximation when the homogeneous concentration of the segregating component 

is very low: at some point the finite number of atoms present in the particle is lower than the 

number of atoms required to form the segregated surface. Since laws of conservation of mass are 

not obeyed in this approximation anyways, this effect was neglected and the surface was allowed 

to reach its minimum energy concentration at all times. In the alloy Wulff, the equilibrium 

surface concentration is neither a straight line nor a constant. In fact, the equilibrium surface 

concentration obtained is not even the minimum energy surface composition; it is rather, as it 

should be in any proper thermodynamic modeling, the minimum total energy because both bulk 

and surface terms are included. Segregation and starvation thus lead to a surface/bulk duality. 

Due to this, up 3 distinct composition-structure regimes are observed. For CuAu, at small 

homogeneous Au concentration (< 10 atomic %), the energy gained by lowering the surface free 

energy overwhelms any bulk free energy changes such that all the available Au segregates to the 

surface, the bulk remains pure Cu, but there are never enough Au atoms to form a monolayer. As 

the homogeneous Au concentration increases the segregation (bulk) energy becomes of the same 

order as the energy gained by surface compositional changes (segregation), and regime 2 starts. 

While a complete surface segregation would give the lowest surface free energy, it is prohibited 

by the large bulk free energy change it induces. The surface and bulk energy remain in balance 

until the concentration at which the latter can no longer prevent the formation of a pure surface is 

reached. This second transition, from regime 2 to regime 3, is characterized by a very sharp 

change in shape and concentration. Note that with an infinite reservoir approximation the surface 

composition is always that of regime 3, a pure surface, independent of size. AuPd behave 
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similarly to CuAu (Figure 7.6), except that at very small sizes, the bulk free energy changes 

effectively prevent the formation of a full monolayer of Au on the surface. AgAu and AgPd 

behave differently in that there is never a balance between surface and bulk energy;  a pure Ag 

surface is formed unless there are not enough atoms to do so (Figures 7.5 - 7.6). In other words, 

AgAu and AgPd do not go through regime 2.  

 

 

Figure 7.6 Effect of size and initial (homogeneous) composition on the equilibrium surface 

composition of alloy nanoparticles containing 1,000 (black solid line), 3,000 (green dashed line), 

and 10,000 (red dot-dashed line) atoms. Three different regimes can be seen in CuAu and AuPd, 

while two regimes are observed for AgAu and AgPd.  



229   

   

   

Whether an alloy will experience three or two regimes depends on the relative magnitude of its 

segregation and starvation energy. An empirical “rule-of-thumb” can be obtained from the four 

studied alloys, using the concept of “alloy strength”. The numerical “alloy strength” is defined as 

the largest value of the difference between the linear interpolation of bulk free energy and the 

actual bulk free energy. The alloy strength of AgAu, AgPd, AuPd, and CuAu is 0.65 %, 0.92 %, 

1.1 %, and 1.2 %. The first two do not go through regime 2 and are thus called “weak” alloys. 

The last two have large enough starvation energies  to sustain a bulk/surface duality, and are thus 

called “strong” alloys. Roughly, then, the turning point between weak and strong alloys is an 

alloy strength of 1 %. Of course this is just a estimate based on four data points. Note that the 

magnitude of the concentration-dependence of the surface free energy also matters, such that a 

moderately strong alloy with very large surface free energy variations could also sustain a 

surface/bulk equilibrium regime. 

 

7.4.3 Equilibrium Particle Shape  

 

In addition to predicting the equilibrium surface concentration of alloy nanoparticles, the alloy 

Wulff construction can also model their equilibrium shape. The shape of a particle, as seen 

earlier (Chapters 3 - 5), is dictated by how much of each crystallographic face is present. This is 

particularly relevant for catalysis, as it is well-known that different crystallographic orientations 

have different catalytic activity and selectivity.
293-295
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Figure 7.7 Shape of {111}-dominated particle and associated h111/h100 values, from 

cuboctahedron to octahedron. 

 

For the FCC materials chosen, CuAu, AgAu, AuPd, and AgPd, the surface energies at all 

homogeneous concentrations dictate a thermodynamic shape dominated by {111} faces, with 

small {100} faces and no {110}, yielding a structure which varies between a cuboctahedron and 

an octahedron (Figure 7.7). With this geometry, the only parameter necessary to describe the 

particle shape is the ratio of surface normals h111/h100. Note that a 100-dominated structure, with 

small 111 faces, could also be modeled, given some code changes when calculating the surface 

areas of {100} and {111} faces. A “if/else” statement could be included in the code to allow 

toggle between the two types of geometry. Also, {110} surfaces could be included with some 

additions to the surface area and energy computation; this was deemed not necessary in the 

studied cases because of the relatively high energy of this surface in FCC materials. 

The equilibrium shape as a function of homogeneous concentration was calculated for all three 

models (basic Wulff, infinite reservoir, and alloy Wulff). Since no composition variation is 

allowed in the basic Wulff model, there is only one possible shape for each homogeneous 
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concentration. The h100 and h111 required to calculate the h111/h100 were obtained using 

wulffmodelbasic. For the infinite reservoir and alloy Wulff, wulffmodel2nostarvenergy and 

wulffmodel3 (respectively) were used to obtain h100, h111, and Energy matrices for each 

possible combination of surface and bulk energy. These three matrices were then used as inputs 

in h111_h100nmatoms, yielding the equilibrium values of h100, h111, and h111/h100, as a function 

of homogeneous concentration. 
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Figure 7.8 Effect of size and initial (homogeneous) composition on the equilibrium shape of 

alloy nanoparticles modeled using the basic Wulff (black line), infinite reservoir (green round 

markers), and alloy Wulff (containing 1,000 (blue dashed line) and 3,000 (red dot-dashed line) 

atoms). Three different regimes can be seen in CuAu and AuPd, while two regimes are observed 

for AgAu and AgPd. 

The shape of some FCC alloys as a function of homogeneous concentration is presented in 

Figure 7.8. The basic Wulff and infinite reservoir approximation yield a smooth progression of 
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shape with composition, due to the composition-dependence of the surface energy ratio (γ111/ 

γ100), as seen in Figure 7.4. Shape modeling using the alloy Wulff construction yields rather 

interesting discontinuity points, much more pronounced than in the surface composition plots 

(Figure 7.6). Such discontinuities are due to the surface/bulk energy duality previously 

described; the discontinuity points correspond to regime changes. As previously observed AgAu 

and AgPd only goes through two regimes because of its low bulk energy variation (weak alloy). 

 

Note that while the values of h111/h100 seem to change only modestly, the impact on the relative 

surface areas (S111/S100) is large, as can be seen in Figure 7.9. The h111/h100 ratio only changes by 

2 % (0.84 to 0.86) between a 1,000 and 3,000 atoms CuAu particle with homogeneous Au 

fraction of 0.2, but the ratio S111/S100 changes by 26 % (1.9 to 2.4). Such changes in surface 

orientation are expected to make a difference in a variety of catalytic reactions. 

 

 

Figure 7.9 Shapes and surface area ratios predicted by different models for CuAu alloy with an 

homogeneous Au fraction of 0.2. 
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7.4.4 Equilibrium Total Energy as a Function of Initial Composition 

 

The total energy of an alloy nanoparticle can be calculated, in the alloy Wulff model, by adding 

the change in bulk free energy and the surface energy (Equation 7.26). Only the surface energy 

would be considered when calculating this value in the infinite reservoir approximation and basic 

Wulff models. Results for CuAu are presented in Figure 7.10, where it can clearly be seen that 

the presence of segregation always decreases the energy, i.e. the basic Wulff model always has 

the highest energy. Surprisingly, the infinite reservoir model has much lower energy than the 

alloy Wulff; this is due to the lack of mass conservation (no starvation) in the former. 

 

Figure 7.10. Total energy calculated for a 3,000 atoms CuAu nanoparticle, with the basic Wulff 

(black line), infinite reservoir approximation (green round markers), and alloy Wulff (red dot-

dashed line). 

 

7.4.5 Size-Dependence of Results 
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The three segregation regimes encountered in alloy particle modeling result from the change in 

bulk concentration caused by a change in surface concentration, i.e., starvation. Nanoparticles 

have a size-dependent surface/bulk atoms ratio, leading to size-dependent starvation effects. This 

leads to the size dependence of the regime transition, and the size-dependence of particle shape 

for a given homogeneous composition. Note that shapes are completely size-independent for 

both the basic Wulff and the infinite reservoir approximation,.  

 

 

Figure 7.11 Size-dependence of transition 1 (regime 1 to 2, blue circles) and  transition 2 (regime 

2 to 3, green diamonds) for the strong alloy CuAu. The arrows point to the appropriate scale.  

 

The size dependence of the regime transition was calculated by finding the exact position of the 

discontinuity in the composition-dependent equilibrium surface concentration. The same 

computational approach as in Section 7.4.2 was used, with much smaller calculation steps for 
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increased accuracy and calculation boundaries close to the expected transition to limit 

computation time. Results for the transition between de-alloying (regime 1) and bulk/surface 

equilibrium (regime 2), transition 1, for CuAu is presented in blue in Figure 7.11. This transition, 

the point at which the starvation (bulk) energy becomes comparable to the energy gained by 

surface compositional changes, is size-dependent up to about 10
5
 atoms (approximately 15 nm in 

diameter). Transition 2, from surface/bulk equilibrium (regime 2) to monolayer formation 

(regime 3), occurs when starvation energy can no longer prevent the formation of a pure surface 

of the segregating component. This transition results in a very sharp change in shape and 

concentration and is size-dependent up to 10
6
 atoms (approximately 35 nm in diameter), as 

shown in Figure 7.11. 

 

7.5 Discussion 

 

7.5.1 Comparison with Previous Models 

The results of alloy nanoparticles modeling with the alloy Wulff construction are significantly 

different than what is obtained when using the basic Wulff construction, i.e., assuming 

composition homogeneity. Since lowering of energy through segregation is not allowed in the 

latter, the particle is practically never modeled at its equilibrium configuration. Figure 7.10 

clearly shows that the total energy predicted by this simple model is always the highest. By 

respecting laws of conservation of mass and including energy-lowering composition changes 

neglected in the traditional Wulff and the infinite reservoir approximation, the current model 

provides a better thermodynamic description of alloy nanoparticles. 
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7.5.2 Comparison with Experimental Results 

 

The alloy Wulff model yields size- and composition-dependent segregation and particle shape; 

these effects are technically observable using modern equipment, in particular with elemental 

mapping and structure determination in an (aberration-corrected) electron microscope. However, 

no systematic study was found in the literature, as no one specifically looked to validate or 

invalidate the current model; this may be a subject for future research.  

Scattered results from multiple groups, however, provide strong evidence supporting the 

predictions of the alloy Wulff model. Formation of an Ag outer layer was observed in AgAu 

particles of diameters 21 ± 7 and 52 ± 36 nm, albeit the oxidizing environment also drives Ag to 

the surface.
315

 Calcination at 200-400 ˚C of 20 nm AuPd particles of unspecified initial 

composition
316

 lead to the formation of a Pd surface due to the higher affinity of Pd for O at such 

temperatures. Subsequent reduction at 500 ˚C
316

 yielded the composition we predict, namely a 

Au-enriched surface. Nearly pure Ag surfaces (95-100 %) have been observed in bulk Ag33Pd67 

by STM,
317

 while Auger electron spectroscopy of bulk Ag77Pd23 gave mixed results, either with 

much Ag segregation or almost none, depending on the degree of data processing involved.
318

  

However, morphology and composition profiles in the “strong” alloy nanoparticles uniquely 

modeled in the alloy Wulff construction have been barely studied. Extended x-ray absorption 

fine structure (EXAFS) was used to probe the environment around Cu and Au atoms in small 

(<10 nm) particles of the strong alloy CuAu with an homogeneous Au fraction of 0.56.
319

 The 

results showed a lower average nearest neighbor for Au (11 vs. 12), consistent with partial 
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surface Au segregation, as predicted here (Figure 7.6). This indicates that bulk forces can indeed 

prevent full surface segregation, a feature the alloy Wulff construction takes into account in a 

unique and rigorous way. Unfortunately, the specific particle size, hence the exact degree of 

segregation, was not determined, leaving open questions. While the information available 

supports the alloy Wulff model, it also points to the lack of systematic experimental studies of 

alloy nanoparticle composition.  

 

7.5.3 Model Limitation and Possible Extensions 

 

Some assumptions had to be made when developing this model, most of which could be 

addressed by code improvements. The surface thickness  was taken as the distance between two 

equivalent planes, i.e.      and       for {100} and {111} faces, respectively, and identical 

segregation for all faces was assumed. These assumptions could be modified by simple code 

changes allowing face-dependent segregation as well as segregation gradients. 

Many extensions are possible, with a range of implementing difficulty. As previously mentioned, 

the model can be slightly modified to accommodate {100}-dominated shapes, and shapes 

containing other facets, e.g., {110}. Materials other than FCC can also be included rather easily.  

An interesting and relevant extension of the alloy Wulff would be to twinned particles, in order 

to model segregation not only at the surface but also at the twin boundaries; both are expected to 

lead to significant shape changes. Segregation at the interface could also be modeled with an 

alloy Winterbottom or Summertop construction. 
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CHAPTER 8 

 

The Kinetic Wulff Construction for Twinned Nanoparticles 

  



240   

   

   

8.1 Introduction: Nanoparticle Growth and Modeling 

 

Crystal shape is important in a variety of applications, such that several modeling approaches 

aimed at finding the absolute minimum energy configuration have been developed. They include 

the Wulff construction,
6,7,9

 the Winterbottom construction,
3
 the Summertop construction

160
, the 

modified Wulff construction,
165,320

 and the alloy Wulff construction.
321

 An overview of these 

models can be found in Chapters 1 and 7. 

Recently, advances in nanoparticle synthesis
107,119,122,126,127,129,187,223,294

 has been driven by 

research in shape-dependent properties such as catalysis,
124,197,292-294

 plasmon resonance 

frequency,
52,62,68,100,109,122,127,183,187,198,214

 and field enhancement,
99,213,216,322

 to name a few. An 

extensive library of possible shapes has thus been built.   

