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ABSTRACT

Experimental and Theoretical Studies on Flexoelectricity

Christopher A. Mizzi

This dissertation explores the fundamental science of flexoelectricity and its implica-

tions using a combined experimental and theoretical approach. I begin by introducing

the flexoelectric effect and formalizing the basics of strain gradients, polarization, and

flexoelectric coefficients. Next, I describe the development of a flexoelectric characteri-

zation system based upon three-point bending and demonstrate the tenets of measuring

flexoelectric coefficients with experiments on single crystals of SrTiO3. After deriving

expressions for these measured flexoelectric coefficients for crystals of arbitrary symmetry

and orientation in terms of flexoelectric tensor components, elastic constants, and geo-

metric factors, I address anticlastic bending suppression effects in three-point bending

and assess the use of Euler-Bernoulli beam theory.

Having established how to measure and interpret flexoelectric coefficients with three-

point bending, I characterize the flexoelectric response of a range of commercially avail-

able single crystal oxides including SrTiO3, KTaO3, LaAlO3, TiO2, YAlO3, and DyScO3.
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These measurements help address the issue of data deficiency in flexoelectricity by signif-

icantly increasing the number of systems in which flexoelectricity has been studied. They

also indicate low dielectric constant materials have large flexocoupling voltages exceeding

nominal expectations.

To explore the structural origins of these measured flexoelectric responses, I perform

ab initio calculations of bulk flexoelectric coefficients. After benchmarking the bulk flex-

oelectric coefficients computed with an all-electron code and examining the impact of the

exchange and correlation functional, I calculate the bulk flexoelectric coefficients of the

(pseudo) cubic perovskites I characterized experimentally. I find the predicted flexoelec-

tric coefficients differ in both size and magnitude from the measured values. To address

this difference, I investigate the role of surfaces in flexoelectricity and demonstrate the

importance of the strain derivative of the mean-inner potential to the total flexoelectric

response of a finite sample. I then perform density functional theory calculations on many

low energy surfaces to explore the role of surface chemistry, structure, and adsorbates on

the strain derivative of the mean-inner potential. I also show how this flexoelectric con-

tribution can be estimated from electron scattering factors. Ultimately, combining the

mean-inner potential contribution to the total flexoelectric response with the first prin-

ciples bulk flexoelectric coefficients yields good agreement with the SrTiO3 and KTaO3

measurements.

Moving beyond single crystals, I explore how the total flexoelectric response is im-

pacted by defects. First, I show LaAlO3 twin boundaries have flexoelectric coefficients

∼10 µC/m and dictate the flexoelectric response of twinned LaAlO3 samples. Next, I

demonstrate the flexoelectric response of Nb-doped SrTiO3 is 103 times that of undoped
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SrTiO3. Lastly, I find MgO has an anomalously large flexoelectric response which greatly

surpasses ab initio expectations. Collectively, these experiments demonstrate extrinsic

contributions to flexoelectricity can often overshadow intrinsic contributions and dictate

the total flexoelectric response.

Next, I explain why large charging occurs in the lanthanide scandates and its con-

nection to large flexoelectric bending at the nanoscale. In doing so, I address the role

of the 4f states in the bulk valence band of GdScO3, DyScO3, and TbScO3 through a

combination of photoelectron spectroscopy and ab initio simulations, and discuss deter-

mining a surface structure on the (110) surface of DyScO3. I also provide some methods

to overcome charging effects in X-ray photoelectron spectroscopy and electron energy loss

spectroscopy.

Lastly, I argue triboelectricity is driven by contact deformation-induced band bending

which arises through the flexoelectric effect. After developing a simplified flexoelectric

model for triboelectricity based upon Hertzian contact, I generalize the model to incorpo-

rate band structure and treat contact deformation-induced band bending for two arbitrary

materials in contact. I explore this model in some specific contact cases to demonstrate its

connection to well-known charge transfer mechanisms and its ability to explain numerous

experimental triboelectric observations which have been historically unexplained.



6

Acknowledgements

First, I would like to thank Professor Laurie Marks for his mentorship and guidance

over the course of my PhD. He has taught me to identify interesting scientific problems and

turn ideas into rigorous science. I appreciate his encouragement and support throughout

my time at Northwestern, and I plan to heed his advice and continue to “follow the

science”. I also would like to thank the members of my dissertation committee: Professor

Peter Voorhees, Professor Ken Poeppelmeier, and Professor James Rondinelli. Special

thanks to Professor Peter Voorhees for his assistance during my postdoctoral search. I

am also grateful to Professor Bill Halperin for serving on my qualifying exam committee.

I owe a debt of graduate to all members of the LDM group, past and present. Thanks

to Emily H., Betty, Seyoung, Tassie, Lizzie, Ahmet, Xiao-Xang, Bruce, Emily G., Karl,

and Hans for their research assistance, stimulating conversations, and making Catalysis

B19 an amazing place to work. Thanks to Pratik for instigating my interest in flexoelec-

tricity and being a great research companion. Thanks to Lawrence for helping me sort

out any and all computer problems, and the invigorating conversations. Thanks to Alex

helping me to understand tribology and for being a great cube-mate. Thanks to Ryan

for frequent insightful discussions and musical interludes. Thanks to Zach for his collab-

oration on all things scandate and for always being a soundboard for ideas. Thanks to

Tiffany for being a great lab partner in MSE 1140 Materials: The Future of Energy and



7

great groupmate nearly a decade later. Thanks to Evan for being an incredibly diligent

undergrad researcher and helping me to grow as a mentor.

I would also like to thank specific collaborators for their help on aspects of work pre-

sented in this dissertation. The flexoelectric characterization system described in Chap-

ters 2 and 3 benefitted from conversations with Dr. Pratik Koirala, and Evan Guo assisted

with sample preparation and flexoelectric measurements included in Chapters 4 and 6. I

found discussions with Professor Laurie Marks very helpful for the DFT calculations and

analyses I performed in Chapters 4, 5, 6, and 8. In Chapter 7, DFT calculations were per-

formed by Professor Laurie Marks, electron microscopy was done by Dr. Pratik Koirala,

Dr. Ahmet Gulec, and Tiffany Ly, Zachary Mansley developed the X-ray photoelectron

spectroscopy model, and Dr. Ryan Paull and Tiffany Ly supplied nanoparticles. I would

also like to acknowledge Professor Laurie Marks for suggesting the possible connection

between tribology, flexoelectricity, and triboelectricity, and Dr. Alex Lin for collaborating

on the initial flexoelectric model for triboelectricity developed in Chapter 8. The work

described in this dissertation was supported the U.S. Department of Energy, Office of Sci-

ence, Basic Energy Sciences, under Award No. DE-FG02-01ER45945. I also would like to

acknowledge financial support from the ICDD Ludo Frevel Crystallography Scholarship

and the Searle Center’s Graduate Teaching Fellows program.

Beyond research at Northwestern, I am grateful for the opportunities I have had in

teaching and outreach. I thank the Searle Center whose programming has helped me

grow as an educator and scholar, and I am indebted to Dr. Nancy Ruggeri, Kate Flom

Derrick, and Professor Jon Emery for their assistance with my Graduate Teaching Fellow

project. I especially thank Dr. Nancy Ruggeri for her help with my postdoctoral search



8

and dedication to bettering the Northwestern community. I would also like to thank

Dr. Bruce Lindvall and the McCormick Graduate Leadership Council for providing me

with an opportunity to be involved with the graduate student community. I particularly

appreciate the countless hours Jaye, Curtis, Kirby, and I spent on the Engineering Grand

Prix and SICC Saturdays, and the Fleetwood-Jourdain Center for hosting our events.

Most importantly, I extend infinite gratitude to my friends and family for their support

over the years. I especially appreciate Rohit and Shane for being wonderful roommates and

amazing friends, and want to give special thanks to Michaela, Rohit, Shane, Shreya, the

Maxii, and Tiffany for the weekly video chats which have made the last year significantly

better. To my parents and sisters: you are an inspiration and your love and support have

enabled me to pursue my dreams. I cannot overstate how much I appreciate all you have

done for me.

Last, but certainly not least, thank you Michaela for your boundless love and limitless

encouragement. I cannot imagine a more perfect partner to have had on this journey and

I look forward to the start of our Southwestern adventure.



9

List of abbreviations

AFM: atomic force microscopy.

AR-XPS: angle-resolved x-ray photoelectron spectroscopy.

BTO: BaTiO3.

CB: conduction band.

DFPT: density functional perturbation theory.

DFT: density functional theory.

DL: double-layer.

DMA: dynamic mechanical analyzer.

DSO: DyScO3.

EELS: electron-energy loss spectroscopy.

FEA: finite element analysis.

GGA: generalized gradient approximation.

GSO: GdScO3.

KPM: Kelvin probe microscopy.



10

KTO: KTaO3.

LAO: LaAlO3.

LDA: local density approximation.

LIA: lock-in amplifier.

MAE: mean absolute errors.

MIP: mean-inner potential.

NGO: NdGaO3.

pDOS: partial density of states.

PSD: phase-sensitive detector.

RBF: radial basis function.

REELS: reflection electron-energy loss spectroscopy.

RMSE: root mean square error.

SE: secondary electron.

SL: single-layer.

SNR: signal-to-noise ratio.

STO: SrTiO3.

TB: twin boundary.

TED: transmission electron diffraction.



11

TEM: transmission electron microscopy.

TPB: three-point bending.

TSO: TbScO3.

UPS: ultraviolet photoelectron spectroscopy.

VB: valence band.

VBM: valence band maximum.

XPS: x-ray photoelectron spectroscopy.

XRD: x-ray diffraction.

YAO: YAlO3.

ZLP: zero loss peak.