Thermodynamic, Wulff-like models provide a useful understanding of several of these 

nanoparticle  shapes, yet they cannot predict or rationalize many others.  For example, the Au 

decahedra studied in Chapters 4 and 5 are significantly sharper than any Au decahedra 

(thermodynamically) modeled by the modified Wulff construction.
165

   

The general argument used to explain the growth and relative stability of non-thermodynamic 

shapes is "kinetics", as in ref.
223

: "These results suggest that these reaction products arise from 

kinetic effects rather than thermodynamic effects". In the realm of particle growth, kinetics refers 

mainly to nucleation and to the flow of atoms from the solution to the growing particle. Hence, 

kinetics are responsible for a given shape if specific faces grow faster than what would be 

expected from their surface free energy. Such a statement, however, does not explain why a 

surface grows faster or how much faster it grows. Additionally, attributing a shape to "kinetics" 
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does not typically help understand or predict reaction outcomes. In this Chapter, the kinetic 

Wulff model is developed as a formal mathematical approach to growth modeling for twinned 

nanoparticles. Before discussing this new model, however, a short review of the modified Wulff 

construction is presented with examples from the recent nanoparticle synthesis literature. 

MATLAB codes for thermodynamic and kinetic modeling of twinned particles, as well as a 

graphical user interface, can be found in Appendix A. 

 

8.2 The Modified Wulff Construction 

 

The thermodynamic shape of a single crystal is defined by the ratio of its surface energies (as 

Discussed in Chapter 1), according to the Wulff construction, 

 

                                                                                                                               (8.1) 

 

Where hhkl is the length of the normal between the center of the particle and the crystallographic 

face hkl and γhkl is the surface energy of the hkl face. This model has been referred to as the basic 

Wulff construction in the previous Chapter, and codes to generate such Wulff shapes are 

available in Appendix A. This model is only valid for single crystals, such that the modified 

Wulff construction must be used in the presence of twinning. The simplest cases of twinned 

particles are when α = 1/2, i.e. symmetric solutions.
165

  

The shape of the particle is in part determined by the number of twins present and their 

symmetry. A single twin plane produces singly twinned particles and parallel planes produce 
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lamellar-twinned particles (LTP) such as the ones first observed in Argon smokes.
164

 Higher 

symmetry shapes are obtained from segment assembly: five segments each bounded by two non-

parallel planes give a decahedral particle (Dh), while twenty segments bounded by three non-

parallel boundaries produce an icosahedral shape (Ic).
13,17,24,25,165,320

 Note that this leads to a 

family of structures defined by the number of twinned segments, not by the external surface. For 

instance, a regular icosahedron is obtained if only {111} and {100} facets are present, but more 

complicated yet related structures arise if {110} facets are of low energy. By symmetry, it is 

simple to show that an equal partition is a stationary solution. Numerical calculations for a Dh 

yield a minimum for only {111} and {100} faceting
23

 although it is a saddle-point for an 

isotropic surface free energy.
165,320

 There is currently no analytical  distinction of when a given 

shape is a minimum or a saddle point. Asymmetric partitioning of the twin boundary is also 

possible, leading to the asymmetric nanoparticle structures sometimes found experimentally.
165

 

Note that, with clean surfaces the twin-boundary energy is small compared to the surface free-

energies of interest so it can be taken as zero, in which case the twin facets pass through the 

origin of the Wulff construction.
165,320

 This approximation is accurate to second-order in the 

energy,
165,320

 and the difference in the shape will be below experimental error for vacuum or 

argon smoke experiments. For solvent-based growth the surface free energies will be 

substantially lower, in which case they may be evident, as recently shown in large Dh 

structures.
323

 

Decahedral particles are of particular interest for plasmonics because of their high refractive 

index sensitivity and stability. Thus, this shape will be used to illustrate the thermodynamic 

Wulff construction. For FCC materials, the {110} surface is rarely present such that it will be 
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omitted. Note, however, that all codes used require a {110} energy value as an input parameter; 

generally it was set to a number at least twice as large as the lowest surface energy. Detailed 

parameters for all the Figures in this Chapter can be found in Tables 8.1 and 8.2. For 

thermodynamic shape modeling, the kinetic functions KWulffmodelpenta (for Dh) and 

KWulffmodelmono (for monotwin) were used with the kinetic inputs set to zero; both functions 

are part of the GUI code. Assuming that the surface energies are similar to those of a broken 

bond model,
324

 i.e. that the energy of {111} faces is less than that of the {100} faces (γ111/γ100 = 

√3/2), one gets the Marks decahedron with re-entrant surfaces at the twin boundaries (Figure 8.1, 

left panel).
165,320

 If the free energy of the {100} facets is decreased such that it is lower than the 

energy of the {111} facets (γ111/γ100 > 2/√3), the notches disappear and the particle elongates to a 

rod-like shape similar to that first investigated by Ino
13,17,18

 (Figure 8.1, middle panel). If instead 

the {100} energy is increased and is much larger than the {111} energy (γ111/γ100 << 1), the 

{100} faces no longer appear in the minimal energy shape, and the result is a star decahedron 

(Figure 8.1, right panel), similar to those recently synthesized by the Xia group.
325

 Such changes 

in surface energy can occur in the presence of stabilizing molecules such as surfactant (in the 

liquid phase) or chemisorbed species (in the gas phase). Addition of {110} facets will lead to 

more rounded structures, as will inclusion of other higher-index surface facets if these are of low 

enough surface free energy. Note that all these structures are related and all will contain a wedge 

disclination and/or strain-relieving dislocations, as mentioned earlier they only differ in which 

surfaces are of lowest energy. While they may have different properties, we argue that they 

should all be considered as members of a class of nanoparticles, not as different entities. 
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While the modified Wulff construction has proved to be successful to rationalize some 

observations, most notably for the Dh where one has a somewhat surprising re-entrant surface in 

the thermodynamically lowest-energy shape, it does not explain everything. One of the simplest 

example is a regular decahedron with only {111} facets: no thermodynamic argument will give 

this shape as a minimum-energy configuration – that it is a minimum-energy shape is a common 

misconception. Other shapes which cannot be explained are sharp bipyramids which have been 

synthesized using various protocols
126,131,132,246

 as well as truncated bitetrahedra, triangular 

platelets, and Dh rods. In many papers this has been loosely attributed to “kinetics”; we now turn 

to put this on a firmer foundation. 
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Figure 8.1. Thermodynamic Dh shape as a function of relative surface energy of {100} and 

{111} faces. Left: Marks decahedron,  re-entrant surfaces are obtained when the energy assumed 

is that of the broken bond model (γ111/γ100 = 3/2) . Middle: Ino decahedron, an elongated 

decahedron/pentagonal rod without notches, obtained by lowering the {100} surface energy to 

γ111/γ100 = 2/3. Right: star decahedron obtained by destabilizing the {100} faces (γ111/γ100 = 1/4). 

 

 



246   

   

   

Table 8.1. Parameters Used for Thermodynamic Shape Modeling (Figure 8.1). 
 γ111/γ100 γ100 γ110 γ111 

Marks Dh 3/2 10.69 20.05 9.26 

Ino Dh 2/3 5.59 27.95 6.46 

Star Dh 1/4 16 20 4 

 

Table 8.2. Parameters Used for Kinetic Shape Modeling (Figures 8.4-8.5). 
 v111/v100 v100 v110 v111                                 

3a: Marks 3/2 8 15 6.93 0 0 0 

3b: Ino-like 3/2 8 15 6.93 1 0 0 

3c: Perfect Dh 7/12 10.6 13.2 6.16 1 0 0 

3d: Sharp Dh Rod 3/2 8 15 6.93 0.5 0 0.5 

4a: Thermo. 

Bipyramid 

2 5 10 10 0 0 0 

4b: Sharp 

Bipyramid 

2 5 10 10 1 0 0 

4c: Thin 

Triangular Platelet 

0.1 9.61 14.42 0.961 4 5 0 

4d: Truncated 

Bitetrahedra 

0.1 9.61 14.42 0.961 1 0 0 

4e: Thin 

Hexagonal Plate 

0.1 9.61 14.42 0.961 0 5 0 

  

8.3 Mathematical Derivation of the Kinetic Wulff Construction for Twinned Nanoparticles 

 

8.3.1 The kinetic Wulff Construction for Single Crystal 

 

An analogue of the Wulff construction for kinetic problems is well-known, often called the 

kinetic Wulff construction.
4
 For solidification problems this is generally considered via a time 

gradient of a continuous surface, and anisotropic effects are mainly associated with temperature 

and compositional gradients in the liquid phase.
326,327

 For nanoparticles, however, the anisotropy 

of the growth rates may be much larger and can be deliberately controlled during the synthesis 

by, for example, surfactants
119,122,131,187,223,328

 or underpotential deposition.
130
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Figure 8.2. Schematic of step-flow growth. Left: initial nucleus formed on a flat surface and 

adatom. Right: adatom preferentially moves to step edge, providing a layer growth mechanism.  

 

The kinetic Wulff construction implicitly assumes layer-by-layer growth; a small nucleus of 

atoms form on an otherwise perfectly flat surface then expands by step-flow growth as illustrated 

in Figure 8.2. For a particle with a set of facets each at a normal distance hi(0) at time t = 0 from 

the origin, given the growth velocity of each facet vi, the shape as a function of time can be 

written as 

 

      

  
                                                                             (8.2) 

 

and this differential equation has a stationary, self-similar solution of 

 

                                                            (8.3) 

 

Where C is a constant, and Ct is analogous to the constant described in the single crystal kinetic 

Wulff construction by Frank:
4
 

 

                                                                                                                               (8.4) 
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The vector normal to a surface facet “hkl”, hhkl, is thus directly proportional to the growth 

velocity where Vhkl is the growth rate of facet “hkl”. Strictly speaking this solution and the 

following one (modified) are  Lyapunov stable solutions. Lyapunov stability
329

 is a way to 

describe a solution to a system of differential equations describing a dynamical system such as 

nanoparticle growth (Figure 8.3). Lyapunov stable solutions are not necessarily purely stationary. 

Rather, they are solutions (S) that oscillate close to the equilibrium (E), such that their distance 

from the equilibrium value is always less than a given (small, d) value, as depicted in Figure 8.3. 

This means that the statistical distribution of shapes of an ensemble of many nanoparticles will 

be centered on the kinetic Wulff construction but with some variation about this; this is similar to 

the fact that water running downhill does not all go exactly along the bottom of the riverbed but 

oscillates about it. For completeness, we should mention that standard phase-field models for 

kinetics
330

 can be used for the fine details, for instance the asymptotic convergence or oscillation 

about the Lyapunov solution. As a side note, not all plausible stationary solutions will be stable 

against perturbations (i.e. they are not Lyapunov stable), and there may be more than one such 

solution. 
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Figure 8.3. Lyapunov stability. The solution S is Lyapunov stable as it oscillates close to the 

equilibrium point E, within a region defined by d. 

 

8.3.2 The kinetic Wulff Construction for Twinned Nanoparticles 

 

So far the kinetic Wulff model is analogous to the traditional Wulff construction, except that 

kinetic inputs (growth rates) are used instead thermodynamic ones (surface free energies). For a 

twinned nanoparticle there is no flux of atoms to the internal twin boundary, thus zero growth 

velocity. Hence, as in the thermodynamic construction, we can separate the segments can be 

separated, a kinetic Wulff shape can be constructed for each, and then the can be reassembled 

into to a composite nanoparticle.  

One critical addition is needed – accounting for enhanced growth associated with defects. The 

kinetic Wulff construction implicitly assumes layer-by-layer growth; a small nucleus of atoms 

form on an otherwise perfectly flat surface then expands by step-flow growth as illustrated in 

Figure 8.2. A significant kinetic limitation is the barrier to produce this initial nucleus. Any 

defects, for instance the disclination line along the 5-fold axis of a Dh or along twin boundaries 
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will have a smaller activation-energy barrier for this nucleation event. An enhancement term for 

facets adjacent to such defects need to be included, as they are more likely to form this nuclei, 

thus grow faster. For completeness,  note that the idea of enhanced growth at defects for MTPs is 

not new, e.g.
10

, and the concept for general growth is implicit in the original work of Frank;
4
 

what is new here is mathematically coupling this with the modified Wulff construction. 

 

This mathematical approach involves the assembly of twin segments (as in the modified Wulff 

construction) and the growth velocity enhancement at defect sites, parameterized via the constant 

φ, i.e. 

 

       
    

         
                                                               (8.5) 

 

                                                       (8.6) 

 

For a re-entrant surface we enhance only the faces that form the notch {111}-type for Dh; {100-

type for LTP). Twin-enhanced growth involves enhancing any facet adjacent to the twin 

boundary, for example both {111} and re-entrant {100} in a LTP. Disclination-assisted growth 

involves facets adjacent to the central disclinations in a Dh, i.e. the 10 {111} facets present in a 

perfect Dh. Note that disclination assisted growth for an Ic is also possible, but in general will 

not give anything more than a regular Ic so will not be discussed further here. The twin boundary 

energy was set to zero, but this could be modified given a few generalizations of the code. 
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8.4 Examples of Shape Modeling Using the Kinetic Wulff Construction for Twinned 

Nanoparticles 

 

8.4.1 Singly Twinned Particles 

 

Lamellar twinned particles (LTP) are commonly found in seeds as well as final synthesis 

products;
126,132,246,247

 particles containing a single twin plane or a closely spaced set of places can 

be modeled using the function KWulffmodelmono or the GUI available in Appendix A. As 

shown in Figure 8.4, a plethora of related shapes can be obtained depending on the growth 

conditions, described in Table 8.2. Note that except for the top left shape, none of the structures 

in Figure 8.4 can be obtained from the thermodynamic Wulff construction; they all require 

kinetic growth enhancement.  