12

Table of Contents

ABSTRACT 3

Acknowledgements 6

List of abbreviations 9

Table of Contents 12

List of Tables 16

List of Figures 19

Chapter 1. Introduction 26

1.1. Motivation 26

1.2. Organization 29

Chapter 2. Development of a Flexoelectric Characterization System 31

2.1. Introduction to Flexoelectric Characterization 31

2.2. Overview of Three-Point Bending Approach to Measuring Flexoelectricity 33

2.3. Application of Strain Gradients 35

2.4. Measuring Induced Polarization 42

2.5. Flexoelectric Coefficients 46

2.6. Benchmarking Apparatus with SrTiO3 Single Crystals 52



13

Chapter 3. Flexoelectric Characterization of Single Crystals 59

3.1. Introduction 59

3.2. Symmetry Analysis of Flexoelectric Tensor 60

3.3. Pure Bending in Three-Dimensions 64

3.4. Three-Point Beam Bending in Three-Dimensions 74

3.5. Experimental Measurements for Single Crystals 87

Chapter 4. First Principles Theory of Bulk Flexoelectricity 100

4.1. Historical Context 100

4.2. Theory of Bulk Flexoelectricity 101

4.3. Density Functional Theory Implementation 106

4.4. Benchmark Calculations with SrTiO3 116

4.5. Impact of the Exchange and Correlation Functional on the Bulk Flexoelectric

Coefficients of SrTiO3 122

4.6. Flexoelectricity in (Pseudo) Cubic Perovskites 128

4.7. Experimental Comparison 136

4.8. Lattice Quadrupole Contribution in LaAlO3 and GdScO3 137

4.9. Shortcomings of Bulk Flexoelectric Theory 138

Chapter 5. The Role of Surfaces in Flexoelectricity 141

5.1. Introduction 141

5.2. The Flexoelectric Response of a Bent Slab 143

5.3. Mean-Inner Potential Calculations 151

5.4. Calculations of fMIP 162



14

5.5. Implications for the Total Flexoelectric Response 170

5.6. Revisiting the Finite Bulk Flexoelectric Coefficient of Al 173

Chapter 6. Extrinsic Contributions to Flexoelectricity 176

6.1. Introduction 176

6.2. Methods 178

6.3. Twin Boundary Mediated Flexoelectricity in LaAlO3 182

6.4. Barrier Layer Enhancements in Nb-doped SrTiO3 202

6.5. Flexoelectricity in MgO 209

Chapter 7. The Interplay Between Electronic Structure, Surface Structure, and

Flexoelectricity in Lanthanide Scandates 218

7.1. Introduction 218

7.2. Methods 219

7.3. Bulk Electronic Structure of (Gd,Tb,Dy)ScO3 223

7.4. Surface Atomic and Electronic Structure of (110) DyScO3 231

7.5. Large Charging in Lanthanide Scandates 239

7.6. Flexoelectric Bending of Lanthanide Scandates 245

Chapter 8. How Flexoelectricity Drives Triboelectricity 252

8.1. Background 252

8.2. Flexoelectric Couplings During Contact and Pull-Off 254

8.3. Contact-Induced Band Bending: The Framework 263

8.4. Contact-Induced Band Bending: General Findings 271

8.5. Contact-Induced Band Bending: Specific Examples 275



15

8.6. Contact-Induced Band Bending: Implications for Charge Transfer 277

8.7. Contact-Induced Band Bending: Connections to Experiment 279

Chapter 9. Summary and Future Directions 283

9.1. Summary 283

9.2. Future Directions 286

9.3. Closing Comments 292

References 294

Appendix A. Finite Element Contact Simulations 313

A.1. Simulation Parameters 313

A.2. Radial Basis Function Interpolation 313

A.3. Deviations from Hertz Theory 314

A.4. Strain Gradients, Flexoelectric Polarization, and ∆V
FxE

317



16

List of Tables

3.1 Average three-point bending strain gradients from Abaqus. 77

3.2 Anticlastic correction factors for three-point bending. 84

3.3 Summary of flexoelectric response of all single crystal oxides measured

in this chapter. 97

4.1 Comparison between flexoelectric calculations reported here and in

the literature. 123

4.2 Optimized lattice parameter and Born charges for SrTiO3 computed

with different exchange and correlation functionals. 124

4.3 Variation in the charge density and force moments used to calculate

flexoelectric coefficients with the exchange and correlation functional

in SrTiO3. 126

4.4 SrTiO3 elastic constants computed from T values with different

exchange and correlation functionals. 127

4.5 Variation in the flexoelectric coefficients of SrTiO3 with the exchange

and correlation functional. 128

4.6 Comparison between optimized and experimental lattice parameters

in (pseudo)-cubic perovskites. 130



17

4.7 Charge density and force moments used to calculate flexoelectric

coefficients in SrTiO3, KTaO3, LaAlO3, and GdScO3. 131

4.8 Q(3) values computed using atomic and ionic electron scattering

factors. 134

4.9 Elastic constants computed from T values for SrTiO3, KTaO3,

LaAlO3, and GdScO3. 135

4.10 First principles flexoelectric coefficients and flexocoupling voltages for

SrTiO3, KTaO3, LaAlO3, and GdScO3. 136

4.11 Comparison betwteen experimental and first principles effective

flexoelectric coefficients in SrTiO3, KTaO3, LaAlO3, and GdScO3. 137

5.1 DFT calculated mean-inner potentials for (100) SrTiO3 surfaces. 155

5.2 Mean-inner potential variation of bulk truncations of (100) SrTiO3

with different exchange and correlation functionals. 157

5.3 DFT calculated mean-inner potentials for MgO surfaces. 160

5.4 DFT calculated mean-inner potentials for Si surfaces. 161

5.5 DFT-calculated flexocoupling voltages for each of the surfaces

explored in this work. 168

5.6 Total flexoelectric response for samples with surfaces studied here. 171

5.7 Comparison between total flexoelectric response within the Ibers

approximation and the measured flexoelectric response for SrTiO3,

KTaO3, LaAlO3, and GdScO3. 172



18

5.8 Predicted flexoelectric response in a range of cubic insulators using

the Ibers approximation. 174

6.1 Literature first principles bulk flexoelectric coefficients for MgO. 211

6.2 Summary of MgO flexoelectric first principles calculations performed

here. 213

6.3 Effective flexoelectric coefficients and flexocoupling voltages for

the (100) and (111) MgO samples using bulk flexoelectric tensor

components computed here and the Ibers approximation. 214

8.1 Hydrostatic deformation potential of conduction and valence band

edges for SrTiO3 and Si calculated from DFT. 269



19

List of Figures

1.1 Comparison between piezoelectricity and flexoelectricity. 28

2.1 Depiction of three-point bending. 34

2.2 Overview of flexoelectric measurements. 35

2.3 Euler-Bernoulli three-point bending solution. 40

2.4 Issue with conventional definition of polarization. 43

2.5 A typical ferroelectric polarization-reversal experiment. 44

2.6 Circuit diagram of a basic lock-in amplifier. 45

2.7 Example of lock-in amplifier operation. 46

2.8 How to determine the sign of the flexoelectric coefficient. 52

2.9 Electrode and wire configuration used for flexoelectric samples. 53

2.10 Image of flexoelectric characterization experiment. 54

2.11 Testing the flexoelectric characterization system. 56

2.12 Example of flexoelectric characterization of SrTiO3 single crystals. 57

2.13 Example of determining the sign of the flexoelectric coefficient. 58

3.1 Flexoelectric coefficient tensors for materials with m3m, 4/mmm, and

mmm point group symmetries. 63



20

3.2 Comparison of plate and beam geometries. 66

3.3 Depiction of anticlastic bending. 67

3.4 Pure bending strain schematic. 68

3.5 Abaqus simulation of three-point bending. 76

3.6 Three-point bending stresses from Abaqus. 77

3.7 Three-point bending strains from Abaqus. 78

3.8 Beam to plate transition with modified Searle parameter. 83

3.9 Assessment of Euler-Bernoulli beam-bending theory. 86

3.10 Flexoelectric characterization of SrTiO3 and KTaO3 single crystals. 89

3.11 Flexoelectric characterization of LaAlO3 single crystals. 91

3.12 Flexoelectric characterization of TiO2 single crystals. 93

3.13 Flexoelectric characterization of YAlO3 and DyScO3 single crystals. 95

3.14 Flexocoupling voltage comparison across all single crystal oxides. 98

4.1 Example of first principles supercell approach to calculating

flexoelectric coefficients. 108

4.2 Example of supercell consistent with D = 0 boundary condition. 109

4.3 Supercells needed to compute the flexoelectric response of a cubic

perovskite. 113

4.4 Differences in the planar-averaged charge densities needed to compute

µ1111 in SrTiO3. 118

4.5 Convergence of first and third charge density moments in SrTiO3. 119



21

4.6 Differences in the forces needed to compute µ1111 in SrTiO3. 120

4.7 Convergence of second force moments in SrTiO3. 121

4.8 Flexoelectric response of elemental Al. 140

5.1 Schematic of slab subjected to a homogeneous strain gradient. 144

5.2 Average Coulomb potential in a bulk TiO2 terminated SrTiO3 slab. 145

5.3 Contributions to the total flexoelectric response of a bent slab. 147

5.4 Band diagram definition of the mean-inner potential. 149

5.5 DFT relaxed (100) SrTiO3 surface structures studied here. 155

5.6 DFT relaxed (111) MgO surface structures studied here. 159

5.7 DFT relaxed (100) Si surface structures studied here. 161

5.8 Comparison between the mean-inner potential calculated with DFT

and electron scattering factors. 162

5.9 Example of fMIP DFT calculation. 164

5.10 Comparison between the strain derivative of the mean-inner potential

calculated with DFT and electron scattering factors. 169

5.11 Variation in fMIP with volumetric strain and ionization potential. 170

5.12 fMIP for elemental Al. 175

6.1 X-ray diffraction geometry. 181

6.2 Example of polarized optical micrograph of twinned LaAlO3. 183

6.3 Mechanical phase diagram of LaAlO3. 184



22

6.4 Temperature dependent flexoelectric characterization of twinned

LaAlO3. 187

6.5 Flexoelectric response in twinned LaAlO3 at room temperature as a

function of static force. 188

6.6 Flexoelectric characterization of LaAlO3 crystals with uniform,

lamellar twin boundary microstructures. 190

6.7 Repeat measurements on LaAlO3 samples with uniform, lamellar twin

boundary microstructures on subsequent days. 191

6.8 Polarized optical micrographs of LaAlO3 samples with uniform,

lamellar twin boundary microstructures after flexoelectric

characterization. 192

6.9 Comparison of LaAlO3 mechanical properties for samples with

different twin boundary microstructures. 193

6.10 Flexoelectric characterization of LaAlO3 sample with a mixture of

twin boundary orientations. 194

6.11 Catenary cable solutions. 196

6.12 Flexoelectric polarization of a pinned defected modeled as a catenary

cable. 197

6.13 Schematic of twin boundary polarization. 198

6.14 Barrier-layer mechanism diagram. 203

6.15 Flexoelectric characterization of Nb-doped SrTiO3 single crystals. 206

6.16 Flexoelectric characterization of MgO crystals. 210



23

6.17 Change in first principles effective short-circuit flexoelectric coefficient

for a (100) MgO sample with volumetric strain. 213

6.18 Dielectric characterization of MgO crystal. 215

6.19 ω − φ map of a (100) MgO crystal. 216

7.1 X-ray photoelectron spectra for GdScO3, TbScO3, and DyScO3. 225

7.2 Ultraviolet photoelectron spectra for GdScO3, TbScO3, and DyScO3. 226

7.3 Partial density of states of GdScO3, TbScO3, and DyScO3 from

on-site hybrid DFT calcualtions. 228

7.4 Comparison between experimental and simulated X-ray photoelectron

spectra for GdScO3, TbScO3, and DyScO3. 230

7.5 Characterization of (110) DyScO3 surface. 233

7.6 DFT relaxed lowest energy structure for (110) DyScO3. 235

7.7 Electronic structure associated with (110) DyScO3 surface. 237

7.8 Electron energy loss spectrum indicating evidence for (110) DyScO3

surface state. 238

7.9 Charging from X-ray photoelectron spectroscopy in (110) DyScO3

single crystals. 241

7.10 Charging from electron energy loss spectroscopy in (110) DyScO3

single crystals. 243

7.11 Charge correction in electron energy loss spectroscopy. 244

7.12 Origin of charging in lanthanide scandates. 246



24

7.13 Bending of a DyScO3 sample under the electron beam. 248

7.14 Curvature quantifiction from bending videos. 248

7.15 Schematic illustrating charging under the electron beam. 250

8.1 Hertzian strain gradients. 258

8.2 Electric field from Hertzian indentation induced via a flexoelectric

coupling. 260

8.3 Change in the surface potential from indentation and pull-off through

flexoelectricity. 261

8.4 Scaling behavior of the potential difference during indentation. 262

8.5 Scaling behavior of the potential difference during pull-off. 263

8.6 Schematic of deformation-induced band bending during contact. 264

8.7 Relative strength of each contribution to contact deformation-induced

band bending. 272

8.8 Change in the average Coulomb potential from flexoelectricity with

contact pressure. 274

8.9 Change in the average Coulomb potential from flexoelectricity for

different flexoelectric coefficients. 274

8.10 Example of contact-induced band bending for dissimilar materials. 275

8.11 Example of contact-induced band bending for dissimilar materials at

different contact pressures. 276

8.12 Example of contact-induced band bending for similar materials. 277



25

8.13 Contact-induced band bending for dissimilar materials outside the

contact radius. 280

8.14 Contact-induced band bending for similar materials outside the

contact radius. 280

A.1 Typical mesh used for Abaqus contact simulations. 314

A.2 Check of interpolation quality. 314

A.3 Comparison between contact strain fields from Abaqus and Hertz

theory. 315

A.4 Comparison between volumetric strains from Abaqus and Hertz

theory. 316

A.5 Strain gradients which couple to radial polarization. 317

A.6 Strain gradients which couple to axial polarization. 318

A.7 Axial and radial polarization. 318

A.8 Change in the average Coulomb potential for bodies made of the same

material with different curvatures. 319

A.9 Change in the average Coulomb potential from the bulk flexoelectric

effect at the point of contact as a function of depth. 319



26

CHAPTER 1

Introduction

1.1. Motivation

Piezoelectricity was first reported by Jacques and Pierre Curie in 1880 [1]. Their

experiments demonstrated that some crystals, including quartz and tourmaline, develop

a polarization when compressed along certain crystallographic directions. Although their

experimental apparatus was simple by today’s standards, they were able to deduce from

measurements that the existence of piezoelectricity was connected to underlying crystal

symmetry.