As Shown in the top panel of Figure 8.4, the thermodynamic shape for a LTP with low {100} 

surface free energy becomes a sharp bipyramid when modeled with fast {111} growth (slow 

{100} growth) and enhanced growth at the re-entrant surfaces. When modeled with fast {100} 

growth (slow {111} growth, equivalent to low {111} surface free energy), a flat hexagon, 

truncated bitetrahedron, or flat triangular platelet is obtained depending upon whether the 

enhancement is applied at the twin plane, the re-entrant surface, or both, respectively (Figure 8.4, 

bottom).These structures can all be obtained experimentally.  

Sharp Ag bipyramids (Figures 2.5 and 8.4) have been synthesized in both PVP, a {100}-

stabilizing surfactant
95,122,126,127

 for Ag and BSPP, a surfactant without strong preferential 

stabilization,
131,132

 confirming the importance of kinetic control of the reaction. 
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Figure 8.4. Singly twinned particle shape as a function of relative surface energy and kinetic 

growth enhancement. Top left: particle with fast {111} growth and no kinetic enhancement 

(thermodynamic structure). Top right: sharp bipyramid obtained with fast {111} growth and 

kinetic enhancement at the re-entrant surfaces Bottom left: thin triangular platelet obtained with 

fast {100} growth and enhancement at both re-entrant surfaces and twin plane. Bottom middle: 

truncated bitetrahedron obtained with fast {100} growth and enhanced growth at the re-entrant 

surfaces. Bottom right: thin hexagonal platelet obtained with fast {100} growth and enhanced 

twin growth 

 

The {111}-dominated LTP modeled with the kinetic modified Wulff construction (Figure 8.4, 

bottom) have also been widely observed in reaction products. Thick triangular structures, i.e. 

truncated bitetrahedra (Figures 2.2, 2.3, and 4.2, amongst others) are produced under weak 

kinetic control, with only a small enhancement at re-entrant surfaces, as is the case for perfect Dh 

(Figure 8.5, see Section 8.4.2).  
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In fact, truncated bitetrahedra and perfect Dh (pentagonal bipyramids) are abundantly obtained in 

similar experimental growth conditions.
139

 Interestingly, such PVP-based synthesis also yields 

icosahedra and hexagonal plates, as shown in Figure 2.2. Indeed, PVP has been shown 

repeatedly to yield {111}-terminated Au particles,
82,122,127,129,139,187,198,331

 unless Ag 

underpotential deposition is also present.
122,129,130,187,198,331

 Ic emerge from seeds with 20 twin 

segments, as discussed earlier. The origin of hexagonal plates is not as straightforward, however. 

In our model, we can obtain this structure with fast {100} growth and enhanced twin growth 

(Figure 4, bottom right), meaning that all faces adjacent to the twin plane are growing equally 

fast. Following Lofton and Sigmund’s framework for understanding re-entrant surfaces in thin 

plates,
332

 this isotropy can occur in a particle with an even number of parallel twin planes; see 

also the earlier work on Argon smokes
164

  for a larger database of simple twins and more 

crystallographies. Finally, thin triangular platelets (Figure 8.4, bottom left) have been known and 

studied for over a decade,
20,84,90,103,107,133,143,149,216,247,332

 and kinetic control has been invoked 

repeatedly to explain their formation and fast degradation; in our model, strong kinetic 

enhancement (both at the twin and re-entrant surfaces) is indeed needed to obtain this shape. 

 

8.4.2 Decahedral (5-Fold Twin) Nanoparticles 

 

Decahedral particles, containing five non-parallel {111} twin boundaries, can be modeled with 

the KWulffmodelpenta code or the Modified Wulff Construction GUI, both provided in 

Appendix A. As illustrated in Figure 8.5, if the growth rate of {100} is fast (expected for FCC 

particles) and there is enhanced growth at the re-entrant surfaces, a sharp analogue of the Marks 
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decahedron is formed (Figure 8.5, top right). If, in addition to re-entrant growth enhancement, 

the {111} facets grow more slowly (due to surfactants for example), sharp pentagonal 

bipyramids are formed (Figure 8.5, middle right), similar to that commonly obtained 

experimentally (Figures 2.2, 2.3, and 4.2, amongst others).
67,82,139,177

 With enhanced re-entrant 

and disclination growth,  rods are formed (Figure 8.5, bottom right) and depending upon which 

faces grow fast and slow there will be a range of different end results, which is consistent with 

the many different reports in the literature.
67,82,94,128,137,139,333-337

 Note that similar to the 

thermodynamic shapes, these are not fundamentally different particles, just different end results 

that one can obtain by varying the kinetics of growth. 
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Figure 8.5. Effect of kinetic growth on Dh modeled with the Kinetic Modified Wulff 

construction. All particles except the blue shape in the middle right have identical Vhkl 

parameters equivalent to γ111/γ100 = 3/2. Left: Marks decahedron, the thermodynamic shape. 

Top right: sharp Ino-like decahedron produced with  re-entrant surface growth enhancement (φr  

> 0, b). Middle right: a pentagonal bipyramid obtained with re-entrant growth and {111} surface 

stabilization occurs (φr > 0, v111/v100 = 7/12). Bottom right: a perfect pentagonal rod obtained 

with both kinetic enhancements active (φd  >  0, φr  >  0). 
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8.5 Graphical User Interface for Thermodynamic and Kinetic Wulff Modeling. 

 

To aid scientists curious about the Wulff model, a simple graphical user interface (GUI) was 

created using the MATLAB tool GUIDE. For completeness, the GUI includes modeling of 

single crystals, monotwins, and pentatwins. The current version does not include substrate effect 

(Winterbottom construction
3
) or icosahedral shapes, and is limited to FCC materials. The user 

notes and code are available in Appendix A and Chapter 2, respectively. 

 

 

Figure 8.6. MATLAB graphical user interface developed to compute nanoparticle shape based 

on modified and single crystal Wulff models. 
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8.6 Discussion: Model Limitations and Possible Extensions 

 

While clearly being successful at modeling non-thermodynamic shapes often found in colloidal 

synthesis, the modified kinetic Wulff developed here contains a few simplifications. Grouping 

the effects of defects and strain on the growth in a single enhancement factor is a reasonable first 

approximation, but the enhancement could in principle depend upon solution concentration for 

liquid-phase synthesis, or depend upon chemical potential gradients in a more exact model. This 

would be of interest to provide better modeling of nanoparticles on substrates, such as those used 

for heterogeneous catalysis. The kinetic model developed here is also implicitly for layer-by-

layer growth (Figure 8.2) and may not be appropriate in other cases.  

A variety of extensions can be applied to this model, some simple, other significantly more 

complex. In the first category falls adding velocity enhancements to a kinetic Winterbottom
338

 or 

Summertop
160

 construction (as was done for the kinetic modeling of two-dimensional island 

growth
339

). In this case, assuming a zero growth velocity at the particle/substrate interface 

renders these two models simple extensions of the current construction. More challenging yet 

feasible problems to tackle are allowing the twin boundary energy to vary, accounting for 

solution precursor concentration depletion, and including size-dependent growth enhancements 

(particularly at the disclination where stress relief mechanisms may vary with size).    

Overall, this seemingly simple model provides a powerful and user-friendly (GUI available in 

Appendix A) tool to predict and understand a variety of non-thermodynamic shapes obtained in 

modern nanoparticle synthesis.  
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A.1 LSPR Analysis Codes 

The codes below were used to process the raw data according to the equation (see Chapter 2): 

Particle Scattering = 
                      

                     
 

 

A typical order to run these files would be: 

 

Convert all the spectra .SPE files to .txt files, making sure to convert to one dimension and to 

have the energy axis as the first column and the intensity in the second column. (this is done in 

Winspec) 

 

Execute the command 

background=bcreator(path,base,maxfilenum) 

where "path" is the location of the files, for example C:\Users\Emilie\Desktop\Data LSPR 

and "base" is the filename which is incremented in Winspec, using the auto-increment function, 

starting at 1 and ending at maxfilenum, for example deca_jan2012_batch1_1s10a_ 

 

Look at B by plotting it, (plot(B(:,1), B(:,2:maxfilenum+1))), remove all the spectra which have 

higher intensity than most. Record the column number of the suitable background spectra. 

 

Write in a vector called V, which contain the particle number for each of the suitable 

background, for example V=[2;3;4;6;7]; 
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Average all the suitable background spectra (to reduce noise) by executing  

B=averageforb(background, V); write out a B.txt file using csvwrite. Put this file in the same 

folder as the other ones. 

 

Ensure the lamp and detector dark spectra are in the same folder as the sample spectra, rename 

them C and D, respectively 

 

Execute the command 

LSPR=spectramathb(path, base, maxfilenum); 

this provides the LSPR spectra of all the particles. To obtain normalized and smooth spectra, as 

well as the energy of the peak (obtained from the smooth spectra) use the following command: 

 

[notsmoothnormalized,smoothnormalized,peaks]=nsnsmpeak(LSPR,b,low,high); 

where b is the width of the smoothing Gaussian kernel (5-10 is good), low and high are the lower 

and upper boundaries of the peak for normalization and peak finding purposes.  

 

Peak fitting was performed manually in Peakfit. For singly-peaked spectra, the difference 

between numerical analysis and fitting was negligible. However, when multiple resonances are 

present, fitting is necessary to obtain accurate peak positions. 

 

A.1.1 bcreator 
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function out = bcreator(path, base, maxfilenum) 

  

a =load(strcat(path,base,num2str(1),'.txt')); 

out= a(length(a)/2+1:length(a),1); 

  

for i=1:maxfilenum 

    P=load(strcat(path,base,num2str(i),'.txt')); 

    P=P(length(P)/2+1:length(P),2); 

     

    out=[out,P]; 

end 

 

A.1.2 averageforb 

 

function out = averageforb(background, v) 

  

add=0; 

x=background(:,1); 

for i=1:length(v) 

    add=add+background(:,v(i)+1); 

    avg=add./length(v); 
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    out=[x,avg]; 

end 

 

A.1.3 spectramathb 

 

function out = spectramathb(path, base, maxfilenum) 

  

B=load(strcat(path,'B.txt')); 

x=B(:,1); 

B=B(:,2); 

  

out=x; 

  

C=load(strcat(path,'C.txt')); 

C=C(1:length(C)/2,2); 

  

D=load(strcat(path,'D.txt')); 

D=D(1:length(D)/2,2); 

  

CDdiff = C-D; 

  

for i=1:maxfilenum 
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    P=load(strcat(path,base,num2str(i),'.txt')); 

    P=P(1:length(P)/2,2); 

    

    Ptran= (P-B)./CDdiff; 

    out=[out,Ptran]; 

     

end 

 

A.1.4 nsnsmpeak 

 

function [ynsn,ysm,peaks]=nsnsmpeak(in,b,low,high) 

c=1/(sqrt(2*pi*.37)); 

d=2*.37^2; 

[l,w]=size(in); 

x=in(:,1); 

ysm=x; 

ynsn=x; 

peaks=[]; 

for k=2:w; 

    out=[]; 

    y=in(:,k); 

    for i=1:l; 
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       num=0; 

       den=0; 

       for j=1:l; 

           t = (x(i)-x(j))/b; 

           num = num + y(j)*c*exp(-t^2/d); 

           den = den + c*exp(-t^2/d); 

        end 

        out(i,1)= num/den; 

    end 

    [peak,xp]=max(out(low:high)); 

    out =out./peak; %this is the normalization step for the smooth curve 

    ysm =[ysm, out]; 

    out2=y./peak; 

    ynsn=[ynsn,out2]; 

    peaks=[peaks,x(low+xp-1)]; 

end 

      

 

A.2 Alloy Wulff Contruction 

 

Input definitions 

lambda0: initial guess on lambda (10
8
-10

9
 is usually good) 



284   

   

   

natoms: number of atoms in the particle 

step: calculation step 

gamma input: 4-dimensional vector representing the linear relationship between the surface 

energy and the concentration of Au (or other element), 2 columns XXXX 

dginput: 4- or 5-dimensional vector of the coefficients of the third order polynomial used to fit 

the bulk free energy obtained from experimental values, Eq. 7.24-7.25 (the third order codes are 

shown below; simple modifications were performed to accommodate the fourth order 

polynomial equation used for AgPd) 

unitcellinput: 

 

A.2.1 Basic Wulff Model 

function 

[lambdaoutfine,h100outfine,h111outfine,auHcheckfine,Energyfine]=wulffmodelbasic(natoms,la

mbda0,step,gammainput,dginput,unitcellinput) 

%this does not include starvation or segregation effect. fixed bulk=surface 

%conc. 