For a direction to have the properties of an electric axis in a crystal, it

is necessary that this crystal lacks the same element of symmetry as that

missing in an electric field pointed along this direction . . .

- J. Curie and P. Curie, Journal de Physique theorique et appliquee 1 (1882),

245251 [2]

Since the pioneering work of the Curie brothers, the piezoelectric effect has become

something of a household name with applications in consumer electronics and musical

instruments, among other areas [3]. In terms of the fundamental science, piezoelectricity

is well-understood [4] and researchers are readily able to purchase equipment to measure

piezoelectric coefficients and ab initio codes to compute piezoelectric coefficients using

density functional theory (DFT) [5]. However, there is a fundamental limitation facing
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piezoelectricity: piezoelectricity only exists in materials lacking inversion symmetry [6].

This unavoidable constraint significantly decreases the number of materials that exhibit

bulk piezoelectricity [3]. Coupling this bottleneck with the fact that many of the best

piezoelectric materials contain lead [7] generates a significant materials discovery challenge

in the search for the next generation of electromechanical materials.

The question is then: are all non-piezoelectrics void of electromechanical functional-

ity? To address this issue, it is useful to revisit the Curie brothers conclusion regarding

symmetry and recast it as a more general statement:

(1.1) {Response} = {Material} × {Stimulus}.

As they correctly noted, an asymmetric response (i.e. polarization) was obtained by ap-

plying a symmetric stimulus (i.e. stress/strain) because piezoelectric materials have an

intrinsic asymmetry (i.e. broken inversion symmetry). However, Eq. 1.1 suggests this is

not the only route that produces an asymmetric response. An asymmetric response can

also be obtained in a symmetric material (i.e. with inversion symmetry) if the stimulus is

asymmetric [8, 9]. The simplest example of such a phenomenon is the dielectric response

of an insulator: the application of an electric field (asymmetric stimulus) induces a polar-

ization (asymmetric response) in all insulators, independent of their underlying symmetry

[8, 9]. By extension, electromechanical functionality akin to piezoelectricity should be

possible even in non-piezoelectric materials if the deformation is asymmetric. The lowest

order electromechanical example of this is flexoelectricity, the coupling of polarization

and strain gradient [10, 11]. Since a strain gradient is an asymmetric stimulus which
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inherently breaks inversion symmetry, the flexoelectric effect exists in all materials. The

differences between piezoelectricity and flexoelectricity are illustrated in Figure 1.1.

ResponseStimulusMaterial

d0
+

− −

−−

d1

− −

−−

+

(b)

Non-
centrosymmetric

Homogeneous
deformationPiezoelectric

Effect

+
− −

−−

d0+

−

−−

−

(c)

Centrosymmetric

Inhomogeneous
deformation

Flexoelectric

+

−

−−

−
Homogeneous
deformation

−

−−

−

+(a)

Centrosymmetric

None

𝐝

Figure 1.1. Either the material or the deformation must break inversion
symmetry to induce a polarization from a mechanical deformation. (a)
A centrosymmetric material is not polarized by a homogeneous mechanical
deformation. (b) A non-centrosymmetric material is polarized by a homoge-
neous mechanical deformation. (c) A centrosymmetric material is polarized
by an inhomogeneous deformation.

The past twenty years have seen a significant increase in the number of studies on

flexoelectricity in crystalline solids, and much progress has been made since the first the-

oretical treatment by Mashkevich and Tolpygo in 1957 [12] and experimental observation

by Bursian and Zaiikovski in 1968 [13]. The renewed interest in the flexoelectric effect

can largely be attributed to the work by Ma and Cross which, at the turn of the cen-

tury, established the importance of flexoelectricity in high dielectric constant ceramics

[14, 15, 16, 17, 18]. Since then, flexoelectric couplings have been shown to profoundly

impact mechanical [19, 20] and dielectric properties [21, 22], affect defect formation [23],

and even participate in biological processes such as bone recovery [24, 25]. Much of this
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interest is driven by the nanoscale importance of flexoelectricity: the intrinsic scaling of

strain gradient with size leads to large strain gradients at small length scales, which can

cause large flexoelectric responses even for materials with modest flexoelectric properties

[26, 27, 28, 29]. For example, flexoelectric polarizations rivaling the spontaneous polar-

ization of archetypal ferroelectrics have been measured in the vicinity of dislocations [30]

and crack tips [31], and strain gradients associated with atomic force microscopy (AFM)

tips are able to switch ferroelectric domains [32, 33].

Beyond this academic interest in the fundamental science of flexoelectricity, there have

been demonstrations which indicate promising flexoelectric energy harvesting [34, 35],

strain sensing [36], and actuation [37], and the connections between flexoelectricity, bi-

ology [24, 25, 38, 39], and triboelectricity [40] suggest that flexoelectricity could have

significant medical and industrial relevance. To realize the potential these demonstra-

tions hint at, it is necessary to advance the basic science of flexoelectricity to enable the

tailoring, optimization, and engineering of flexoelectric properties.

1.2. Organization

This dissertation consists of 9 chapters. Chapter 2 provides an overview of flexoelectric

characterization and introduces the system I have developed to measure flexoelectricity

with three-point bending. Chapter 3 includes a rigorous treatment of the flexoelectric

response of anisotropic crystals subjected to three-point bending as well as the experi-

mental characterization of flexoelectric coefficients in several single crystal oxide systems.

Chapter 4 provides first principles calculations of bulk flexoelectric coefficients in these

same single crystal systems. Chapter 5 addresses the short-comings of the calculations
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presented in Chapter 4 by considering the contribution of the mean-inner potential to

flexoelectricity. Chapter 6 describes measurements of extrinsic contributions to flexoelec-

tricity stemming from defects which lead to significant enhancements in the flexoelectric

responses of LaAlO3, SrTiO3, and MgO crystals. Chapter 7 provides a description of

my work on lanthanide scandates including the characterization of their bulk electronic

structure, atomic and electronic surface structure, charging, and flexoelectric bending.

Chapter 8 describes how deformation-induced band bending arising from flexoelectric

couplings during contact drives triboelectricity. Chapter 9 suggests some areas for future

research.
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CHAPTER 2

Development of a Flexoelectric Characterization System

2.1. Introduction to Flexoelectric Characterization

The first experimental observation of the flexoelectric effect in crystalline solids oc-

curred in 1968 with Bursian and Zaikovskii observing that BaTiO3 (BTO) thin films

tended to bend in the presence of an electric field [13]. However, it would be thirty-three

years before the the experimental solid-state community revisited the flexoelectric effect.

This reignition of interest in flexoelectricity was sparked by a series of experiments per-

formed by Ma and Cross on high-dielectric constant ceramics [14, 15, 16, 17, 18]. These

experiments provided the first experimental measurements of flexoelectric coefficients, the

materials parameter describing the linear coupling between polarization and strain gra-

dient, and also unequivocally demonstrated that many ceramics possessed flexoelectric

coefficients that far surpassed simple theoretical predictions [41].

The seminal work by Ma and Cross triggered a substantial increase in the number of ex-

perimental studies on the flexoelectric effect in solids [42, 43, 11, 10], with a concomitant

increase in the methods used to measure flexoelectric coefficients. Comprehensive com-

parisons of these methods can be found in reviews on the topic (e.g. [43]). Fundamentally,

any flexoelectric characterization either follows a direct approach (electric response from

mechanical stimulus) or converse approach (mechanical response from electrical stimulus)

[10]. More formally, the direct flexoelectric effect describes the polarization (P ) induced
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by the application of a strain gradient ( dε
dx

)

(2.1) P = µ
dε

dx

whereas the converse flexoelectric effect refers to the stress (σ) induced by a polarization

gradient (dP
dx

)

(2.2) σ =
µ

χ

dP

dx
.

Here, µ is flexoelectric coefficient and χ is dielectric susceptibility. Note, the direct and

converse flexoelectric effects in Eq. 2.1 and 2.2 have been expressed in their scalar forms,

the effects of other electromechanical couplings (e.g. piezoelectricity [3] and electrostric-

tion [44]) have been neglected, and I have been somewhat cavalier with my treatment of

electrostatic boundary conditions [45, 46]. These simplifications are meant to empha-

size the fundamental physics behind flexoelectricity and will be maintained throughout

the remainder of this chapter, where possible, to facilitate an understanding of the basic

concepts of flexoelectric characterization before giving a rigorous description in Chapter 3.

Experimental investigations of flexoelectricity described in this dissertation will fo-

cus on the direct flexoelectric effect described by Eq. 2.1 since it is more experimentally

tenable to apply strain gradients rather than polarization gradients. Throughout the re-

mainder of Chapter 2, I will describe the development, implementation, and application

of an apparatus to measure flexoelectricity using three-point bending (TPB). Section 2.2

provides an overview of my experimental approach, and is followed by an in-depth dis-

cussion of the three main aspects of these experiments: strain gradients (Section 2.3),

polarization (Section 2.4), and flexoelectric coefficients (Section 2.5). In Section 2.6 I
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validate and benchmark my apparatus using measurements performed on SrTiO3 (STO)

single crystals. The work in Chapter 2 benefitted from discussions with LDM group

members, especially Dr. Pratik Koirala, Binghao (Evan) Guo, and Professor Laurence D.

Marks.

2.2. Overview of Three-Point Bending Approach to Measuring

Flexoelectricity

As mentioned above, experimental measurements of the direct flexoelectric effect re-

quire measuring the electric response of a sample subjected to a strain gradient. In

choosing a method to apply strain gradients, it is important to consider some limitations.

First, strains must be kept small to avoid spurious contributions from plastic deformation

[30], fracture [47, 31, 48], and piezoelectricity [49, 50, 51]. Second, flexoelectric coeffi-

cients are ∼nC/m in centrosymmetric oxides [52] and ∼ µC/m in non-centrosymmetric

oxides [53], indicating either large strain gradients (while maintaining small strains) must

be used to generate sufficiently large electrical responses or small strain gradients must

be used in conjunction with electric characterization capable of precisely measuring small

electric responses.

One method of applying strain gradients that adheres to these constraints is TPB.

A TPB geometry and the resulting strain gradient are illustrated in Figure 2.1. As

demonstrated by Zubko et al. [52], dynamic mechanical analyzer (DMA)s in TPB config-

urations are well-suited for flexoelectric characterization because DMAs apply oscillatory

strain gradients which induce oscillatory flexoelectric responses that can be measured pre-

cisely with a lock-in amplifier (LIA). Thus, the use of a DMA to bend samples provides
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a means to overcome experimental challenges associated with measuring small currents

while keeping strains small.

(a) (b)

Increasing 
strain

Figure 2.1. (a) Depiction of TPB. The sample (grey) sits on two supports
(red) equidistant from the sample center. The sample is bent by a force
applied at the sample center by the knife edge (blue). (b) Bending the
sample in this manner places it in a state of inhomogeneous strain. The
primary strain gradient is through the thickness of the sample: compared
to the original shape (dashed, black), the deformed shape (grey) has one
surface in a state of compression (arrows, blue) and the other in a state
of tension (arrows, red). There is zero strain at the intermediate plane
(dotted, black).