%set appropriate termination tolerance on x 

options=optimset( 'TolX', 10^-11); 

%create empty matrices 

calclambdamodel1=[]; 

h100raw=[]; 

h111raw=[]; 
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auHcheckraw=[]; 

auSoutraw=[]; 

Energyraw=[]; 

lambdaoutfine=[]; 

h100outfine=[]; 

lambdaoutfine=[]; 

h111outfine=[]; 

auHcheckfine=[]; 

auSoutfine=[]; 

Energyfine=[]; 

a100=gammainput(1,1); 

b100=gammainput(2,1); 

a111=gammainput(3,1); 

b111=gammainput(4,1); 

a=dginput(1,1); 

b=dginput(2,1); 

c=dginput(3,1); 

d=dginput(4,1); 

e=unitcellinput(1,1); 

f=unitcellinput(2,1); 

auHlist=[] 
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for k=0:step:1; %running index to change auH 

    auH=k  

    auS=k; 

    %tao and unit cells are only a function of auH, no need to put in the 

    %inside loop 

    unitcell=e*auH+f; 

    lambdamodel1=fzero(@(lambda) 

wulffbasic(natoms,auH,lambda,gammainput,unitcellinput),lambda0,options); %this first 

approximation only depends on the auH, so no need to put it in the inside auS loop 

    lambda0=lambdamodel1; 

    gammaH100=a100*auS+b100; 

    gammaH111=a111*auS+b111; 

    h100=gammaH100/lambdamodel1; 

    h111=gammaH111/lambdamodel1; 

    surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

    surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

      

    %total energy is just the surface energy in this model 

    E=(surfacearea100*gammaH100+surfacearea111*gammaH111); 

  

    %outputs 
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    out=lambdamodel1; 

    calclambdamodel1=[calclambdamodel1; out]; 

    out2=h100; 

    h100raw=[h100raw;out2]; 

    out3=h111; 

    h111raw=[h111raw;out3]; 

    out4=auH; 

    auHcheckraw=[auHcheckraw;out4]; 

    out5=E; 

    Energyraw=[Energyraw;out5]; 

    auHlist=[auHlist;auH];         

         

end 

lambdaoutfine=[auHlist,calclambdamodel1]; 

h100outfine=[auHlist,h100raw]; 

h111outfine=[auHlist,h111raw]; 

auHcheckfine=[auHlist,auHcheckraw]; 

Energyfine=[auHlist,Energyraw]; 

end 

 

 

A.2.2 Subfunction Wulffbasic 
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function F=wulffbasic(natoms,auH,lambda,gammainput,unitcellinput) 

%this is a setup to solve for lambda Wulff (so-called model 1) 

 a100=gammainput(1,1); 

b100=gammainput(2,1); 

a111=gammainput(3,1); 

b111=gammainput(4,1); 

 e=unitcellinput(1,1); 

f=unitcellinput(2,1); 

 lambda0=10^8; 

options=optimset('TolX', 10^-11); 

unitcell=e*auH+f; 

gammaH100=a100*auH+b100; 

gammaH111=a111*auH+b111; 

 h100=gammaH100/lambda; 

h111=gammaH111/lambda; 

surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

F=surfacearea100*h100/3+surfacearea111*h111/3-(natoms*unitcell^3)/4; 

 

A.2.3 Number of Surface Atoms in a Basic Wulff Construction Given h111 and h100 
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function F=nsurfaceatomsbasic(h111,h100,unitcellinput,auHmin,auHmax,step)  

 auHout=[]; 

e=unitcellinput(1,1); 

f=unitcellinput(2,1); 

natout=[]; 

 for i=(auHmin+1):1:((auHmax-auHmin)/step+1); 

    auH=i*step-step; 

    unitcell=e*auH+f; 

    h111value=h111(i,2); %takes the value of h111 (h100 below) corresponding to the minimum 

energy  value 

    h100value=h100(i,2); 

    surfacearea100=6*2*((sqrt(3))*h111value-h100value)^2; %note that the model used is the 

model in which 111 faces dominate 

    surfacearea111=8*((3*(sqrt(3))/2)*h111value^2-3*(sqrt(3))*((sqrt(3))*h111value-

h100value)^2); 

    nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

    natout=[natout;nsurfatoms]; 

    auHout=[auHout;auH]; 

end 

F=[auHout,natout]; 

 end 
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A2.4 Alloy Wulff Modeling with Ssegregation but no Starvation 

 

function 

[lambdaoutfine,h100outfine,h111outfine,auHcheckfine,auSoutfine,Energyfine,Energystarv]=wul

ffmodel2nostarvenergy(natoms,lambda0,step,gammainput,dginput,unitcellinput) 

 %nostarvation in this model 

%a flexible code, can change the gammas, dG, unit cell to allow different 

%alloys 

 options=optimset( 'TolX', 10^-11); 

calclambdamodel2=[]; 

h100raw=[];%make this intermediate matrices as the final matrices need to be broken up from 

the output vector 

h111raw=[]; 

auHcheckraw=[]; 

auSoutraw=[]; 

Energyraw=[]; 

Energystarva=[]; 

Energystarv=[]; 

Energystarvraw=[]; 

lambdaoutfine=[]; 

h100outfine=[]; 

lambdaoutfine=[]; 
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h111outfine=[]; 

auHcheckfine=[]; 

auSoutfine=[]; 

Energyfine=[]; 

a100=gammainput(1,1); 

b100=gammainput(2,1); 

a111=gammainput(3,1); 

b111=gammainput(4,1); 

a=dginput(1,1); 

b=dginput(2,1); 

c=dginput(3,1); 

d=dginput(4,1); 

e=unitcellinput(1,1); 

f=unitcellinput(2,1); 

for k=0:step:1; %running index to change auH 

    auH=k      

    %tao and unit cells are only a function of auH, no need to put in the 

    %inside loop 

    unitcell=e*auH+f; 

    tao100=unitcell/2; %I use 1/2 unit cell (more precisely the distance between 200's), which 

corresponds  to about 1 atom deep 
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    tao111=unitcell*(sqrt(3))/3; %for 111, the distance between 2 adjacent planes (222's) is 

different than  for 100s. 

    lambdamodel1=fzero(@(lambda) 

wulffbasic(natoms,auH,lambda,gammainput,unitcellinput),lambda0,options); %this first 

approximation  only depends on the auH, so no need to put it in the inside auS loop 

    lambda0=lambdamodel1; 

    for i=0:step:1; %running index to change auS 

        auS=i; 

        lambdamodel2=fzero(@(lambda) 

model2(natoms,auS,auH,lambda,gammainput,dginput,unitcellinput),lambdamodel1,options);%g

et lambda from model 2 (no starvation) 

         %this paragraph calculates cv from lambdamodel2 

        Gs=a*auS^3+b*auS^2+c*auS+d; %bulk free energy. the coefficients are determined by 

fitting  experimental data 

        Gh=a*auH^3+b*auH^2+c*auH+d; %this is never going to change 

        gammaH100=a100*auS+b100; 

        gammaH111=a111*auS+b111; 

        gammacorr100=gammaH100+tao100*(Gs-Gh); %this corrects for the fact that the bulk and 

surface are not the same concentration. 

        gammacorr111=gammaH111+tao111*(Gs-Gh); 

        h100=gammacorr100/(lambdamodel2); 

        h111=gammacorr111/(lambdamodel2); 
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        surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

        surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

        %total energy 

        E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111); 

            %starvation energy (to compare with other models 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms); 

            Gv=a*auV^3+b*auV^2+c*auV^1+d;  

            gammacorr100=gammaH100+tao100*(Gs-Gv); %need to get the appropriate gamma 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 

            if auV>1; 

                Es=0; 

            elseif auV<0; 

                Es=0; 

            else              

            dEstarv=Vbulk*(Gv-Gh) %note here that this depends on volume, so making a particle 

bigger  makes this contribution also bigger 

            Es=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 

            end 

        %outputs 

        out=lambdamodel2; 
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        calclambdamodel2=[calclambdamodel2; out]; 

        out2=h100; 

        h100raw=[h100raw;out2]; 

        out3=h111; 

        h111raw=[h111raw;out3]; 

        out4=auH; 

        auHcheckraw=[auHcheckraw;auH]; 

        out5=auS; 

        auSoutraw=[auSoutraw;out5]; 

        out6=E; 

        Energyraw=[Energyraw;out6]; 

        out7=Es; 

        Energystarva=[Energystarva;out7]; 

    end 

end 

%this loop breaks up the vector output into square matrices 

for l=0:1:(1/step); 

    lambdaoutfineraw=calclambdamodel2((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    lambdaoutfine=[lambdaoutfine,lambdaoutfineraw]; 

    h100outfineraw=h100raw((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    h100outfine=[h100outfine,h100outfineraw]; 

    h111outfineraw=h111raw((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 
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    h111outfine=[h111outfine,h111outfineraw]; 

    auHcheckfineraw=auHcheckraw((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    auHcheckfine=[auHcheckfine,auHcheckfineraw]; 

    auSoutfineraw=auSoutraw((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    auSoutfine=[auSoutfine,auSoutfineraw]; 

    Energyfineraw=Energyraw((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    Energyfine=[Energyfine,Energyfineraw]; 

    Energystarvraw=Energystarva((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    Energystarv=[Energystarv,Energystarvraw]; 

end 

  

A.2.5 Subfunction model2 

function F = model2(natoms,auS,auH,lambda,gammainput,dginput,unitcellinput)  %This is 

model 2, for the infinite reservoir modeling, with segregation but no starvation 

%natoms is total number of atoms, auS is the surface [Au], auH is the bulk [Au] 

a100=gammainput(1,1); 

b100=gammainput(2,1); 

a111=gammainput(3,1); 

b111=gammainput(4,1); 

a=dginput(1,1); 

b=dginput(2,1); 

c=dginput(3,1); 
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d=dginput(4,1); 

e=unitcellinput(1,1); 

f=unitcellinput(2,1); 

unitcell=e*auH+f; 

Gs=a*auS^3+b*auS^2+c*auS+d; 

Gv=a*auH^3+b*auH^2+c*auH+d; 

tao100=unitcell/2; 

tao111=unitcell*(sqrt(3))/3; 

gammaH100=a100*auS+b100; 

gammaH111=a111*auS+b111; 

gammacorr100=gammaH100+tao100*(Gs-Gv); 

gammacorr111=gammaH111+tao111*(Gs-Gv); 

h100=gammacorr100/lambda; 

h111=gammacorr111/lambda; 

surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

F=surfacearea100*h100/3+surfacearea111*h111/3-(natoms*unitcell^3)/4; 

  

A.2.6 Main alloy Wulff construction function 

function 

[lambdaoutfine,h100outfine,h111outfine,auVcheckfine,auSoutfine,Energyfine]=wulffmodel3flex

(natoms,lambda0,step,gammainput,dginput,unitcellinput) 
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% a good lambda0 should be around 5*10^8 

%a flexible code, can change the gammas, dG, unit cell to allow different 

%alloys; simple changes allow the use of variable boundaries, see next Section 

options=optimset( 'TolX', 10^-11); 

calclambdamodel3=[]; 

h100raw=[]; 

h111raw=[]; 

auVcheckraw=[]; 

auSoutraw=[]; 

Energyraw=[]; 

lambdaoutfine=[]; 

h100outfine=[]; 

lambdaoutfine=[]; 

h111outfine=[]; 

auVcheckfine=[]; 

auSoutfine=[]; 

Energyfine=[]; 

a100=gammainput(1,1); 

b100=gammainput(2,1); 

a111=gammainput(3,1); 

b111=gammainput(4,1); 

a=dginput(1,1); 
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b=dginput(2,1); 

c=dginput(3,1); 

d=dginput(4,1); 

e=unitcellinput(1,1); 

f=unitcellinput(2,1); 

for k=0:step:1; %running index to change auH 

    auH=k      

    %tao and unit cells are only a function of auH 

    unitcell=e*auH+f; 

    tao100=unitcell/2; %I use 1/2 unit cell (more precisely the distance between 200's), which 

corresponds  to about 1 atom deep 

    tao111=unitcell*(sqrt(3))/3; %for 111, the distance between 2 adjacent planes (222's) is 

different than  for 100s. 

    lambdamodel1=fzero(@(lambda) 

wulffbasic(natoms,auH,lambda,gammainput,unitcellinput),lambda0,options); %this first 

approximation  only depends on the auH 

    lambda0=lambdamodel1; 

    for i=0:step:1; %running index to change auS 

        auS=i 

        lambdamodel2=fzero(@(lambda) 

model2(natoms,auS,auH,lambda,gammainput,dginput,unitcellinput),lambdamodel1,options)%ge

t lambda  from model 2 (no starvation) 
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        if lambdamodel2<10^7 %this is to prevent the code from finding unrealistic values 

            lambdamodel2=fzero(@(lambda) 

model2(natoms,auS,auH,lambda,gammainput,dginput,unitcellinput),(10^9),options) 

        else lambdamodel2=lambdamodel2 

        end 

        %this paragraph calculates Cv from lambdamodel2 

        Gs=a*auS^3+b*auS^2+c*auS+d; %bulk free energy. the coefficients are determined by 

fitting  experimental data 

        Gh=a*auH^3+b*auH^2+c*auH+d; 

        gammaH100=a100*auS+b100; 

        gammaH111=a111*auS+b111; 

        gammacorr100=gammaH100+tao100*(Gs-Gh); %this corrects for the fact that the bulk and 

surface are not the same concentration. 

        gammacorr111=gammaH111+tao111*(Gs-Gh); 

        %the following calculate [Au] in the bulk (auV) 

        h100=gammacorr100/lambdamodel2; 

        h111=gammacorr111/lambdamodel2; 

        surfacearea100=6*2*((sqrt(3))*h111-h100)^2; %note that the model used is the model in 

which 111 faces dominate 

        surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 
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        nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); %this 

takes into account the fact that the surface density is different for ((100)) and ((111)), ((111)) 

being more  dense 

        auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms); %initial 

guess on the starved bulk concentration 

        if auV>1;  

            auV=1; %can't get a concentration above 1! 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            dG=Gv-Gh; 

             %take lambdamodel2 as guess 

            lambdamodel3=fzero(@(lambda)model3(natoms,auSm,auH,auV, 

lambda,gammainput,dginput,unitcellinput),(lambdamodel2+dG),options); 

            %reitarate bcause the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; %this is fixed at auV=1. no need to repeat it 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); %tao was defined at the beginning of the 

loop 
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            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh;%this is fixed too, as auV and auH are fixed 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); %take previous 

lambda as guess 

            %reiterate because the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 
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            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options);       

            %recalculate parameters relevant to the calculation of total energy 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); %this corrects for the fact that the bulk 

and surface are not the same concentration. 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            %starvation energy 

            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 

            dEstarv=Vbulk*(Gv-Gh); 

            %total energy 

            E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 

            %outputs 

            out=lambdamodel3; 
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            calclambdamodel3=[calclambdamodel3; out]; 

            out2=h100; 

            h100raw=[h100raw;out2]; 

            out3=h111; 

            h111raw=[h111raw;out3]; 

            out4=auV; 

            auVcheckraw=[auVcheckraw;auV]; 

            out5=auSm; 

            auSoutraw=[auSoutraw;out5]; 

            out6=E; 

            Energyraw=[Energyraw;out6]; 

        elseif auV<0;  

            auV=0; %can't get a concentration below 0! 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms);  

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            dG=Gv-Gh; 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),(lambdamodel2+dG),options); 

            %reitarate bcause the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 
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            Gv=a*auV^3+b*auV^2+c*auV+d; %this is fixed at auV=1. no need to repeat it 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv);  

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh;%this is fixed too, as auV and auH are fixed 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %reitarate bcause the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d;   