An overview of a typical flexoelectric experiment performed using a DMA in a TPB

configuration is shown in Figure 2.2 for a centrosymmetric material. First, there is no

polarization in the sample because there is no force applied to it. Next, a static force is

applied to the sample center to maintain contact between the sample, knife edge, and sup-

ports during oscillatory motion. Then, an oscillatory force of a fixed magnitude (smaller

than the static force to maintain contact) is applied to the sample which induces an

oscillatory strain gradient. In Section 2.3 I describe how the magnitude of this strain

gradient can be computed from the oscillatory force and sample geometry. As the oscilla-

tory force (and strain gradient) increases and decreases, so does the polarization induced

by flexoelectricity. In Section 2.4 I explain how the change in polarization caused by the

oscillatory strain gradient is measured as a short-circuit current with a LIA. Thus, by
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measuring the short-circuit current (proportional to polarization) at different oscillatory

forces (proportional to strain gradient) it is possible to measure the flexoelectric coeffi-

cient of a sample using Eq. 2.1. In Section 2.5 I give a more rigorous interpretation of the

flexoelectric coefficients measured in this manner, and discuss how their magnitude and

sign are deduced from experimental measurables.
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(a) (b) (c) (d)
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Figure 2.2. Summary of flexoelectric measurements using TPB (a) An ini-
tially unpolarized sample (grey) is subjected to (b) a static force Fstatic
which induces a static polarization P0. An oscillatory force Fosc (c) in-
creases and (d) decreases P0 by an amount ∆P . Fosc is proportional to the
strain gradient and the short-circuit current is proportional to ∆P .

2.3. Application of Strain Gradients

2.3.1. Deformation in Materials

Solids subjected to external forces tend to deform [54, 55, 56]. If the solid returns to its

original state once the forces are removed, the deformations are considered to be elastic.

The work described here pertains to sufficiently small deformations such that they can

always be considered elastic. Elastic deformations (ui) constitute the differences in the
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positions of points in a solid before (ri) and after (r′i) the application of the external

forces.

(2.3) ui = r′i − ri

When deformations are small and rigid body translations and rotations are disallowed,

it is convenient to consider the extent of deformation relative to the original reference

configuration known as strain. There are many other definitions of strain (e.g. Cauchy,

Green, etc.) which apply in particular limits or under certain conditions [57], but, unless

otherwise stated, all strains in this dissertation correspond to symmetrized strains of the

form

(2.4) εij =


∂u1
∂x1

1
2
(∂u1
∂x2

+ ∂u2
∂x1

) 1
2
(∂u1
∂x3

+ ∂u3
∂x1

)

1
2
(∂u1
∂x2

+ ∂u2
∂x1

) ∂u2
∂x2

1
2
(∂u2
∂x3

+ ∂u3
∂x2

)

1
2
(∂u1
∂x3

+ ∂u3
∂x1

) 1
2
(∂u2
∂x3

+ ∂u3
∂x2

) ∂u3
∂x3

 .

In this convention, the strain matrix is symmetric with εij=εji, derivatives are taken

with respect to the unperturbed coordinate system, diagonal terms describe extension/compression,

and off-diagonal terms describe shear. We will see in Chapter 4 that it is more conve-

nient to work with unsymmetrized strain in some theoretical contexts [58, 59]. The

unsymmetrized strain tensor is given by

(2.5) ηij =


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 .
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It is necessary to determine the gradient of Eq. 2.4 and 2.5 to treat flexoelectricity

[58, 59]. Throughout this work, symmetrized strain gradients will be described with the

notation

(2.6) εij,k =
dεij
dxk

and unsymmetrized strain gradients are defined by

(2.7) ηi,jk =
dηij
dxk

.

According to definitions given in Eq. 2.4- 2.7, symmetrized strain gradients obey the

symmetry εij,k=εji,k and unsymmetrized strain gradients obey the symmetry ηi,jk=ηi,kj.

Again, unless otherwise stated we will be using the symmetrized strain convention in this

work. In this convention, longitudinal strain gradients are of the form εii,i, shear strain

gradients are of the form εij,i, and transverse strain gradients are of the form εii,j.

Though the discussion of deformation, strain, and strain gradient has been general

thus far, we now limit ourselves to one-dimensional quantities (i.e. u(x), ε(x) = du
dx

, and

ε,x = dε
dx

= d2u
dx2

to focus on the nuances of the experimental apparatus throughout the

remainder of Chapter 2. We return to a full three-dimensional treatment in Chapter 3.

2.3.2. Beam Bending

A sample in TPB rests on two supports separated by a distance L while a force is applied

to the sample center by the “knife edge”, as illustrated in Figure 2.3. Assuming the strain

remains small throughout beam bending, the static displacement of a beam subjected to
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this concentrated applied force is governed by

(2.8) D
d4u

dx4
= 0

where D is the flexural rigidity of the beam [54, 56, 55]. D is the product of Young’s

modulus, Y , and the second moment of area of the cross-section of the beam, I. To solve

Eq. 2.8, known as the Euler-Bernoulli beam equation, the relevant boundary conditions

for TPB are that the displacement and moment of the bent beam are zero at the edge of

the beam (i.e. u(x = 0) = 0 and D d2u
dx2

(x = 0) = 0) and the slope of the bent beam is

zero at the beam center (i.e. du
dx

(x = L/2) = 0). Additionally, there is a constant shear

force in the beam induced by the set of concentrated loads in TPB which maintains static

equilibrium (i.e. d3u
dx3

= −F/2, 0 ≤ x ≤ L/2). Note, we only focus on solving Eq. 2.8 on

one half of the beam because the solution on the other half can be acquired by symmetry.

Eq. 2.8 with the appropriate boundary conditions yields the solution

(2.9) u(x) = − F

48D
(4x3 − 3L2x), 0 ≤ x ≤ L

2
.

This deformation corresponds to a strain given by

(2.10) ε(x) =
du

dx
= − F

48D
(12x2 − 3L2), 0 ≤ x ≤ L

2

and a strain gradient of

(2.11)
dε

dx
(x) =

d2u

dx2
= − F

2D
x, 0 ≤ x ≤ L

2
.
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My measurements are carried out on beams with rectangular cross sections, so I = bh3

12

where b is the beam width and h is the beam thickness [56]. Therefore, Eq. 2.11 can be

specified for this work as

(2.12)
dε

dx
(x) = −F

Y

6

bh3
x, 0 ≤ x ≤ L

2

or

(2.13)
dε

dx
(x) = −

24uL/2
L3

x, 0 ≤ x ≤ L

2

in terms of the center displacement uL/2. More sophisticated treatments of beam bending,

including the incorporation of anticlastic and anisotropic effects, are given in Chapter 3.

2.3.3. Dynamic Mechanical Analysis

DMA is a common method to characterize the complex elastic moduli of materials in the

quasi-static regime (i.e. mHz to Hz) [60, 61]. Other techniques capable of investigating

the frequency-dependence of elastic moduli operate at significantly higher frequencies (e.g.

resonant ultrasound ∼kHz [62], ultrasound ∼MHz [63], and Brillouin scattering ∼GHz

[64]), making DMAs a mainstay of the polymer [65] and domain wall [60, 61] commu-

nities. Though there are many possible geometries available for DMA experiments, such

as compression, shear, tension, and bending, all DMA experiments follow the same basic

principles. A DMA operates by applying an oscillatory mechanical stimulus (displace-

ment or force) and measuring a complementary oscillatory mechanical response (force or
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Figure 2.3. (a) Sketch of the concentrated loads present in TPB and the
induced (b) shear, (c) moment, (d) strain, and (e) displacement. The rela-
tionship between the shear, moment, and strain with displacement is given
in each plot. Note, the moment is proportional to the strain gradient.

displacement). The stimulus and response can be expressed as

(2.14) f = fS + fDe
iωt
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and

(2.15) u = uS + uDe
i(ωt−δ)

where f and u denote the total force and displacement, fS and uS refer to static quantities

used to maintain contact, fD and uD are dynamic quantities used to probe the complex

elastic response at an oscillation frequency of ω, and δ is the phase difference between the

stimulus and response [66].

For a particular test geometry (e.g. TPB) with known sample dimensions, it is possi-

ble to determine the complex sample compliance from the applied mechanical stimulus,

measured response, and relative phase between the two. For TPB, the spring constant

relating the dynamic displacement and force is given by

(2.16) k =
fD
uD

eiδ = 4Y b

(
h

L

)3
(

1 +
3

2

(
h

L

)2
Y

G

)−1

where Y is the Youngs modulus along the length of the sample, b is the sample width, h

is the sample thickness, L is the distance between the TPB supports, and G is the shear

modulus [60]. In the limit of a thin sample, the G dependence is negligible and Eq. 2.16

can be rearranged as

(2.17) Y =
fD
uD

L3

4bh3
eiδ.

Samples used in my experiments typically have thicknesses h=0.5 mm and the three-

point spacing is fixed to be L=8.4 mm,
(
h
L

)2 ≈ 4× 10−2, making the approximation used

to obtain Eq. 2.17 quite good. For materials with minimal anelasticity, δ ≈ 0, Eq. 2.17 can
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be combined with Euler-Bernoulli beam theory (Eq. 2.12 and 2.13) to give an expression

for strain gradient in terms of measured quantities:

(2.18)
dε

dx
(x) =

24uD
L3

x, 0 ≤ x ≤ L

2
.

2.4. Measuring Induced Polarization

2.4.1. Definition of Polarization

Polarization is an intensive quantity often considered as the solid-state analogue of dipole

moment [67, 68]. When dealing with a finite set of point charges or a finite system with

a continuous charge distribution, the dipole moment is a well-defined quantity. For point

charges, the dipole moment p is a sum of the product of each point charge qi and their

position ri

(2.19) p =
∑
i

qiri

and for continuous charge, it is defined as

(2.20) p =

∫
n(r)rdr

where n(r) is the charge density and r is position [68]. Early theoretical descriptions

of polarization sought to define it in terms of the dipole moment, namely as the dipole

moment per unit volume.

(2.21) P =
p

V
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However, such a treatment of polarization is undesirably ambiguous and fundamentally

flawed [67, 68, 69, 70, 71]. As illustrated in Figure 2.4, the polarization in Eq. 2.21

has different values depending on the choice of unit cell [68]. This ultimately stems from

the periodic nature of a crystalline charge density and is a fundamental limitation of any

effort to define polarization as a function of charge density [67, 68].

(a) Polar Crystal (b) Non-Polar Crystal

Figure 2.4. Ambiguity in the definition of polarization as the dipole moment
per unit volume. (a) A demonstration of how the sign of the polarization can
vary depending upon unit cell in a polar crystal. (b) Similar issues exist for
non-polar crystals, where certain unit cells lead to a non-zero polarization.

A precise definition of polarization was only established in 1993 when Resta [70]

and King-Smith and Vanderbilt [69] formulated a theory of polarization based upon

adiabatic current flows. A quantum mechanical description of polarization obtained via

this Berry-phase approach can obfuscate some of the more salient points relevant to these

experiments, so this discussion is forgone until Chapter 4 when we consider the first

principles theory of flexoelectricity. For the present conversation, the relevant conclusion

from the modern theory of polarization is that only changes in polarization are well-

defined and measurable quantities.

A classic example of how changes in polarization are measured is the Sawyer-Tower

circuit [68] shown in Figure 2.5. This approach has long been used to characterize fer-

roelectricity and a similar approach is used here to measure flexoelectricity. As in the

ferroelectric case, changes in the polarization of a sample are measured as alternating
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current flow through an external circuit driven by the change in surface charge density

on metal electrodes deposited on the sample. However, in a flexoelectric experiment, an

oscillatory strain gradient is used to induce current flow instead of an electric field in the

ferroelectric case.