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 
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            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %recalculate parameters relevant to the calculation of total energy 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); %this corrects for the fact that the bulk 

and surface are not the same concentration. 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG);            

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            %starvation energy 

            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 
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            dEstarv=Vbulk*(Gv-Gh); 

            %total energy 

            E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 

           %outputs 

            out=lambdamodel3; 

            calclambdamodel3=[calclambdamodel3; out]; 

            out2=h100; 

            h100raw=[h100raw;out2]; 

            out3=h111; 

            h111raw=[h111raw;out3]; 

            out4=auV; 

            auVcheckraw=[auVcheckraw;auV]; 

            out5=auSm; 

            auSoutraw=[auSoutraw;out5]; 

            out6=E; 

            Energyraw=[Energyraw;out6]; 

        else %this needs a few iterations to get the number of surface atoms correct, as the number 

of surface %atoms varies in function of the shape 

            auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms); 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            gammaH100=a100*auS+b100; 

            gammaH111=a111*auS+b111; 
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            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh; 

            if (lambdamodel2+dG)<0 

                lambdaguess=lambdamodel2 

            else lambdaguess=lambdamodel2+dG 

            end 

            lambdamodel3=fzero(@(lambda) model3(natoms,auS,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),(lambdaguess),options);  

            %need to recalculate auV from the new lambda 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            gammaH100=a100*auS+b100; 

            gammaH111=a111*auS+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh; 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms); 
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            %from the new auV calculate another lambda 

            lambdamodel3=fzero(@(lambda) model3(natoms,auS,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %from the new lambda calculate a new auV 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            dG=Gv-Gh; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms); 

            %recalculate parameters for total energy 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 
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            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            dEstarv=Vbulk*(Gv-Gh); 

            %total energy 

            E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 

            %this if loops prevent negative values of auV  

            if auV>1;  

            auV=1; %can't get a concentration above 1! 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms);             

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %reiterate because the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; %this is fixed at auV=1. no need to repeat it 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); %tao was defined at the beginning of the 

loop 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh;%this is fixed too, as auV and auH are fixed 

            h100=gammacorr100/(lambdamodel3-dG); 
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            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms);  

            %reitarate bcause the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

             

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 
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            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

                     %recalculate parameters relevant to the calculation of total energy 

            Gv=a*auV^3+b*auV^2+c*auV+d;  

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); %this corrects for the fact that the bulk 

and surface are not the same concentration. 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            %starvation energy 

            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 

            dEstarv=Vbulk*(Gv-Gh); 

            %total energy 

            E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 

            %outputs 

            out=lambdamodel3; 

            calclambdamodel3=[calclambdamodel3; out]; 

            out2=h100; 
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            h100raw=[h100raw;out2]; 

            out3=h111; 

            h111raw=[h111raw;out3]; 

            out4=auV; 

            auVcheckraw=[auVcheckraw;auV]; 

            out5=auSm; 

            auSoutraw=[auSoutraw;out5]; 

            out6=E; 

            Energyraw=[Energyraw;out6]; 

        elseif auV<0;  

            auV=0; %can't get a concentration below 0! 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms);             

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %reitarate bcause the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; %this is fixed at auV=1. no need to repeat it 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); %tao was defined at the beginning of the 

loop 
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            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh;%this is fixed too, as auV and auH are fixed 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms);  

            %reitarate bcause the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 
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            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %recalculate parameters relevant to the calculation of total energy 

            Gv=a*auV^3+b*auV^2+c*auV+d;  

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); %this corrects for the fact that the bulk 

and surface are not the same concentration. 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG);            

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            %starvation energy 

            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 

            dEstarv=Vbulk*(Gv-Gh); %note here that this depends on volume, so making a particle 

bigger  makes this contribution also bigger 

            %total energy 
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            E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 

           %outputs 

            out=lambdamodel3; 

            calclambdamodel3=[calclambdamodel3; out]; 

            out2=h100; 

            h100raw=[h100raw;out2]; 

            out3=h111; 

            h111raw=[h111raw;out3]; 

            out4=auV; 

            auVcheckraw=[auVcheckraw;auV]; 

            out5=auSm; 

            auSoutraw=[auSoutraw;out5]; 

            out6=E; 

            Energyraw=[Energyraw;out6]; 

            else out=lambdamodel3; 

            calclambdamodel3=[calclambdamodel3; out]; 

            out2=h100; 

            h100raw=[h100raw;out2]; 

            out3=h111; 

            h111raw=[h111raw;out3]; 

            out4=auV; 

            auVcheckraw=[auVcheckraw;auV]; 
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            out5=auS; 

            auSoutraw=[auSoutraw;out5]; 

            out6=E; 

            Energyraw=[Energyraw;out6]; 

        end 

        end 

    end 

end 

%this loop breaks up the vector output into square matrices 

for l=0:1:(1/step); 

    lambdaoutfineraw=calclambdamodel3((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    lambdaoutfine=[lambdaoutfine,lambdaoutfineraw]; 

    h100outfineraw=h100raw((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    h100outfine=[h100outfine,h100outfineraw]; 

    h111outfineraw=h111raw((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    h111outfine=[h111outfine,h111outfineraw]; 

    auVcheckfineraw=auVcheckraw((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    auVcheckfine=[auVcheckfine,auVcheckfineraw]; 

    auSoutfineraw=auSoutraw((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    auSoutfine=[auSoutfine,auSoutfineraw]; 

    Energyfineraw=Energyraw((1/step)*l+l+1:(1/step)*l+(1/step)+1+l); 

    Energyfine=[Energyfine,Energyfineraw]; 
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end 

 

A.2.7 Main alloy Wulff construction function with flexible start and end initial 

concentrations 

function 

[lambdaoutfine,h100outfine,h111outfine,auVcheckfine,auSoutfine,Energyfine]=wulffmodel3 

(natoms,lambda0,auHmin,auHmax,step,gammainput,dginput,unitcellinput) 

% a good lambda0 should be around 5*10^8 

%now with a variable step 

%a flexible code, can change the gammas, dG, unit cell to allow different 

%alloys 

options=optimset( 'TolX', 10^-11); 

calclambdamodel3=[]; 

h100raw=[];%make this intermediate matrices as the final matrices need to be broken up from 

the output %vector 

h111raw=[]; 

auVcheckraw=[]; 

auSoutraw=[]; 

Energyraw=[]; 

lambdaoutfine=[]; 

h100outfine=[]; 

lambdaoutfine=[]; 
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h111outfine=[]; 

auVcheckfine=[]; 

auSoutfine=[]; 

Energyfine=[]; 

a100=gammainput(1,1); 

b100=gammainput(2,1); 

a111=gammainput(3,1); 

b111=gammainput(4,1); 

a=dginput(1,1); 

b=dginput(2,1); 

c=dginput(3,1); 

d=dginput(4,1); 

e=unitcellinput(1,1); 

f=unitcellinput(2,1); 

for k=auHmin:step:auHmax; %running index to change auH 

    auH=k  

    %tao and unit cells are only a function of auH, no need to put in the 

    %inside loop 

    unitcell=e*auH+f; 

    tao100=unitcell/2; %I use 1/2 unit cell (more precisely the distance between 200's), which 

corresponds %to about 1 atom deep 
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    tao111=unitcell*(sqrt(3))/3; %for 111, the distance between 2 adjacent planes (222's) is 

different than  %for 100s. 

    lambdamodel1=fzero(@(lambda) 

wulffbasic(natoms,auH,lambda,gammainput,unitcellinput),lambda0,options);  

%this first approximation only depends on the auH, so no need to put it in the inside auS loop 

    lambda0=lambdamodel1; 

    for i=0:step:1; %running index to change auS 

        auS=i; 

        lambdamodel2=fzero(@(lambda) 

model2(natoms,auS,auH,lambda,gammainput,dginput,unitcellinput),lambdamodel1,options); 

%get lambda from model 2 (no starv.) 

        %this paragraph calculates cv from lambdamodel2 

        Gs=a*auS^3+b*auS^2+c*auS+d;  

 %bulk free energy. the coefficients are determined by fitting experimental data 

        Gh=a*auH^3+b*auH^2+c*auH+d; 

        gammaH100=a100*auS+b100; 

        gammaH111=a111*auS+b111; 

        gammacorr100=gammaH100+tao100*(Gs-Gh);  

 %this corrects for the fact that the bulk and surface are not the same concentration. 

        gammacorr111=gammaH111+tao111*(Gs-Gh); 

         %the following calculate [Au] in the bulk (auV) 

        h100=gammacorr100/lambdamodel2; 
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        h111=gammacorr111/lambdamodel2; 

        surfacearea100=6*2*((sqrt(3))*h111-h100)^2;  

 %note that the model used is the model in which 111 faces dominate 

        surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

        nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2);  

 %this takes into account the fact that the surface density is different for 100 and 111, 111 

being  %more dense 

        auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms);  

 %initial guess on the starved bulk concentration 

        if auV>1;  

            auV=1 %can't get a concentration above 1! 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms);  

 %take lambdamodel2 as guess 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            dG=Gv-Gh; 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

lambda,gammainput,dginput,unitcellinput),(lambdamodel2+dG),options); 

            %reiterate because the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; %this is fixed at auV=1. no need to repeat it 
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            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); %tao was defined at the beginning of the 

loop 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh;%this is fixed too, as auV and auH are fixed 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); %take previous lambda as 

guess 

            %auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms);  

            %reiterate because the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 
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            gammacorr111=gammaH111+tao111*(Gs-Gv); 

             

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

 %recalculate parameters relevant to the calculation of total energy 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv);  

 %this corrects for the fact that the bulk and surface are not the same concentration. 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            %starvation energy 
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            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 

            dEstarv=Vbulk*(Gv-Gh); 

            %total energy 

            E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 

            %outputs 

            out=lambdamodel3; 

            calclambdamodel3=[calclambdamodel3; out]; 

            out2=h100; 

            h100raw=[h100raw;out2]; 

            out3=h111; 

            h111raw=[h111raw;out3]; 

            out4=auV; 

            auVcheckraw=[auVcheckraw;auV]; 

            out5=auSm; 

            auSoutraw=[auSoutraw;out5]; 

            out6=E; 

            Energyraw=[Energyraw;out6]; 

        elseif auV<0;  

            auV=0; %can't get a concentration below zero 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; 
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            dG=Gv-Gh; 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),(lambdamodel2+dG),options); 

            %reiterate because the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; %this is fixed at auV=1. no need to repeat it 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

              gammacorr100=gammaH100+tao100*(Gs-Gv); %tao was defined at the beginning of 

the loop 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh;%this is fixed too, as auV and auH are fixed 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

           %auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms);  
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            %reiterate because the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d;   

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

 %recalculate parameters relevant to the calculation of total energy 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv);  

 %this corrects for the fact that the bulk and surface are not the same concentration. 
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            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG);            

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            %starvation energy 

            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 

            dEstarv=Vbulk*(Gv-Gh); 

            %total energy 

            E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 

            %outputs 

            out=lambdamodel3; 

            calclambdamodel3=[calclambdamodel3; out]; 

            out2=h100; 

            h100raw=[h100raw;out2]; 

            out3=h111; 

            h111raw=[h111raw;out3]; 

            out4=auV; 

            auVcheckraw=[auVcheckraw;auV]; 

            out5=auSm; 

            auSoutraw=[auSoutraw;out5]; 



327   

   

   

            out6=E; 

            Energyraw=[Energyraw;out6]; 

        else %this needs a few iterations to get the number of surface atoms correct, as 

             %the number of surface atoms varies in function of the shape 

            auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms); 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            gammaH100=a100*auS+b100; 

            gammaH111=a111*auS+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh; 

            lambdamodel3=fzero(@(lambda) model3(natoms,auS,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),(lambdamodel2+dG),options);  

             %need to recalculate auV from the new lambda 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            gammaH100=a100*auS+b100; 

            gammaH111=a111*auS+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh; 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 
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            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms); 

            %from the new auV calculate another lambda 

            lambdamodel3=fzero(@(lambda) model3(natoms,auS,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %from the new lambda calculate a new auV 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            dG=Gv-Gh; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms); 

            %recalculate parameters for total energy 

            Gv=a*auV^3+b*auV^2+c*auV+d; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 
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            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            dEstarv=Vbulk*(Gv-Gh); 

            %total energy 

            E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 

            %this if loops prevent values of auV above 1 

            if auV>1;  

            auV=1  

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms);  

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %reiterate because the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; %this is fixed at auV=1. no need to repeat it 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 
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            gammacorr100=gammaH100+tao100*(Gs-Gv); %tao was defined at the beginning of the 

loop 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh;%this is fixed too, as auV and auH are fixed 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms);  

            %reitarate bcause the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 
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            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %recalculate parameters relevant to the calculation of total energy 

            Gv=a*auV^3+b*auV^2+c*auV+d;  

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv);  

 %this corrects for the fact that the bulk and surface are not the same concentration. 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            %starvation energy 

            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 

            dEstarv=Vbulk*(Gv-Gh); 

            %total energy 

            E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 
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            %outputs 

            out=lambdamodel3; 

            calclambdamodel3=[calclambdamodel3; out]; 

            out2=h100; 

            h100raw=[h100raw;out2]; 

            out3=h111; 

            h111raw=[h111raw;out3]; 

            out4=auV; 

            auVcheckraw=[auVcheckraw;auV]; 

            out5=auSm; 

            auSoutraw=[auSoutraw;out5]; 

            out6=E; 

            Energyraw=[Energyraw;out6]; 

        elseif auV<0;  

            auV=0; %can't get a concentration above 1! 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms);  

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %reiterate because the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            Gv=a*auV^3+b*auV^2+c*auV+d; %this is fixed at auV=1. no need to repeat it 
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            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); %tao was defined at the beginning of the 

loop 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            dG=Gv-Gh;%this is fixed too, as auV and auH are fixed 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %auV=(nsurfatoms*(auH-auS)+(natoms-nsurfatoms)*auH)/(natoms-nsurfatoms);  

            %reitarate bcause the number of atoms on the surface, hence the 

            %surface concentration, changes with shape 

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv); 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 
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            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG); 