+ + + + + +

➖ ➖ ➖ ➖ ➖ ➖ + + + + + +

➖ ➖ ➖ ➖ ➖ ➖

(a) (b) (c)

𝐄 𝐚
𝐩𝐩
𝐥𝐢𝐞
𝐝

𝐄 𝐚
𝐩𝐩
𝐥𝐢𝐞
𝐝
=
𝟎

𝐄 𝐚
𝐩𝐩
𝐥𝐢𝐞
𝐝

Figure 2.5. Typical ferroelectric polarization-reversal experiment. (a) An
unpolarized ferroelectric material consisting of cations (blue) and anions
(red) is (b) subjected to an applied electric field inducing a polarization
across the sample. Surface charge densities in the metal electrodes (grey
boxes) compensate for this polarization. (c) Reversing the direction of the
applied electric field switches the direction of polarization and the sign
of the surface charge densities on the metal electrodes. By alternating
the direction of the applied electric field, the change in the surface charge
density (proportional to sample polarization) causes a measurable current
to flow through an external circuit.

2.4.2. Lock-In Amplifiers

Since the flexoelectric polarization induced by an oscillatory strain gradient yields an

alternating current, LIA provide an accurate and precise way to measure flexoelectricity.

A LIA is a device that provides a DC output proportional to an AC signal of interest

[72]. A simplified circuit diagram for a typical LIA is shown in Figure 2.6. Its operation
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relies upon a phase-sensitive detector (PSD) which multiplies a reference signal

(2.22) Iref = A sin(ωAt)

and a signal of interest

(2.23) Isig = B sin(ωBt+ δ)

yielding an oscillatory signal given by

(2.24) IPSD = IrefIsig =
AB

2
(cos([ωA − ωB]t− δ)− cos([ωA + ωB]t+ δ)) .

Signal 
input

Reference 
input

Input 
amplifier

Bandpass 
filter

Low pass 
filter

Output

Phase-
sensitive 
detector

Figure 2.6. Circuit diagram of a basic LIA. An input signal (and any noise)
are amplified to an optimal level for the PSD. A bandpass filter excludes
most signal outside the desired frequency range. Simultaneously, a stable
(and relatively noise-free) signal is provided to a reference channel. The
PSD multiplies the signal and reference channels and a filter removes resid-
ual noise.
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In general, the two input signals have different frequencies (ωA, ωB) and amplitudes

(A,B), as well as a phase shift (δ). The time average of Eq. 2.24 is zero whenever ωA 6= ωB

and equal to AB
2

cos (δ) when ωA = ωB. Thus, by measuring Iref and Isig and computing

their product, a LIA can isolate the components of an input signal at the same frequency

of a reference signal, even if the input signal contains noise or contributions at other

frequencies. Figure 2.7 includes an example of this multiplication process.

Figure 2.7. Example of LIA operation. When a reference signal (a) is mul-
tiplied by an input signal at the same frequency (b), the product is a signal
with a non-zero time average (d). When a reference signal (a) is multiplied
by an input signal at a different frequency (c), the product is a signal with
a zero time average (e). In both (d) and (e) the time average is the dashed
line.

2.5. Flexoelectric Coefficients

Having introduced the concepts of strain gradient and polarization, I now return to

and motivate the constitutive flexoelectric effect equations, Eq. 2.1 and 2.2, using a phe-

nomenological approach [10, 11]. Then, I consider the effects of electrostatic boundary
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conditions on the definitions of the flexoelectric coefficient, deriving the relationship be-

tween the short-circuit flexoelectric coefficients measured in these experiments and open-

circuit flexoelectric coefficients typically obtained from first principles calculations [58].

Lastly, I describe how physical measurables in TPB flexoelectric experiments are used to

determine the magnitude and sign of the measured flexoelectric coefficient.

2.5.1. Phenomenological Description of Flexoelectricity (1D)

Consider the expansion of a one-dimensional energy density Φ which includes elastic,

dielectric, and flexoelectric couplings [10, 11]. For simplicity, I ignore piezoelectric con-

tribution to potential energy density, so this treatment formally applies to only centrosym-

metric materials.

(2.25) Φ =
(ε0χ)−1

2
P 2 +

c

2
ε2 − f (1)P

dε

dx
− f (2)ε

dP

dx
− PE − εσ

where ε0 is the permittivity of free space, χ is dielectric susceptibility, P is polarization,

c is elastic stiffness, ε is strain, f (1) and f (2) mediate the gradient couplings, E is electric

field, and σ is stress.

Solving the associated Euler-Lagrange equation with respect to polarization

(2.26)
∂Φ

∂P
=

d

dx

(
∂Φ

∂
(
dP
dx

))

yields

(2.27) (ε0χ)−1P − f (1) dε

dx
− E =

d

dx

(
−f (2)ε

)
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which can be arranged as

(2.28) P = ε0χE + µ
dε

dx

for homogeneous materials with f = f (1) − f (2) and µ = ε0χf . Thus, the constitutive

equation for the direct flexoelectric effect has been derived [10, 11].

Similarly, the constitutive equation given in Eq. 2.2 for the converse flexoelectric ef-

fect can be obtained by using the Euler-Lagrange equation associated with the energy

functional given in Eq. 2.25 with respect to strain. From the Euler-Lagrange equation

(2.29)
∂Φ

∂ε
=

d

dx

(
∂Φ

∂
(
dε
dx

))

we obtain

(2.30) cε− f (2)dP

dx
− σ =

d

dx

(
−f (1)P

)
which can be rearranged as

(2.31) σ = cε+ f
dP

dx

with the substitution f = f (1) − f (2) for homogeneous materials.

The phenomenological treatment above shows direct and converse flexoelectric effects

are dictated by the same materials parameters: the flexoelectric coefficient µ, and a nor-

malized form of the flexoelectric coefficient f = µε0χ [10, 11]. The latter quantity is
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called the flexocoupling voltage. It describes the gradient in the average Coulomb poten-

tial induced by a strain gradient [58] and is commonly used in theoretical formulations

of flexoelectricity (Chapter 4 and 5).

2.5.2. The Role of Electrostatic Boundary Conditions

Measurements and calculations of flexoelectric responses can be done under different elec-

trostatic boundary conditions. As described in Section 2.4, it is most common to perform

flexoelectric measurements under short-circuit boundary conditions (E = 0) [52], but

measurements under open-circuit boundary conditions (D = 0) are also possible. Since

open-circuit boundary conditions are also used in the first principles theory of flexoelec-

tricity ([58] and Chapter 4), I address the impact of electrostatic boundary conditions

on the definition of flexoelectric coefficients here. The flexoelectric coefficients defined in

Eq. 2.28 are short-circuit quantities. This can be easily seen by considering Eq. 2.28 in

the E = 0 limit:

(2.32) P = µ
dε

dx
.

In order to define open-circuit flexoelectric coefficients, recall that polarization, electric

field, and dielectric displacement [73] are related via

(2.33) D = ε0E + P.

Therefore, D = 0 implies P = −ε0E, which when substituted into Eq. 2.28 yields

(2.34) P = ε0χ

(
−P
ε0

)
+ µ

dε

dx
.
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This can be rearranged as

(2.35) P =
µ

1 + χ

dε

dx
.

Thus, the short-circuit and open-circuit flexoelectric coefficients, µE and µD, respectively,

are related by

(2.36) µD =
µE

1 + χ

and both quantities are related to the flexocoupling voltage via

(2.37) f =
µE

ε0χ
=
µD(1 + χ)

ε0χ
.

Note, it is also common to express Eq. 2.36 and 2.37 in terms of the dielectric constant κ

[73] which is related to the dielectric susceptibility χ

(2.38) κ = 1 + χ.

2.5.3. Magnitude and Sign of Measured Flexoelectric Coefficients

Having defined the nature of the strain gradients in TPB, the polarization measured

from such a stimulus, and the flexoelectric coefficients mediating the response, I now

explain how the magnitude and sign of the flexoelectric coefficient are determined from

the physical measurables in a TPB flexoelectric experiment.

To determine the magnitude of the flexoelectric coefficient, it is necessary to deter-

mine the polarization from the measured current and strain gradient from the measured

displacement at the sample center. The average polarization across an electrode is given



51

by

(2.39) P =
I

2Aω

where I is the short-circuit current generated by an oscillatory strain gradient at frequency

ω and A is the electrode area [52]. The strain gradient that generates this polarization

is the average strain gradient across the electrode area. The displacement at the sample

center measured from the DMA can be used to calculate the strain gradient profile in the

sample according to Eq. 2.18, which can then be averaged over the electrode which has a

half length a [52]

(2.40)
dε

dx
=

1
L
2
−
(
L
2
− a
) ∫ L

2

L
2
−a

dε

dx
(x)dx = 12u

L− a
L3

.

Therefore, by measuring the short-circuit current as a function of oscillatory displace-

ment, it is possible to obtain the change in polarization (Eq. 2.39) induced by the oscilla-

tory strain gradient (Eq. 2.40), respectively. Then, according to the constitutive equation

for the direct flexoelectric effect under short-circuit boundary conditions (Eq. 2.32), the

magnitude of the flexoelectric coefficient is the slope of P vs dε
dx

.

Determining the sign of the flexoelectric coefficient is more subtle. Figure 2.8 demon-

strates the sign of the flexoelectric coefficient dictates the relative direction between po-

larization and strain gradient, i.e. if the polarization and strain gradient are parallel or

antiparallel. Experimentally, this manifests as opposite configurations of surface charge

densities in the metal electrodes, which amount to a phase difference in the output of

the LIA. Therefore, the sign of the flexoelectric coefficient can be deduced by comparing

the relative phase between the DMA reference signal and flexoelectric current signal for
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different samples. For simplicity, if two materials have flexoelectric coefficients equal in

magnitude and opposite in sign, the LIA will measure currents with equal magnitude and

180◦ phase shifts.

Figure 2.8. (a) Pictorial representation of the relationship between polar-
ization and strain gradient in the bending direction for positive (blue) and
negative (green) flexoelectric coefficients. (b) An oscillating strain gradient
is applied to a sample. (c) As the strain gradient increases, the magnitude
of polarization increases independent of the flexoelectric coefficient sign,
so the sign cannot be determined from current magnitude. Instead, the
180◦ phase difference between the polarization responses of samples with
opposite flexoelectric coefficient signs must be used to deduce the sign.

2.6. Benchmarking Apparatus with SrTiO3 Single Crystals

2.6.1. Sample Preparation

Commercially available 0.5 mm thick single crystalline STO substrates with (100) and

(110) surfaces were cut into 10 mm × 3 mm samples using a TechCut 5 Precision Section-

ing Machine (Allied High Tech Products, Inc.) with a diamond wafering blade. Samples
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were cleaned by sonication in acetone and then ethanol. Following a short bake to mini-

mize surface contamination (typically 600◦C for 6 hr in air), a Denton DESK III sputter

coater was used to deposit 50 nm thick, 8 mm × 2 mm gold electrodes which were masked

with aluminum foil. Thicknesses were monitored with Inficon SQM-160 Rate/Thickness

Monitor. More precise measurements of the electrode areas were attained using optical

microscopy and ImageJ. Following electrode deposition, copper wires were attached to

the electrodes with silver paste (SPI Silver Paste Plus). Then the samples were baked

at 300◦C for 2 hours to improve mechanical stability and electrical conductivity of the

electrodes. A multimeter was used to confirm low contact resistance between the cop-

per wires and gold electrodes. Schematics of the samples and electrode configuration are

shown in Figure 2.9.

Single Crystal

Figure 2.9. Electrode (gold) and wire configuration (grey) typically used
for flexoelectric samples.

2.6.2. Experimental Details

Two DMAs were used throughout my dissertation research, the TA Instruments RSA-III

and RSA-G2, in conjunction with a custom-machined TPB holder suitable for samples

∼10 mm long (Figure 2.10). The spacing between the alumina supports on this holder

was 8.41 mm. Both DMAs have an ability to measure elastic properties as a function of
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frequency (2×10−5-100 Hz) and temperature (77 K to 900 K) with a displacement resolu-

tion of 50 nm, force resolution of 10−6 N, maximum force of 35 N, and phase resolution of

0.1◦. Temperatures above room temperature are controlled by forced-air convection oven.