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            auSm=auH-((auV*(natoms-nsurfatoms)-(natoms-nsurfatoms)*auH)/nsurfatoms); 

            lambdamodel3=fzero(@(lambda) model3(natoms,auSm,auH,auV, 

 lambda,gammainput,dginput,unitcellinput),lambdamodel3,options); 

            %recalculate parameters relevant to the calculation of total energy 

            Gv=a*auV^3+b*auV^2+c*auV+d;  

            Gs=a*auSm^3+b*auSm^2+c*auSm+d; 

            gammaH100=a100*auSm+b100; 

            gammaH111=a111*auSm+b111; 

            gammacorr100=gammaH100+tao100*(Gs-Gv);  

 %this corrects for the fact that the bulk and surface are not the same concentration. 

            gammacorr111=gammaH111+tao111*(Gs-Gv); 

            h100=gammacorr100/(lambdamodel3-dG); 

            h111=gammacorr111/(lambdamodel3-dG);            

            surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

            surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

            nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

            %starvation energy 
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            Vbulk=(natoms-nsurfatoms)*(unitcell^3)/4; 

            dEstarv=Vbulk*(Gv-Gh);  

 %note here that this depends on volume, so making a particle bigger  makes this 

contribution  %also bigger 

            %total energy 

            E=(surfacearea100*gammacorr100+surfacearea111*gammacorr111)+dEstarv; 

            %outputs 

            out=lambdamodel3; 

            calclambdamodel3=[calclambdamodel3; out]; 

            out2=h100; 

            h100raw=[h100raw;out2]; 

            out3=h111; 

            h111raw=[h111raw;out3]; 

            out4=auV; 

            auVcheckraw=[auVcheckraw;auV]; 

            out5=auSm; 

            auSoutraw=[auSoutraw;out5]; 

            out6=E; 

            Energyraw=[Energyraw;out6]; 

            else out=lambdamodel3; 

            calclambdamodel3=[calclambdamodel3; out]; 

            out2=h100; 
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            h100raw=[h100raw;out2]; 

            out3=h111; 

            h111raw=[h111raw;out3]; 

            out4=auV; 

            auVcheckraw=[auVcheckraw;auV]; 

            out5=auS; 

            auSoutraw=[auSoutraw;out5]; 

            out6=E; 

            Energyraw=[Energyraw;out6]; 

        end 

        end 

    end 

end 

%this loop breaks up the vector output into square matrices 

for m=0:1:(((auHmax-auHmin)/step)); 

    lambdaoutfineraw=calclambdamodel3((1/step)*m+m+1:(1/step)*m+(1/step)+1+m); 

    lambdaoutfine=[lambdaoutfine,lambdaoutfineraw]; 

    h100outfineraw=h100raw((1/step)*m+m+1:(1/step)*m+(1/step)+1+m); 

    h100outfine=[h100outfine,h100outfineraw]; 

    h111outfineraw=h111raw((1/step)*m+m+1:(1/step)*m+(1/step)+1+m); 

    h111outfine=[h111outfine,h111outfineraw]; 

    auVcheckfineraw=auVcheckraw((1/step)*m+m+1:(1/step)*m+(1/step)+1+m); 
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    auVcheckfine=[auVcheckfine,auVcheckfineraw]; 

    auSoutfineraw=auSoutraw((1/step)*m+m+1:(1/step)*m+(1/step)+1+m); 

    auSoutfine=[auSoutfine,auSoutfineraw]; 

    Energyfineraw=Energyraw((1/step)*m+m+1:(1/step)*m+(1/step)+1+m); 

    Energyfine=[Energyfine,Energyfineraw]; 

end 

  

A.2.8 Subfunction model3 

function F = model3(natoms, auS, auH, auV, lambda,gammainput,dginput,unitcellinput)  

%this is model 3, segregation and starvation included 

%natoms is total number of atoms, auS is the surface [Au], auH is the homogeneous bulk, auV is 

the %starved bulk [Au] 

a100=gammainput(1,1); 

b100=gammainput(2,1); 

a111=gammainput(3,1); 

b111=gammainput(4,1); 

a=dginput(1,1); 

b=dginput(2,1); 

c=dginput(3,1); 

d=dginput(4,1); 

e=unitcellinput(1,1); 

f=unitcellinput(2,1); 
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unitcell=e*auH+f; 

Gs=a*auS^3+b*auS^2+c*auS+d; 

Gh=a*auH^3+b*auH^2+c*auH+d; 

Gv=a*auV^3+b*auV^2+c*auV+d; 

tao100=unitcell/2; 

tao111=unitcell*(sqrt(3))/3; 

gammaH100=a100*auS+b100; 

gammaH111=a111*auS+b111; 

gammacorr100=gammaH100+tao100*(Gs-Gv); 

gammacorr111=gammaH111+tao111*(Gs-Gv); 

dG=Gv-Gh; 

h100=gammacorr100/(lambda-dG); 

h111=gammacorr111/(lambda-dG); 

surfacearea100=6*2*((sqrt(3))*h111-h100)^2; 

surfacearea111=8*((3*(sqrt(3))/2)*h111^2-3*(sqrt(3))*((sqrt(3))*h111-h100)^2); 

F=surfacearea100*h100/3+surfacearea111*h111/3-(natoms*unitcell^3)/4; 

 

A.2.9. Minimum Surface Concentration 

function minconc=minauSrealflex(Energy,auSin,auHmin,auHmax,step) %works for all size 

matrix 

auSmin=[]; 
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auH=[]; 

for i=1:1:((auHmax-auHmin)/step+1); 

    [energyvalue,auSvaluepos]=min(Energy(:,i));  

 %gives the energy value and auS value position of the  minimum energy 

configuration for a  %given starting auH 

    auSmin=[auSmin,auSin(auSvaluepos,i)]; 

    auH=[auH;auHmin+(i*step-step)]; 

end 

auSmin=auSmin'; 

minconc=[auH,auSmin]; 

end 

A.2.10 Minimum Bulk (Internal) Concentration 

function minconc=minauVmodflex(Energy,auVin,auHmin,auHmax,step) %works for all size 

matrix 

auVmin=[]; 

auH=[]; 

for i=1:1:((auHmax-auHmin)/step+1); 

    [energyvalue,auSvaluepos]=min(Energy(:,i));  

 %gives the energy value and auS value position of the  minimum energy 

configuration for a  %given starting auH 

  

    auVmin=[auVmin,auVin(auSvaluepos,i)]; 



340   

   

   

    auH=[auH;auHmin+(i*step-step)]; 

end 

auVmin=auVmin'; 

minconc=[auH,auVmin]; 

end 

  

          

A.2.11 Minimum Total Energy for Each Starting Composition 

function minconc=minEnergyrealflex(Energy,auSin,auHmin,auHmax,step) %works for all size 

matrix 

auSmin=[]; 

auH=[]; 

for i=1:1:((auHmax-auHmin)/step+1); 

    [energyvalue,auSvaluepos]=min(Energy(:,i));  

 %gives the energy value and auS value position of the  minimum energy 

configuration for a  %given starting auH 

    auSmin=[auSmin,auSin(auSvaluepos,i)]; 

    auH=[auH;auHmin+(i*step-step)]; 

end 

auSmin=auSmin'; 

minconc=[auH,auSmin]; 

end 
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A.2.12 Number of Surface Atoms 

function F=nsurfaceatoms(Energy,h111,h100,unitcellinput,auHmin,auHmax,step)  

auHout=[]; 

e=unitcellinput(1,1); 

f=unitcellinput(2,1); 

natout=[]; 

 for i=(auHmin+1):1:((auHmax-auHmin)/step+1); 

    auH=i*step-step; 

    unitcell=e*auH+f; 

    [energyvalue,auSvaluepos]=min(Energy(:,i));  

 %gives the energy value and auS value position of the  minimum energy 

configuration for a  %given starting auH 

    h111value=h111(auSvaluepos,i);  

 %takes the value of h111 (h100 below) corresponding to the minimum energy value 

    h100value=h100(auSvaluepos,i); 

    surfacearea100=6*2*((sqrt(3))*h111value-h100value)^2;  

 %note that the model used is the model in which 111 faces dominate 

    surfacearea111=8*((3*(sqrt(3))/2)*h111value^2-3*(sqrt(3))*((sqrt(3))*h111value-

h100value)^2); 

    nsurfatoms=surfacearea100*2/(unitcell)^2+surfacearea111*4/((sqrt(3))*unitcell^2); 

    natout=[natout;nsurfatoms]; 
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    auHout=[auHout;auH]; 

end 

F=[auHout,natout]; 

end 

 

A.2.12. h111/h100 

function h111_h100_rat=h111_h100nmatoms(Energy,h111,h100,step)  

ratioout=[]; 

h100out=[]; 

h111out=[]; 

auH=[]; 

for i=1:1:(1/step+1); 

    [energyvalue,auSvaluepos]=min(Energy(:,i));  

 %gives the energy value and auS value position of the minimum energy configuration for 

a given  %starting auH 

    h111value=h111(auSvaluepos,i);  

 %takes the value of h111 (h100 below) corresponding to the minimum energy value 

    h100value=h100(auSvaluepos,i); 

    ratio=h111value/h100value; 

    ratioout=[ratioout;ratio]; 

    h100out=[h100out;h100value]; 

    h111out=[h111out;h111value]; 
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    auH=[auH;i*step-step]; 

end 

h111_h100_rat=[auH,h111out,h100out,ratioout]; 

end 

 

A.3. Kinetic Wulff Construction, GUI 

 

A.3.1 Kinetic Wulff Model for a Monotwinned Particle 

 

function 

[Vtot,Vtotsm,mX,mY,mZ]=modelmono(step,bound,isovalue,box,beta,twin,reentrant,a_100,a_11

0,a_111) 

%this models the Wulff construction of a crystal with two twins (one ((111)) twin plane). 

%beta should be smaller than the a values 

fint=[]; 

out=[]; 

g=[]; 

for x=-bound:step:bound; 

    i=round((x+(bound))/step+1); %i is used as the index of the matrix, while x is used as the 

coordinate 

    for y=-bound:step:bound; 

        j=round((y+(bound))/step+1); 
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        for  z=-bound:step:bound; 

             m=round((z+(bound))/step+1); 

        Vtot(i,j,m) = 1; 

        a = (x+y+z)/3. ; 

        if a > 0;    

                xx = x ; yy = y ; zz = z; 

        else 

  % Mirror about the plane (111) 

  % Since (a;a;a) is the vector along (111), subtract twice this 

            xx = x -2*a ; yy = y -2*a ; zz = z -2*a; 

        end 

                    Vscalar=1;  

      %i.e. if dot with 111 or -1-11 is smaller or equal to zero, the xyz point has a nonzero 

value of V  

                    % Loop over all ((100)), ((110)), and ((111)) facets 

                    %this gives the value of the V 

                    for h=-1:1:1; 

                        for k=-1:1:1; 

                            for l=-1:1:1; 

                                if Vscalar>1E-8; 

                    gg = h*h+k*k+l*l ; 

                    % If g.(111) is negative, we have re-entrant surfaces 
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                    % kinetic is an input ; 

                    if dot([h;k;l],[1;1;1])<0; %i.e. if the face is re-entrant type 

                        enhance=1.0+reentrant+twin;  

                    % for the twin boundary growth enhancement, the faces involved 

                    % are the re-entrant (111) above, and the (100) faces 

                    % (only need the positive ones because of symmetry) 

                    elseif h+k+l == 1; 

                        if k+l == 0; 

                            enhance=1.0+twin ; 

                        elseif l+h == 0; 

                            enhance=1.0+twin ; 

                        elseif h+k == 0; 

                            enhance=1.0+twin ; 

                        else 

                            enhance=1; 

                        end 

                    else enhance=1; 

                        end 

                    if abs( gg-1 ) < 1E-8 ;     % This is a trick to avoid numerical inaccuracies 

                        amp = a_100 ; 

                    elseif abs(gg-2) < 1E-8 ; 

                        amp = a_110/sqrt(2) ; 
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                                else abs(gg-3) < 1E-8 ; 

                        amp = a_111/sqrt(3) ; 

                            end %end of if elseif elseif statement 

                                g = amp*enhance*[h,k,l] ;        

                              % Multiply, again only the xyz within the boundaries of the twin will have a 

non-zero value for V        

                                dotxyz_g=amp*enhance*(xx*h+yy*k+zz*l); %i.e. dot([x;y;z],g) 

                                dotg_g=amp*amp*enhance*enhance*(gg); %gg calculated earlier 

                                if dotxyz_g<dotg_g; 

                                    F1=1; 

                                else 

                                    F1=exp(-beta*(dotxyz_g-dotg_g)*(dotxyz_g-dotg_g)); 

                                end 

                                Vscalar = Vscalar*F1; 

                                end % end if the if Vscalar statement 

                                end  %end of the for l statement 

                    end  %end of the for k statement 

            end % end of the for h statement 

             Vtot(i,j,m)=Vscalar; 

        end % end of the z loop 

    end % end of the y loop 

end % end of the x loop 
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Vtotsm=smooth3(Vtot,'box',box); 

%create x, y, z grids 

[mX,mY,mZ]=meshgrid(1:(((2*bound)/step)+1),1:(((2*bound)/step)+1),1:(((2*bound)/step)+1)); 

%create patch figure 

p=patch(isosurface(mX,mY,mZ,Vtotsm,isovalue)); 

%set appropriate lighting, color and orientation for initial figure (can 

%re-plot at will using the Vtot and Vtotsm outputs) 

set(p,'FaceColor',[.6,.1,0.1],'EdgeColor','none'); 

daspect([1 1 1]) 

material([0.4,0.3,0.1]); 

lighting gouraud 

view(135,40); 

camlight(0,0); 

camlight(0,0); 

view(135,-40); 

camlight(0,0); 

axis tight 

end 

 

A.3.2 Kinetic Wulff Model for a Dh Particle 
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function [mX,mY,mZ,Vtot, 

Vtotsm]=modelpenta(step,bound,isovalue,box,beta,disclination,reentrant,a_100,a_110,a_111) 