Typically, static forces ∼1.5 N, dynamic forces ∼0.5 N forces, displacements ∼ 1µm, and

frequencies ∼40 Hz were used in the experiments reported here. These correspond to

maximum strains ∼ 10−5 and oscillatory strain gradients ∼0.1 1/m.

Knife edge

Alumina supports

Machined DMA compatible holder

Sample with 
electrodes and 
electrical leads

Figure 2.10. Image of a typical experimental set-up for flexoelectric char-
acterization. The sample is supported on alumina rods which sit on a
custom-machined DMA compatible holder. A knife edge is used to bend
the sample.

After centering a sample on the alumina supports, the DMA knife edge (covered in an

insulating tape to avoid short-circuiting) was brought into contact with the sample. In

order to benchmark the apparatus, the short-circuit current induced by the flexoelectric
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effect was measured for a variety of static force, oscillatory force, and frequency combina-

tions, though typical flexoelectric characterization consists of measuring the short-circuit

current as a function of oscillatory force with static force and frequency fixed.

The short-circuit current induced by the flexoelectric effect was measured by a 7265

Dual Phase DSP LIA This LIA has a frequency range of 1 mHz to 250 kHz, voltage

sensitivity of 2 nV, and current sensitivity of 2 fA. The reference input for the amplifier

is a voltage proportional to the oscillatory force measured by the DMA used to bend

the sample and the signal input is the short-circuit current from the sample. Typically,

frequencies ∼40 Hz were used on samples with electrode areas ∼16 mm2. Assuming a

flexoelectric coefficient of 1 nC/m and strain gradients ∼0.1 1/m (typical of the DMA),

flexoelectric currents should be ∼1 pA.

2.6.3. System Validation

A number of predictions based upon the understanding of these measurements outlined

in previous sections were tested in order to validate this system. The data shown in Fig-

ure 2.12 was acquired on STO single crystals with {100} faces. First, since the oscillatory

force is responsible for the oscillatory strain gradient which induces changes in flexoelec-

tric polarization, fixing oscillatory force while varying static force should have no impact

on the measured flexoelectric current. This behavior is demonstrated in Figure 2.12(a),

where no systematic changes in the measured current are observed as a function of static

force. On the contrary, fixing static force and varying oscillatory force magnitude should

cause a linear variation in the measured flexoelectric current. Figure 2.12(b) shows there

is a linear variation in the measured current with oscillatory force as the theory predicts.
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Since the oscillatory force is proportional to strain gradient and the current is propor-

tional to the polarization, the flexoelectric coefficient of this sample is proportional to the

slope of this plot. The understanding of flexoelectric characterization discussed above also

indicates that at fixed oscillatory and static force, the measured current should linearly

scale with frequency or, equivalently, the polarization should be frequency independent.

Figure 2.12(c) demonstrates this is the case.

Figure 2.11. Testing of this flexoelectric characterization system using data
acquired on a STO single crystal. (a) Flexoelectric current acquired at
a constant frequency and oscillatory force shows that the flexoelectric re-
sponse does not systematically vary with static force. (b) Flexoelectric
current acquired at constant frequency and static force shows a linear re-
lationship with oscillatory force. (c) Flexoelectric current acquired at fixed
static force and oscillatory force linearly scales with frequency.

2.6.4. Magnitude of Flexoelectric Coefficient

Combining Eq. 2.39 for the average polarization and Eq. 2.40 for the average strain

gradient allows conversion of the measured displacement and current to strain gradient

and polarization using the known sample geometry. Then, the flexoelectric coefficient

is determined from the slope of the polarization vs. strain gradient data. We solely

focus on the magnitude and sign of the flexoelectric coefficients measured in this way for

the purposes of benchmarking the system. A detailed analysis of the meaning of this
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flexoelectric coefficient (e.g. how it relates to point group symmetry, flexoelectric tensor

components, etc.) is left for Chapter 3.

Figure 2.12 shows the end results of flexoelectric characterization using the TPB ap-

proach explained above for STO single crystals with two different orientations. STO single

crystals were used as a benchmark because STO is one of the few materials that has had

its flexoelectric response experimentally [52] and theoretically [58, 74] characterized. In

both cases the data are highly linear, and the measured coefficients are in good agreement

with literature values which report coefficients ranging from 1 nC/m to 10 nC/m for both

orientations of STO [52].
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f (V) 4.7 ± 0.2 - 3.1 ± 0.5

r2 0.9984 0.9819

RMSE 0.03 0.05

Figure 2.12. (a) Experimental results for STO single crystals with (001) and
(110) surfaces. Dashed lines are linear fits to the data. (b) The STO (001)
flexoelectric response is larger than the STO (110) flexoelectric response
and the flexoelectric coefficients are of opposite signs. Uncertainties for the
linear fits are given by the 95% confidence interval.
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2.6.5. Sign Change Between Flexoelectric Response of (100) and (110) SrTiO3

Single Crystals

As explained in Section 2.5, different signs of the flexoelectric coefficient manifest as

phase shifts between the DMA reference signal and the flexoelectric current signal, with

an anticipated phase shift of 180◦ between positive and negative flexoelectric coefficients.

The example data shown in Figure 2.13 for STO single crystals with (001) and (110)

surfaces are in good agreement with this predicted behavior and the sign of the flexoelectric

coefficients of STO found in the literature [52].
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Figure 2.13. Measured phase between flexoelectric current and DMA output
for (a) STO (001) and (b) STO (110) under identical conditions shows a
180◦ relative phase shift between the materials (red arrows indicate locked-
in regions). STO samples with these two orientations are known to have
different flexoelectric coefficient signs [52].
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CHAPTER 3

Flexoelectric Characterization of Single Crystals

3.1. Introduction

This chapter expands upon the concepts introduced in Chapter 2 to explain the TPB

approach to flexoelectric characterization. While the measurement of flexoelectric po-

larization as a short-circuit current with LIAs requires no further elaboration beyond

what was stated in Chapter 2, quantitative flexoelectric characterization requires a more

substantive treatment of the flexoelectric coefficient and TPB strain gradients.

In Section 3.2 I provide a tensorial description of the flexoelectric effect and, through a

symmetry-based analysis, determine the non-trivial flexoelectric coefficients for each point

group. Next, in Section 3.3 I analyze pure beam bending to develop the machinery to treat

new characteristics of three-dimensional bending, including Poisson effects and material

anisotropy, which are necessary to quantitatively analyze flexoelectric measurements. I

combine these results with the tensorial description in Section 3.2 to develop general ex-

pressions for effective flexoelectric coefficients of anisotropic crystals subjected to pure

bending. Following this, I use finite element analysis (FEA) simulations in Section 3.4

to modify the pure bending effective flexoelectric coefficients derived in Section 3.3 to

account for the differences between pure bending and TPB. The flexoelectric measure-

ments I have performed on single crystals are analyzed in Section 3.5 and the framework

developed in Section 3.2- 3.4 is used to interpret the effective flexoelectric coefficients in
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terms of elastic constants, flexoelectric tensor components, and geometric factors. The

work in Chapter 3 benefitted from discussions with LDM group members, especially Dr.

Pratik Koirala, Binghao (Evan) Guo, and Professor Laurence D. Marks. I performed all

analyzes, simulations, and measurements, and Binghao (Evan) Guo assisted with some of

the flexoelectric sample preparation and TPB measurements included in Seciton 3.5. The

measurements on LaAlO3 (LAO) and DyScO3 (DSO) are described in Ref. [27] and [75],

respectively.

3.2. Symmetry Analysis of Flexoelectric Tensor

The direct flexoelectric effect was introduced in Chapter 2 as a scalar equation de-

scribing the linear coupling of polarization (P ) and strain gradient ( dε
dx

) [10, 11]. Under

short-circuit electrostatic boundary conditions it was expressed as

(3.1) P = µ
dε

dx

where µ is the flexoelectric coefficient. In three-dimensions, it is necessary to express

Eq. 3.1 in terms of tensors. Since the flexoelectric coefficient relates a first-rank tensor

response (polarization) with a third-rank tensor stimulus (strain gradient), it is a fourth-

rank tensor property [10, 11, 9, 8]. Therefore, the three-dimensional analogue to Eq. 3.1

is

(3.2) Pi = µijklεkl,j.
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Note, this equation has been written using Einstein notation, where there is an implicit

sum over repeated indices. This convention is used throughout the remainder of this

dissertation.

3n components are needed to fully describe an nth rank tensor, suggesting there are

81 flexoelectric coefficients [9, 8]. Fortunately, strain and point group symmetry greatly

reduces the number of independent flexoelectric coefficients from the nominal value of

81. First, consider the effect of strain. Based upon the strain convention introduced in

Chapter 2, the strain gradient tensor is symmetric with respect to the exchange of the

first two indices

(3.3) εkl,j = εlk,j

from which it follows that the flexoelectric tensor obeys

(3.4) µijkl = µijlk.

This reduces the number of independent flexoelectric coefficients from 81 to 54 for all

crystal systems, independent of point group symmetry.

The point group symmetry of a crystal acts as an additional constraint on the number

of independent tensor components needed to fully describe flexoelectricity. This is a

consequence of Neumann’s Principle which states “The symmetry elements of any physical

property of a crystal must include the symmetry elements of the point group of the crystal”

[9, 8]. To exemplify Neumann’s Principle, consider a matrix representation aij of a

symmetry element contained within a point group. Under the operation of this symmetry
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element, the flexoelectric coefficient tensor component µijkl will be transformed to µ′ijkl

according to the definition of a fourth-rank tensor:

(3.5) µ′ijkl = aimajnakoalpµmnop.

However, since the symmetry is contained within the point group of the crystal, Neu-

manns Principle dictates the tensor coefficient must be unchanged under the action of

this symmetry operation. Therefore, Eq. 3.5 and

(3.6) µ′ijkl = µijkl

must be simultaneously obeyed [9, 8].

Applying Eq. 3.5 and 3.6 for all symmetry operations contained within a point group

leads to a massive reduction in the number of independent flexoelectric coefficient tensor

components in a crystal, depending upon which of the 32 point group symmetries the

crystal possesses [76, 77]. Figure 3.1 gives the specific non-trivial components for the

m3m, 4/mmm, and mmm point groups relevant to the experimental results reported in

Section 3.5. The values I obtain match those reported in Ref. [76].

The above analysis holds for crystals oriented along principal crystal axes (xi) accord-

ing to the standard crystallographic settings. For the materials experimentally investi-

gated in Section 3.5, the principal crystal axes are as follows [9].

• In cubic systems, xi are along 〈100〉 directions.

• In tetragonal systems with lattice parameters c 6= a = b, x3 is along the fourfold-

symmetric c axis and x1/x2 are along a/b.
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Figure 3.1. Flexoelectric coefficient tensors for materials with m3m,
4/mmm, and mmm point group symmetries. Dots indicate elements of
the tensor which are zero. The table lists the independent coefficients ac-
cording to the type of strain gradient-polarization response they mediate.

• In orthorhombic systems with lattice parameters c < a < b, x1 is along c, x2 is

along a, and x3 is along b.

Since measurement axes (x′i) do not need to coincide with principal crystal axes (xi),

the relationship between measurement and principal crystal axes must be defined to relate

measured flexoelectric coefficients to the underlying tensor components [9, 8]. To analyze

such situations, it is first necessary to identify the direction cosine matrix aij relating the
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measurement and principal crystal axes. The direction cosine matrix is defined by

(3.7) x′i = aijxj.

Then, the direction cosine matrix must be used to transform the flexoelectric coefficient

tensor defined according to the principal crystal axes (µijkl) to the flexoelectric coefficient

tensor defined according to the measurement axes (µ′ijkl) according to Eq. 3.5.

As an example, consider a sample of a material with point group m3m oriented along

its principal axes. If this sample is subjected to a longitudinal strain gradient (ε′11,1)

applied along the x′1=[100] axis, the flexoelectric response measured in the x′1 direction

(P ′1) is mediated by

(3.8) µ
[100]
1111 = µ1111.

However, if this same sample is rotated so that x′1 = [110], the flexoelectric response P ′1

resulting from ε′11,1 is now dictated by

(3.9) µ
[110]
1111 =

1

2
(µ1111 + µ1122) + µ1212.

The relationship between the measurement and principal axes will be used to analyze the

bending flexoelectric responses presented in Sections 3.3 and 3.4.

3.3. Pure Bending in Three-Dimensions

To understand the relationship between the flexoelectric coefficient measured in TPB

and the underlying flexoelectric tensor components, it is necessary to conduct a three-

dimensional analysis of bending strains. Such analysis is necessary to develop even a
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qualitative understanding of the measured flexoelectric response because bending along

the primary axis induces bending in other directions owing to Poisson effects [54]. Con-

sequently, flexoelectric coefficients measured in TPB are linear combinations of tensor

components [52]. Deriving formulae which relate measured flexoelectric coefficients to the

underlying tensor components for samples made of materials with cubic, orthorhombic,

and tetragonal symmetry cut in arbitrary directions is the ultimate goal of this section.

Before analyzing flexoelectricity from TPB, we will begin with a simpler bending

configuration: pure bending [54, 55, 56]. Pure bending occurs when a sample is bent in

such a way that there is a constant moment throughout the sample. Although distinct

from TPB (which has a linear moment in the sample, see Figure 2.3 in Chapter 2),

we will begin our analysis of three-dimensional bending here because pure bending is

analytically tractable, captures much of the relevant physics (i.e. how materials symmetry

affects which strain gradient components couple to polarization components), and builds

intuition for interpreting flexoelectric experiments. While this pure bending analysis may

seem oversimplified, the FEA simulations in Section 3.4 will rigorously demonstrate that

the approach to interpreting the flexoelectric response to TPB is quite similar to the pure

bending framework developed below and only requires minor modifications.

3.3.1. Beams vs. Planes

Unlike the one-dimensional samples considered in Chapter 2, samples in three-dimensions

with rectangular cross-sections have three characteristic dimensions, namely, their length

(L), width (b), and thickness (h). If b/h is large, it is common to refer to the sample as a

plate, and if b/h is small, the sample is considered a beam (e.g. Figure 3.2 and Ref. [56]).
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However, this distinction is somewhat ambiguous: e.g., what is the difference between a

wide beam and a narrow plate?

L

h

b

L

h

by

x
z

y

x
z

(a) Plate Geometry (b) Beam Geometry

Figure 3.2. Comparison of plate and beam geometries with sample dimen-
sions labeled. This coordinate system will be used throughout the remainder
of this chapter.

A more precise definition for plates and beams relates to the extent to which anticlas-

tic bending, i.e., a transverse curvature arising from Poisson effects in response to bending

along a primary axis (Figure 3.3), is allowed to occur [54]. A sample under pure bending

is considered a beam if anticlastic bending occurs unhindered, whereas a sample is con-

sidered a plate if anticlastic bending is completely suppressed. A convenient metric which

encapsulates the transition from beam-like to plate-like behavior is the Searle parameter

[78]:

(3.10) β =
b2

Rh
.

In Eq. 3.10, b is the sample width, h is the sample thickness, and R is the radius of

curvature of the bent sample. When β � 1 samples bend like beams, and when β � 1

samples bend like plates [78, 79, 80].
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Importantly, the Searle parameter [78] indicates that bent samples with nominally

plate-like dimensions should be considered beams when the curvature (∼ 1/R) is small.

The samples studied in the experiments described here typically have b ∼3 mm, h ∼0.5mm,

and R ∼1/(0.1 1/m)=10 m. Substituting these values in Eq. 3.10 yields β ∼ 10−3, which

is firmly in the beam regime. Even if the samples were 10 mm wide, they would need to

be <10 µm thick to be considered plates owing to the small curvatures in my experiments.

Figure 3.3. (a) A bent plate subjected to (b) pure bending or (c) anticlastic
bending.

3.3.2. Pure Beam Bending Strains

As mentioned previously, pure bending occurs when a sample is bent in such a way that

there is a constant moment throughout the sample. Since beams are often thin in two

directions, it is typical to assume the only non-zero stress component is σ33 along the long

axis of the beam [54]. Defining R to be the radius of curvature of the neutral plane of a

beam under pure bending, the strain along the long axis of the beam under pure bending
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is

(3.11) ε33 =
dx′3 − dx3

dx3

=
(R− x1)dθ −Rdθ

Rdθ
= −x1

R

as shown in Figure 3.4. Note, in using the classical elastic solutions to the pure beam

bending, I implicitly assume that the changes to the mechanical equilibrium conditions

owing to the electrostatic body forces induced by flexoelectricity, and other electrome-

chanical couplings, are negligible [54].

z

x

𝑑𝜃

R
R 

- x

x

Figure 3.4. Pure bending derivation schematic. R is the radius of curvature
of the neutral plane of a beam under pure bending.

Although there is only one non-trivial stress in pure bending, there will be additional

strains besides the strain along the long axis of the beam owing to Poisson effects [54].
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These additional strains cause pure bent beams to take the shape of an anticlastic surface

(Figure 3.3). To understand the origin of these additional strains, consider the relation-

ship between stress and strain in a linear elastic material expressed in terms of elastic

compliance coefficients sijkl:

(3.12) εij = sijklσkl.

Since σ33 is the only non-zero stress, all strain components are given by

(3.13) εij = sij33σ33

or equivalently,

(3.14) εij =
sij33

s3333

ε33

since ε33 is known through Eq. 3.11. Defining the proportionality factor in Eq. 3.14 to be

the anisotropic Poisson ratio [81]

(3.15) νij33 = − εij
ε33

= − sij33

s3333

we can now construct a strain matrix which completely describes pure bending of anisotropic

crystals.

(3.16) εij =
x1

R


−ν1133 −ν1233 −ν1333

−ν1233 −ν2233 −ν2333

−ν1333 −ν2333 1

 .
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Note, as was shown in Section 3.2, any difference between measurements and principal

crystal axes can be accounted for by modifying Eq. 3.15 with a rotation matrix aij de-

scribing the relationship between the measurement and principal crystal axes [9, 8]. This

amounts to replacing each Poisson ratio in Eq. 3.16 with

(3.17) ν ′ij33 = −
s′ij33

s′3333

= − aimajna3oa3psmnop
a3ma3na3oa3psmnop

.

From the strain matrix in Eq. 3.16, it is clear that the strain along the long beam axis

is accompanied by other strain components which can be determined from the knowledge

of ε33 and elastic constants. Since the experiments reported in Section 3.5 involve samples

with m3m, 4/mmm, and mmm point group symmetry oriented along high symmetry axes,

the off-diagonal terms are zero in pure beam bending and 3.16 reduces to

(3.18) εij =
x1

R


−ν1133 0 0

0 −ν2233 0

0 0 1

 .

3.3.3. Flexoelectric Polarization of Anisotropic Beams under Pure Bending

The strain expression in Eq. 3.16 indicates that in general there will be a maximum of six

unique strain gradients in an anisotropic, homogeneous crystal subjected to pure bending.

These are given by

(3.19) εij,1 = −νij33ε33,1
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Combining these non-trivial strain gradients with the expression for flexoelectric polar-

ization (Eq. 3.2) yields

(3.20) Pk = µk1ijεij,1 = −µk1ijνij33ε33,1.

This equation represents a complete description of the flexoelectric response of an anisotropic,

homogeneous crystal subjected to pure bending.

Since Pi in Eq. 3.20 are measurable as short-circuit currents (Section 2.4) and ε33,1 is

obtained from measured bending displacements and sample geometry (Section 2.3), it is

convenient to define an effective flexoelectric coefficient which corresponds to the measured

slope that would characterize the flexoelectric response in a pure bending experiment [52].

(3.21) Pk = µeffk133ε33,1, µeffk133 = −µk1ijνij33

Eq. 3.21 makes it clear that even under the relatively simple strain gradients present

under pure bending, flexoelectric characterization involves measuring linear combinations

of tensor coefficients [52]. The following procedure should be used to generate the formulae

for µeffk133 for a specific sample:

• Determine the relationship between the measurement and principal crystal axes

(aij).

• Compute the anisotropic Poisson ratio components ν ′ij33 using elastic compliance

coefficients sijkl and aij.

• Transform the flexoelectric coefficient tensor from µijkl to µ′ijkl using aij.
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• Combine (2) and (3) to calculate µ′effk133 = −µ′k1ijν
′
ij33, the effective coefficient

relating P ′k and ε′33,1.

3.3.4. Example: Effective Flexoelectric Coefficients of m3m Beam under Pure

Bending

As an example of the procedure outlined above, consider a m3m beam aligned along its

principal axes so that aij = δij, where δij is the Kronecker delta. In this case, the strain

matrix from Eq. 3.16 reduces to

(3.22) εij =
x1

R


−ν 0 0

0 −ν 0

0 0 1


where ν = −s1122/s1111 owing to the m3m point group symmetry. This strain matrix

indicates there are three non-trivial strain gradients which can couple to flexoelectric

polarization components: ε11,1, ε22,1, and ε33,1. Written explicitly the three possible po-

larization components are

P1 = (−νµ1111 − νµ1122 + µ1133)ε33,1

P2 = (−νµ2111 − νµ2122 + µ2133)ε33,1

P3 = (−νµ3111 − νµ3122 + µ3133)ε33,1

(3.23)
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which reduces to

P1 = (−νµ1111 − νµ1122 + µ1122)ε33,1

P2 = P3 = 0

(3.24)

after considering the symmetry of the flexoelectric coefficient tensor for the point group

m3m. Therefore, the effective flexoelectric coefficient measured in the x1 direction this

sample is

(3.25) µ
eff,(100)
1133 = (1− ν)µ1122 − νµ1111, ν = −s1133

s3333

.

If we were to cut additional beams from this same material oriented along other high

symmetry directions, we could repeat the procedure described above to find expressions

for the effective flexoelectric coefficient in the x′1 measurement direction. The results of

this process are included for a m3m sample with x′1 = [110], x′2 = [11̄0], and x′3 = [001]

(3.26)

µ
eff,(110)
1133 =

s1111 + s1122

s1111 + s1122 + 2s1212

µ1111+
s1111 + 3s1122

s1111 + s1122 + 2s1212

µ1122−
4s1212

s1111 + s1122 + 2s1212

µ1212

and with x′1 = [111], x′2 = [12̄1], and x′3 = [1̄01]

(3.27)

µ
eff,(111)
1133 =

2(s1111 + 2s1122)

3(s1111 + s1122 + 2s1212)
µ1111+

4(s1111 + 2s1122)

3(s1111 + s1122 + 2s1212)
µ1122−

8s1212

3(s1111 + s1122 + 2s1212)
µ1212.

It is worth mentioning that Eq. 3.25- 3.27 are not linearly dependent, meaning that

pure bending measurements on three samples with different crystallographic orientations

cannot be used to solve for the individual flexoelectric tensor components, even in a cubic

material [52].
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3.4. Three-Point Beam Bending in Three-Dimensions

The analysis of pure beam bending in the previous section provided the machinery

to treat new characteristics of three-dimensional bending, including Poisson effects and

material anisotropy, that were not introduced in Chapter 2 but are necessary to quan-

titatively analyze flexoelectric measurements. While TPB is not pure bending (samples

under TPB have a linear moment (Section 2.3) whereas those under pure bending possess

a constant moment), the FEA simulations presented in this section demonstrate that,

on average, TPB strain gradients are related to pure bending strain gradients via simple

geometric modification. After introducing FEA modelling, we analyze the strain fields

calculated with this approach to determine which TPB strain gradients can couple to

flexoelectric polarization. Then, modifications for pure bending strain gradient expres-

sions are developed which allow for the representation of TPB as an altered form of pure

bending. Lastly, we quantify the accuracy of using the Euler-Bernoulli approximation to

determine ε33,1 from measured displacements.