%bound/step must be an integer 

%create matrix for values 

Vtot=zeros(4*bound/step+1,4*bound/step+1,4*bound/step+1); 

for x=-bound:step:bound;  

    i=((x+(bound))/step+1+bound/step); 

    % need to add this because i is used as the index of the matrix, while x is used as the 

coordinate 

    for y=-bound:step:bound; 

        j=((y+(bound))/step+1+bound/step); 

        for  z=-bound:step:bound; 

            m=((z+(bound))/step+1+bound/step); 

            %twin segments 0 to 4                 

            for n=0:1:4;     

                angle=72*n; 

                angrad=angle*2*pi/360; 

                    %compute rotation matrix R 

                    axee=[1,-1,0]; 

                    L = norm(axee); 

                    axee = axee / L; 

                    L = 1; 
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                    u = axee(1); 

                    v = axee(2); 

                    w = axee(3); 

                    u2 = u^2; 

                    v2 = v^2; 

                    w2 = w^2; 

                    c = cos(angrad); 

                    s = sin(angrad); 

                    %storage 

                    R = nan(3); 

                    %fill 

                    R(1,1) =  u2 + (v2 + w2)*c; 

                    R(1,2) = u*v*(1-c) - w*s; 

                    R(1,3) = u*w*(1-c) + v*s; 

                    R(2,1) = u*v*(1-c) + w*s; 

                    R(2,2) = v2 + (u2+w2)*c; 

                    R(2,3) = v*w*(1-c) - u*s; 

                    R(3,1) = u*w*(1-c) - v*s; 

                    R(3,2) = v*w*(1-c)+u*s; 

                    R(3,3) = w2 + (u2+v2)*c; 

                dotwith111=dot([x;y;z],R*[1;1;1]); 

                dotwith_1_11=dot([x;y;z],R*[-1;-1;1]); 
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            if dotwith111>0; 

                % Twin Facet #2 

                if dotwith_1_11>0; 

                    Vscalar=1;  

                    %i.e. if dot with 111 or -1-11 is smaller or equal to zero, the xyz point has a nonzero 

value of V  

                    % Loop over all ((100)), ((110)), and ((111)) facets 

                    %this gives the value of the V 

                    for h=-1:1:1; 

                        for k=-1:1:1; 

                            for l=-1:1:1; 

                                if Vscalar>1E-8; 

                                [hklrot]=R*[h;k;l]; 

                                hh=hklrot(1,1); 

                                kk=hklrot(2,1); 

                                ll=hklrot(3,1); 

                                gg = hh*hh+kk*kk+ll*ll ; 

                                %a [hkl] will be re-entrant if either its 

                                %dot product with 111 or with -1-11 is 

                                %smaller than zero 

                                if  dot([h;k;l],[1;1;1])<0; 

                                    %dot([hh;kk;ll],R*[1;1;1])<0; 
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                                    enhance=1.0+reentrant ; 

                                elseif dot([h;k;l],[-1;-1;1])<0; 

                                    %dot(R*[hh;kk;ll],R*[-1;-1;1])<0; 

                                    enhance=1.0+reentrant ; 

                                    %use the same variable name, enhance, 

                                    %for both reentrant and disclination 

                                    %enhancement; they occur on different 

                                    %faces hence never occur at the same time 

                                else 

                                    if disclination==0; %in this case no disclination enhancement was input 

by the user 

                                        enhance=1; 

                                    else 

                                        %this part of the code only gets 

                                        %calculated if there is a 

                                        %disclination enhancement input 

                                        if h~=0 ; 

                                            if k~=0; 

                                                if l~=0;  

                %the disclination enhancement only occurs at the ((111)) facets that are 

NOT re-entrant 

                                                    enhance=1+disclination; 
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                                                else  

                                                    enhance=1; 

                                                end 

                                            else 

                                                enhance=1; 

                                            end 

                                        else 

                                            enhance=1; 

                                        end 

                                    end 

                                end 

  

                                % Which do we have?  

                                % This is a trick to avoid numerical inaccuracies 

                                if abs( gg-1 ) < 1E-8 ;      

                                    amp = a_100 ; 

                                elseif abs(gg-2) < 1E-8 ; 

                                    amp = a_110/sqrt(2) ; 

                                else abs(gg-3) < 1E-8 ; 

                                    amp = a_111/sqrt(3) ; 

                                end  

                                g = amp*enhance*[hh,kk,ll] ;         
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                              % Multiply, again only the xyz within the boundaries of the twin will have a 

non-zero value for V        

                                dotxyz_g=amp*enhance*(x*hh+y*kk+z*ll); %i.e. dot([x;y;z],g) 

                                dotg_g=amp*amp*enhance*enhance*(gg); %gg calculated earlier 

                                if dotxyz_g<dotg_g; 

                                    F1=1; 

                                else 

                                    F1=exp(-beta*(dotxyz_g-dotg_g)*(dotxyz_g-dotg_g)); 

                                end 

                                Vscalar = Vscalar*F1; 

                            end  

                        end        

                        end   

                    end 

                    Vtot(i,j,m)=Vscalar; 

                end 

            end 

            end 

        end 

    end 

end 
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clear n 

clear ii 

clear jj 

clear mm 

clear R 

clear rotated 

clear x 

clear y 

clear z 

clear i 

clear j 

clear m 

 Vtotsm=smooth3(Vtot, 'box', box); 

%create x, y, z grids 

[mX,mY,mZ]=meshgrid(1:(((4*bound)/step)+1),1:(((4*bound)/step)+1),1:(((4*bound)/step)+1)); 

%create patch figure 

p=patch(isosurface(mX,mY,mZ,Vtotsm,isovalue)); 

%set appropriate lighting, color and orientation for initial figure (can 

%re-plot at will using the Vtot and Vtotsm outputs) 

set(p,'FaceColor',[0.2,.4,0.6],'EdgeColor','none'); 

daspect([1 1 1]) 

material([0.4,0.3,0.1]); 
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lighting gouraud 

axis tight 

view(-135,0); 

camlight(0,0); 

view([45,-60]) 

camlight(0,0); 

view(45,75); 

camlight(0,0); 

view([90,-90,0]); 

end 

 

A.3.3 Kinetic Wulff GUI  

function varargout = kineticGUI(varargin) 

% KINETICGUI M-file for kineticGUI.fig 

%      This program is based on the modified kinetic Wulff construction by 

%      Emilie Ringe, Richard P. Van Duyne and Laurence D. 

%      Marks 

% 

% 

%        

% Additional queries or comments can be directed to Emilie Ringe,  

% emilieringe (at)  u.northwestern.edu 
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% 

% Copyright 2012 Emilie Ringe, Northwestern University 

%  

%  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @kineticGUI_OpeningFcn, ... 

                   'gui_OutputFcn',  @kineticGUI_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

% --- Executes just before kineticGUI is made visible. 
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function kineticGUI_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to kineticGUI (see VARARGIN) 

% Choose default command line output for kineticGUI 

handles.output = hObject; 

set(hObject,'toolbar','figure'); 

% Update handles structure 

guidata(hObject, handles); 

cla 

% UIWAIT makes kineticGUI wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

% --- Outputs from this function are returned to the command line. 

function varargout = kineticGUI_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Get default command line output from handles structure 

varargout{1} = handles.output; 
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%% THESE ARE THE BASIC INPUTS 

function input100_Callback(hObject, eventdata, handles) 

%store the contents of input100 as a string. if the string 

%is not a number then input will be empty 

input = str2num(get(hObject,'String')); 

%checks to see if input is empty. if so, default input1_editText to 1 

if (isempty(input)) 

     set(hObject,'String','1') 

end 

guidata(hObject, handles) 

% --- Executes during object creation, after setting all properties. 

function input100_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function input110_Callback(hObject, eventdata, handles) 

input = str2num(get(hObject,'String')); 

%checks to see if input is empty. if so, default input110 to 1 

if (isempty(input)) 

     set(hObject,'String','1') 

end 

guidata(hObject, handles); 
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% --- Executes during object creation, after setting all properties. 

function input110_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function input111_Callback(hObject, eventdata, handles) 

input = str2num(get(hObject,'String')); 

%checks to see if input is empty. if so, default input111 to 1 

if (isempty(input)) 

     set(hObject,'String','1') 

end 

guidata(hObject, handles); 

% --- Executes during object creation, after setting all properties. 

function input111_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function reentrantenhancement_Callback(hObject, eventdata, handles) 

input = str2num(get(hObject,'String')); 

%checks to see if input is empty. if so, default input to zero 

if (isempty(input)) 

     set(hObject,'String','0') 
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end 

guidata(hObject, handles); 

% --- Executes during object creation, after setting all properties. 

function reentrantenhancement_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function twinenhancement_Callback(hObject, eventdata, handles) 

input = str2num(get(hObject,'String')); 

%checks to see if input is empty. if so, default input to zero 

if (isempty(input)) 

     set(hObject,'String','0') 

end 

guidata(hObject, handles); 

% --- Executes during object creation, after setting all properties. 

function twinenhancement_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function disclinationenhancement_Callback(hObject, eventdata, handles) 

input = str2num(get(hObject,'String')); 

%checks to see if input is empty. if so, default input to zero 
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if (isempty(input)) 

     set(hObject,'String','0') 

end 

guidata(hObject, handles); 

% --- Executes during object creation, after setting all properties. 

function disclinationenhancement_CreateFcn(hObject, eventdata, handles) 

%checks to see if input is empty. if so, default input to zero 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

%BELOW ARE THE ADVANCED INPUTS 

function calcstep_Callback(hObject, eventdata, handles) 

input = str2num(get(hObject,'String')); 

%checks to see if input is empty. if so, default calcstep to 0.5 

if (isempty(input)) 

     set(hObject,'String','0.5') 

end 

guidata(hObject, handles) 

% --- Executes during object creation, after setting all properties. 

function calcstep_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 
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end 

function calcbound_Callback(hObject, eventdata, handles) 

input = str2num(get(hObject,'String')); 

%checks to see if input is empty. if so, default calcbound to 10 

if (isempty(input)) 

     set(hObject,'String','10') 

end 

guidata(hObject, handles) 

% --- Executes during object creation, after setting all properties. 

function calcbound_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function smbox_Callback(hObject, eventdata, handles) 

input = str2num(get(hObject,'String')); 

%checks to see if input is empty. if so, default smbox to 5 

if (isempty(input)) 

     set(hObject,'String','5') 

end 

guidata(hObject, handles) 

% --- Executes during object creation, after setting all properties. 

function smbox_CreateFcn(hObject, eventdata, handles) 
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if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 

function smbeta_Callback(hObject, eventdata, handles) 

input = str2num(get(hObject,'String')); 

%checks to see if input is empty. if so, default smalpha to 1 

if (isempty(input)) 

     set(hObject,'String','1') 

end 

guidata(hObject, handles) 

% --- Executes during object creation, after setting all properties. 

function smbeta_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

%%ACTION BUTTONS 

% --- Executes on button press in clearfig. Clears figure 

function clearfig_Callback(hObject, eventdata, handles) 

%clears all axis 

cla 

guidata(hObject, handles); %updates the handles 

% --- Executes on button press in modelsinglecrystal. 
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function modelsinglecrystal_Callback(hObject, eventdata, handles) 

%define inputs 

a_100 = get(handles.input100,'String'); 

a_100 = str2num(a_100); 

a_110 = get(handles.input110,'String'); 

a_110 = str2num(a_110); 

a_111 = get(handles.input111,'String'); 

a_111 = str2num(a_111); 

beta=get(handles.smbeta,'String'); 

beta=str2num(beta); 

box=get(handles.smbox,'String'); 

box=str2num(box); 

bound=get(handles.calcbound,'String'); 

bound=str2num(bound); 

step=get(handles.calcstep,'String'); 

step=str2num(step); 

  

%update handles 

guidata(hObject, handles); 

%this models the wulff construction of a single crystal 

isovalue=0.001; 

for x=-bound:step:bound; 
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    i=round((x+(bound))/step+1); %need to add this because i is used as the index of the matrix, 

while x is used as the coordinate 

    for y=-bound:step:bound; 

        j=round((y+(bound))/step+1); 

        for  z=-bound:step:bound; 

             m=round((z+(bound))/step+1); 

        Vtot(i,j,m) = 1; 

        a = (x+y+z)/3. ; 

                    Vscalar=1;  

                    % Loop over all {100}, {110}, and {111} facets 

                    %this gives the value of the V 

                    for h=-1:1:1; 

                        for k=-1:1:1; 

                            for l=-1:1:1; 

                                if Vscalar>1E-8; 

                    gg = h*h+k*k+l*l ; 

                    if abs( gg-1 ) < 1E-8 ;  \ 

                        amp = a_100 ; 

                    elseif abs(gg-2) < 1E-8 ; 

                        amp = a_110/sqrt(2) ; 

                                else abs(gg-3) < 1E-8 ; 

                        amp = a_111/sqrt(3) ; 
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                            end %end of if elseif elseif statement 

                                g = amp*[h,k,l] ;        

                                % Multiply, again only the xyz within the      

  boundaries of the twin will have a non-      

 zero value for V        

                                dotxyz_g=amp*(x*h+y*k+z*l); %i.e.       

  dot([x;y;z],g) 

                                dotg_g=amp*amp*(gg); %gg calculated earlier 

                                if dotxyz_g<dotg_g; 

                                    F1=1; 

                                else 

                                    F1=exp(-beta*(dotxyz_g-dotg_g)*(dotxyz_g-dotg_g)); 

                                end 

                                Vscalar = Vscalar*F1; 

                                end % end if the if Vscalar statement 

                                end  %end of the for l statement 

                    end  %end of the for k statement 

            end % end of the for h statement 

             Vtot(i,j,m)=Vscalar; 

        end % end of the z loop 

    end % end of the y loop 

end % end of the x loop 
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Vtotsm=smooth3(Vtot,'box',box); 

%selects axes1 as the current axes, so that  

%Matlab knows where to plot the data 

axes(handles.axes1) 

%create x, y, z grids 

[mX,mY,mZ]=meshgrid(1:(((2*bound)/step)+1),1:(((2*bound)/step)+1),1:(((2*bound)/step)+1)); 

%create patch figure 

p=patch(isosurface(mX,mY,mZ,Vtotsm,isovalue)); 

%set appropriate lighting, color and orientation for figure 

set(p,'FaceColor',[.6,.1,0.1],'EdgeColor','none'); 

daspect([1 1 1]) 

material([0.4,0.3,0.1]); 

lighting gouraud 

view(135,40); 

camlight(0,0); 

camlight(0,0); 

view(135,-40); 

camlight(0,0); 

axis tight 

%update handles 

guidata(hObject, handles) 

% --- Executes on button press in modelmono. 
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function [Vtot,mX,mY,mZ]=modelmono_Callback(hObject, eventdata, handles) 

%define inputs 

a_100 = get(handles.input100,'String'); 

a_100 = str2num(a_100); 

a_110 = get(handles.input110,'String'); 

a_110 = str2num(a_110); 

a_111 = get(handles.input111,'String'); 

a_111 = str2num(a_111); 

reentrant = get(handles.reentrantenhancement,'String'); 

reentrant=str2num(reentrant); 

twin=get(handles.twinenhancement, 'String'); 

twin=str2num(twin); 

beta=get(handles.smbeta,'String'); 

beta=str2num(beta); 

box=get(handles.smbox,'String'); 

box=str2num(box); 

bound=get(handles.calcbound,'String'); 

bound=str2num(bound); 

step=get(handles.calcstep,'String'); 

step=str2num(step); 

%update handles 

guidata(hObject, handles); 
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%this models the wulff construction of a crystal with two twins (one (111) twin plane). 

%alpha should be smaller than the a values! 

isovalue=0.001; 

fint=[]; 

out=[]; 

g=[]; 

for x=-bound:step:bound; 

    i=round((x+(bound))/step+1); %need to add this because i is used as the index of the matrix, 

while x is used as the coordinate 

    for y=-bound:step:bound; 

        j=round((y+(bound))/step+1); 

        for  z=-bound:step:bound; 

             m=round((z+(bound))/step+1); 

        Vtot(i,j,m) = 1; 

        a = (x+y+z)/3. ; 

        if a > 0;   % Note, sign changed here 

                xx = x ; yy = y ; zz = z; 

        else 

%           Mirror about the plane (111) 

%           Since (a;a;a) is the vector along (111), subtract twice this 

            xx = x -2*a ; yy = y -2*a ; zz = z -2*a; 

        end 
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                    Vscalar=1; %i.e. if dot with 111 or -1-11 is smaller or equal to zero, the xyz point 

has a nonzero value of V  

                    % Loop over all {100}, {110}, and {111} facets 

                    %this gives the value of the V 

                    for h=-1:1:1; 

                        for k=-1:1:1; 

                            for l=-1:1:1; 

                                if Vscalar>1E-8; 

                    gg = h*h+k*k+l*l ; 

                     

                    % If g.(111) is negative, we have re-entrant surfaces 

                    % kinetic is an input ; 

                    if dot([h;k;l],[1;1;1])<0; %i.e. if the face is re-     

 entrant type 

                        enhance=1.0+reentrant+twin;  

                    % for the twin boundary growth enhancement, the faces     

 involved 

                    % are the re-entrant (111) above, and the (100) faces 

                    % (only need the positive ones because of symmetry) 

                    elseif h+k+l == 1; 

                        if k+l == 0; 

                            enhance=1.0+twin ; 
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                        elseif l+h == 0; 

                            enhance=1.0+twin ; 

                        elseif h+k == 0; 

                            enhance=1.0+twin ; 

                        else 

                            enhance=1; 

                        end 

                    else enhance=1; 

                        end 

                    if abs( gg-1 ) < 1E-8 ;     % This is a trick to avoid     

 numerical inaccuracies 

                        amp = a_100 ; 

                    elseif abs(gg-2) < 1E-8 ; 

                        amp = a_110/sqrt(2) ; 

                                else abs(gg-3) < 1E-8 ; 

                        amp = a_111/sqrt(3) ; 

                            end %end of if elseif elseif statement 

                                g = amp*enhance*[h,k,l] ;        

                                % Multiply, again only the xyz within the      

  boundaries of the twin will have a non-      

 zero value for V        
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                                dotxyz_g=amp*enhance*(xx*h+yy*k+zz*l); %i.e.     

   dot([x;y;z],g) 

                                dotg_g=amp*amp*enhance*enhance*(gg); %gg     

   calculated earlier 

                                if dotxyz_g<dotg_g; 

                                    F1=1; 

                                else 

                                    F1=exp(-beta*(dotxyz_g-dotg_g)*(dotxyz_g-dotg_g)); 

                                end 

                                Vscalar = Vscalar*F1; 

                                end % end if the if Vscalar statement 

                                end  %end of the for l statement 

                    end  %end of the for k statement 

            end % end of the for h statement 

             Vtot(i,j,m)=Vscalar; 

        end % end of the z loop 

    end % end of the y loop 

end % end of the x loop 

Vtotsm=smooth3(Vtot,'box',box); 

%selects axes1 as the current axes, so that  

%Matlab knows where to plot the data 

axes(handles.axes1) 
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%create x, y, z grids 

[mX,mY,mZ]=meshgrid(1:(((2*bound)/step)+1),1:(((2*bound)/step)+1),1:(((2*bound)/step)+1)); 

%create patch figure 

p=patch(isosurface(mX,mY,mZ,Vtotsm,isovalue)); 

%set appropriate lighting, color and orientation for figure 

set(p,'FaceColor',[.6,.1,0.1],'EdgeColor','none'); 

daspect([1 1 1]) 

material([0.4,0.3,0.1]); 

lighting gouraud 

view(135,40); 

camlight(0,0); 

camlight(0,0); 

view(135,-40); 

camlight(0,0); 

axis tight 

  

  

%update handles 

guidata(hObject, handles) 

% --- Executes on button press in modelpenta. 

function [mX,mY,mZ,Vtot]=modelpenta_Callback(hObject, eventdata, handles) 

%create matrix for values 
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a_100 = get(handles.input100,'String'); 

a_100 = str2num(a_100); 

a_110 = get(handles.input110,'String'); 

a_110 = str2num(a_110); 

a_111 = get(handles.input111,'String'); 

a_111 = str2num(a_111); 

reentrant = get(handles.reentrantenhancement,'String'); 

reentrant=str2num(reentrant); 

disclination = get(handles.disclinationenhancement,'String'); 

disclination=str2num(disclination); 

beta=get(handles.smbeta,'String'); 

beta=str2num(beta); 

box=get(handles.smbox,'String'); 

box=str2num(box); 

bound=get(handles.calcbound,'String'); 

bound=str2num(bound); 

step=get(handles.calcstep,'String'); 

step=str2num(step); 

guidata(hObject, handles); 

isovalue=0.001; 

%bound/step must be an integer 

%create matrix for values 
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Vtot=zeros(4*bound/step+1,4*bound/step+1,4*bound/step+1); 

for x=-bound:step:bound;  

    i=((x+(bound))/step+1+bound/step); 

    % need to add this because i is used as the index of the matrix, while x  is used as the 

coordinate 

    for y=-bound:step:bound; 

        j=((y+(bound))/step+1+bound/step); 

        for  z=-bound:step:bound; 

            m=((z+(bound))/step+1+bound/step); 

            %twin segments 0 to 4                 

            for n=0:1:4;     

                angle=72*n; 

                angrad=angle*2*pi/360; 

                    %compute rotation matrix R 

                    axee=[1,-1,0]; 

                    L = norm(axee); 

                    axee = axee / L; 

                    L = 1; 

                    u = axee(1); 

                    v = axee(2); 

                    w = axee(3); 

                    u2 = u^2; 
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                    v2 = v^2; 

                    w2 = w^2; 

                    c = cos(angrad); 

                    s = sin(angrad); 

                    %storage 

                    R = nan(3); 

                    %fill 

                    R(1,1) =  u2 + (v2 + w2)*c; 

                    R(1,2) = u*v*(1-c) - w*s; 

                    R(1,3) = u*w*(1-c) + v*s; 

                    R(2,1) = u*v*(1-c) + w*s; 

                    R(2,2) = v2 + (u2+w2)*c; 

                    R(2,3) = v*w*(1-c) - u*s; 

                    R(3,1) = u*w*(1-c) - v*s; 

                    R(3,2) = v*w*(1-c)+u*s; 

                    R(3,3) = w2 + (u2+v2)*c; 

                dotwith111=dot([x;y;z],R*[1;1;1]); 

                dotwith_1_11=dot([x;y;z],R*[-1;-1;1]); 

            if dotwith111>0; 

                % Twin Facet #2 

                if dotwith_1_11>0; 
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                    Vscalar=1; %i.e. if dot with 111 or -1-11 is smaller or     

 equal to zero, the xyz point has a nonzero value of V  

                    % Loop over all {100}, {110}, and {111} facets 

                    %this gives the value of the V 

                    for h=-1:1:1; 

                        for k=-1:1:1; 

                            for l=-1:1:1; 

                                if Vscalar>1E-8; 

                                [hklrot]=R*[h;k;l]; 

                                hh=hklrot(1,1); 

                                kk=hklrot(2,1); 

                                ll=hklrot(3,1); 

                                gg = hh*hh+kk*kk+ll*ll ; 

                                %a [hkl] will be re-entrant if either its 

                                %dot product with 111 or with -1-11 is 

                                %smaller than zero 

                                if  dot([h;k;l],[1;1;1])<0; 

                                    %dot([hh;kk;ll],R*[1;1;1])<0; 

                                    enhance=1.0+reentrant ; 

                                elseif dot([h;k;l],[-1;-1;1])<0; 

                                    %dot(R*[hh;kk;ll],R*[-1;-1;1])<0; 

                                    enhance=1.0+reentrant ; 
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                                    %use the same variable name, renhance, 

                                    %for both reentrant and disclination 

                                    %enhancement; they occur on different 

                                    %faces and NEVER occur at the same time 

                                else 

                                    if disclination==0; %in this case no      

 disclination enhancement was input by the user 

                                        enhance=1; 

                                    else 

                                        %this part of the code only gets 

                                        %calculated if there is a 

                                        %disclination enhancement input 

                                        if h~=0 ; 

                                            if k~=0; 

                                                if l~=0; %the disclination enhancement only occurs at the {111} 

facets which are NOT re-entrant 

                                                    enhance=1+disclination; 

                                                else  

                                                    enhance=1; 

                                                end 

                                            else 

                                                enhance=1; 
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                                            end 

                                        else 

                                            enhance=1; 

                                        end 

                                    end 

                                end                             

                                if abs( gg-1 ) < 1E-8 ;      

                                    amp = a_100 ; 

                                elseif abs(gg-2) < 1E-8 ; 

                                    amp = a_110/sqrt(2) ; 

                                else abs(gg-3) < 1E-8 ; 

                                    amp = a_111/sqrt(3) ; 

                                end  

                                g = amp*enhance*[hh,kk,ll] ;         

                                % Multiply, again only the xyz within the      

  boundaries of the twin will have a non-      

 zero value for V        

                                dotxyz_g=amp*enhance*(x*hh+y*kk+z*ll);  

      %i.e. dot([x;y;z],g) 

                                dotg_g=amp*amp*enhance*enhance*(gg);  

      %gg calculated earlier 

                                if dotxyz_g<dotg_g; 
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                                    F1=1; 

                                else 

                                    F1=exp(-beta*(dotxyz_g-dotg_g)*(dotxyz_g-dotg_g)); 

                                end 

                                Vscalar = Vscalar*F1;     

                            end  

                        end        

                        end   

                    end 

                    Vtot(i,j,m)=Vscalar; 

                end 

            end 

            end 

        end 

    end 

end 

clear n 

clear ii 

clear jj 

clear mm 

clear R 

clear rotated 
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clear x 

clear y 

clear z 

clear i 

clear j 

clear m 

%selects axes1 as the current axes, so that  

%Matlab knows where to plot the data 

axes(handles.axes1) 

Vtotsm=smooth3(Vtot, 'box', box); 

%create x, y, z grids 

[mX,mY,mZ]=meshgrid(1:(((4*bound)/step)+1),1:(((4*bound)/step)+1),1:(((4*bound)/step)+1)); 

%create patch figure 

p=patch(isosurface(mX,mY,mZ,Vtotsm,isovalue)); 

%set appropriate lighting, color and orientation for figure 

set(p,'FaceColor',[0.2,.4,0.6],'EdgeColor','none'); 

daspect([1 1 1]) 

material([0.4,0.3,0.1]); 

lighting gouraud 

axis tight 

view(-135,0); 

camlight(0,0); 
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view([45,-60]) 

camlight(0,0); 

view(45,75); 

camlight(0,0); 

view([90,-90,0]);  

handles.particledata=Vtot; 

guidata(hObject, handles) 

% --- Executes on button press in savefigure. 

function savefigure_Callback(hObject, eventdata, handles) 

axesObject = handles.axes1; 

%stores savepath for the phase plot 

[filename, pathname] = uiputfile({ '*.emf','Enhanced Meta File (*.emf)';... 

        '*.bmp','Bitmap (*.bmp)'; '*.fig','Figure (*.fig)'}, ... 

        'Save picture as','default'); 

%cancel save command 

if isequal(filename,0) || isequal(pathname,0) 

    return 

end 

%new fig 

newFig = figure; 

%get the units and position of the axes object 

axes_units = get(axesObject,'Units'); 
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axes_pos = get(axesObject,'Position'); 

%copies axesObject onto new figure 

axesObject2 = copyobj(axesObject,newFig); 

%realign the axes object on the new figure 

set(axesObject2,'Units',axes_units); 

set(axesObject2,'Position',[15 5 axes_pos(3) axes_pos(4)]); 

%adjusts the new figure  

set(newFig,'Units',axes_units); 

set(newFig,'Position',[15 5 axes_pos(3)+30 axes_pos(4)+10]); 

%saves the plot 

saveas(newFig,fullfile(pathname, filename))  

%closes the figure 

close(newFig) 
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