3.4.1. Finite Element Analysis

FEA is a powerful technique capable of finding numerical solutions to differential equa-

tions. Interested readers are directed to textbooks, e.g. Ref. [82], for detailed explana-

tions on this technique. In this chapter, FEA was performed using Abaqus to numerically

simulate TPB. Unless otherwise stated, the results shown in subsequent sections corre-

spond to a 10 mm × 3 mm × 0.5 mm beam resting on rigid supports spaced 8.4 mm

apart with a rigid knife edge centered on the beam. TPB was simulated by applying

a given displacement (typically 5 − 50 µm) to the knife edge and the resulting strain
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fields were analyzed. Since these simulations were displacement controlled, the strains

that developed were independent of the elastic properties of the beam material for the

high symmetry orientations considered here. Most commonly, the elastic properties of

aluminum (Y = 70 GPa, ν = 0.3) were used in the FEA simulations described below, but

these were varied to confirm the results were insensitive to the elastic properties.

An example of a TPB simulation is shown in Figure 3.5. Tests were performed to en-

sure all quantities were adequately converged with respect to mesh density. C3D8R mesh

elements with reduced integration were used, and tests performed with C3D8I incompat-

ible, second-order elements yielded no changes within the precision of these calculations.

Contact was modelled as hard-contact with surface-to-surface discretization and tangen-

tial friction (friction coefficient of 0.15). Mirror symmetries present in TPB were included

in the model to minimize the computational cost of the simulations. Therefore, the sim-

ulations were only performed on 1/4 of the bent beam. The supports beams were not

allowed to rotate or displace, and displacement and rotation of the knife edge in directions

other than the main bending direction were prohibited.

3.4.2. Three Point Bending Strains from Finite Element Modelling

The stresses and strains determined from the FEA simulations of TPB described in the

previous section are shown in Figure 3.6 and 3.7. Recall that pure bending (Section 3.3)

predicted a stress matrix [54] with a single non-zero component (σ33), the absence of

shear strains except in low symmetry cases, and diagonal strains related according to

(3.28) ε11(x1) = ε22(x1) = −νε33(x1) = − ν
R
x1.
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Figure 3.5. Abaqus simulation of TPB showing the sample resting between
the rigid support and knife edge. x and z mirror symmetry was used for
computational efficiency. For image clarity, this image contains a lower
resolution mesh than was used in calculations.

Contrary to these predictions, the FEA simulations indicate the presence of multiple non-

zero stress components (Figure 3.6) and shear strains (Figure 3.7) throughout the sample

in TPB. Additionally, the diagonal strains deviate from the equalities in Eq. 3.28 and

vary with x2 and x3.

For flexoelectric measurements, we are interested in the gradients of the strains shown

in Figure 3.7. These 18 possible strain gradients will, in general, have complex spatial

variations, but only those whose average is non-zero throughout the electrode area are

relevant for the polarization measured in a typical flexoelectric experiment (Chapter 2).

A convenient method to compute the average of a particular strain gradient component
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Figure 3.6. Stresses in a beam subjected to TPB according to the axes
convention defined in Figure 3.2 calculated with FEA modelling. Each
column shows cross-sections of the six stress components at the top, middle,
and bottom surfaces, respectively. Note, the color scale varies in each plot.

over the electrode area is via a linear fit to the strain over the electrode area. For example,

ε33,1 can be found by taking the slope of a linear fit to ε33 as a function of x1. The results

of this process are summarized in Table 3.1.

x1 x2 x3

ε11 -0.319 -0.001 -0.001
ε22 -0.249 0.000 0.000
ε33 1.000 0.000 0.000
ε12 0.000 0.000 0.003
ε13 -0.002 -0.006 0.000
ε23 0.077 0.000 0.000

Table 3.1. Strain gradient values averaged over the electrode normalized
to the average of the principal strain gradient ε33,1 over the electrode (i.e.
εij,k/ε33,1). Columns indicate the direction of the gradient for the strains
in each row. Values correspond to a finite element simulation of a 10 mm
× 3 mm × 0.5 mm beam sitting on supports with a separation of 8.4 mm
displaced by 5 µm at the beam center.
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Figure 3.7. Strains in a beam subjected to TPB according to the axes con-
vention defined in Figure 3.2 calculated with FEA modelling. Each column
shows cross-sections of the six strain components at the top, middle, and
bottom surfaces, respectively. Note, the color scale of the shear strains
differs from the normal strains.

It is clear from Table 3.1 that only ε11,1, ε22,1 and ε33,1 make substantial contributions

to a measured flexoelectric response, even without considering materials symmetry. This

reduces the general expression for flexoelectric polarization in Eq. 3.2 to

P 1 = µ1111ε11,1 + µ1122ε22,1 + µ1133ε33,1

P 2 = µ2111ε11,1 + µ2122ε22,1 + µ2133ε33,1

P 3 = µ3111ε11,1 + µ3122ε22,1 + µ3133ε33,1.

(3.29)

Since the materials measured in Section 3.5 have m3m, 4/mmm, and mmm point group

symmetries, the flexoelectric coefficients in the expressions for P2 and P3 are all zero. For

the rest of this chapter, we will limit our analysis to the strain gradients ε11,1, ε22,1 and

ε33,1. Note, besides the shear strain gradients being much smaller than the longitudinal
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and transverse strain gradients in Table 3.1, first principles calculations also indicate shear

flexoelectric coefficients for oxides are an order of magnitude smaller than longitudinal and

transverse flexoelectric coefficients (Chapter 4). This further supports neglecting shear

strain gradient contributions to the flexoelectric measurements reported in Section 3.5.

3.4.3. Deviations from Pure Bending

At the start of this chapter we were careful to differentiate between TPB and pure bending

because the two forms of bending appeared to be rather different. However, within the

context of flexoelectric characterization, the analysis of TPB presented above suggests

TPB has much in common with pure bending. Not only have we demonstrated that only

the ε11,1, ε22,1 and ε33,1 strain gradients can couple to flexoelectric polarization (these are

the same strain gradients found in Section 3.3 to exist in pure bending), but Table 3.1

indicates ε11,1/ε33,1 and ε22,1/ε33,1 are close to the pure bending value of −ν. The deviation

from the pure bending value of these ratios is a consequence of the well-known phenomenon

of anticlastic suppression [56, 78, 83, 84, 79, 80]: anticlastic bending does not occur

freely in TPB, tending to be suppressed particularly near the supports and knife edge (see

stresses in Figure 3.6). This means that even though the Searle parameter [78] would

predict the samples used here to be firmly in the beam-bending regime (β ∼ 10−3), beam

samples in TPB have some plate-like tendencies [83, 84, 79, 80].

In the fully clamped limit of TPB (i.e. where anticlastic bending has been completely

suppressed), the sample will act like a plate subjected to pure bending [54, 83, 84, 79,
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80]. The strains of a clamped plate under pure bending [54] are

ε22 = 0

ε33 = −x1

R

ε11 = − ν

1− ν
ε33

(3.30)

which have the following relationship between strain gradient components:

ε11,1 = − ν

1− ν
ε33,1

ε22,1 = 0.

.(3.31)

These expressions represent an upper bound for the relationship between the average

strain gradients in TPB, i.e. one in which anticlastic bending has been completely sup-

pressed. On the other hand, the pure beam bending strains [54] reproduced below

ε11,1 = −νε33,1

ε22,1 = −νε33,1

(3.32)

are lower bounds for the relationship between the average strain gradients in TPB, i.e. the

limit in which anticlastic bending occurs completely unhindered. The real strain gradients

for a given sample will be somewhere between these two limits.

The above discussion motivates introducing a parameter φ which is equal to 0 in

the beam bending limit and 1 in the plate bending limit [83, 84]. The strain gradient
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relationships in Eq. 3.31 and 3.32 can then be expressed in terms of φ as

−ε11,1

ε33,1

= ν

(
1− ν

ν − 1
φ

)
−ε22,1

ε33,1

= ν (1− φ)

.(3.33)

Ashwell [83] and Pomeroy [84] have shown that in the case of pure bending, the dimen-

sionless parameter φ has the functional form

(3.34) φ(x) = 1− 2

x

(
cosh(x)− cos(x)

sinh(x) + sin(x)

)
.

x = (3(1− ν2))
1/4√

β where β = w2

Rb
is the Searle parameter [78]. For TPB 1/R is

approximately the average of the Euler-Bernoulli strain gradient (Section 3.5), so the

average of β over the entire sample is given by

(3.35) β =
12w2u

bL2
.

Rearranging Eq. 3.33 allows for the expression of the ratio of the strain gradients in terms

of the dimensionless parameter φ which is purely a function of sample geometry and ν.

1− φ(x) = −1

ν

ε22,1

ε33,1

φ(x) =
ν − 1

ν2

(
ε11,1

ε33,1

+ ν

)(3.36)

Therefore, bending an arbitrary sample should yield a point on the universal curves defined

by Eq. 3.36, where φ is solely defined by ν, sample dimensions, support spacing, and

displacement at the beam center through Eq. 3.35.
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After performing a series of FEA simulations in which the sample dimensions, elastic

properties, support spacing, and displacement at the beam center were varied, we found

the beam-to-plate transition in for TPB is poorly described when the pure bending solu-

tion x = (3(1− ν2))
1/4
√
β is used in Eq. 3.34-3.36. This is demonstrated in Figure 3.8(a)

where Eq. 3.36 is plotted for the different FEA simulations. There is clearly a missing

dependency in Eq. 3.34-3.36 because neither − 1
ν

ε22,1
ε33,1

nor ν−1
ν2

(
ε11,1
ε33,1

+ ν
)

fall on universal

curves given by 1-φ and φ.

Empirically we have found that if the Searle parameter [78] in Eq. 3.35 is replaced by

a modified Searle parameter β
∗

defined as

(3.37) β
∗

=
2b

u
β =

24w2

L2
.

Eq. 3.37 accurately captures the beam-to-plate transition for TPB. Figure 3.8(b)

demonstrates the quantitative agreement between − 1
ν

ε22,1
ε33,1

and ν−1
ν2

(
ε11,1
ε33,1

+ ν
)

with 1-φ

and φ, respectively, for all combinations of sample dimensions, elastic properties, sup-

port spacing, and beam displacements investigated with FEA simulations and zero fit

parameters. For small β
∗
, the strain gradients approach the beam bending limit with

ε22,1/ε33,1 = ε11,1/ε33,1 = −ν . For large β
∗
, the strain gradients approach the plate bend-

ing limit with ε22,1/ε33,1 = 0 and ε11,1/ε33,1 = − ν
1−ν .Ultimately, these results indicate that

the extent of anticlastic bending can be determined solely from geometric factors and

elastic constants through Eq. 3.34 with x∗ = (3(1− ν2))
1/4
√
β
∗
.

For convenience we have included the value of the anticlastic correction factors for a

10×3×0.5 mm beam sitting on supports 8.4 mm apart displaced 5 µm at its center in

Table 3.2 as these conditions are close to the conditions typically used in the experiments
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Figure 3.8. Beam to plate transition using (a) the Searle parameter and

(b) the modified Searle parameter β
∗

= 2b
u
β. Each data point corresponds

to a different combination of sample dimensions, elastic properties, support
spacing, and beam displacements, with circles and squares indicating simu-
lations using the elastic properties of Al and STO, respectively. The entire
data set collapses onto a single curve given by φ(x∗) (black line) when β

∗

is used.

reported in Section 3.5. The correction factors k1 and k2 are defined as

ε11,1

ε33,1

∣∣∣∣
TPB,FEA

= −k1ν
ε11,1

ε33,1

∣∣∣∣
PureBeamBending

ε22,1

ε33,1

∣∣∣∣
TPB,FEA

= −k2ν
ε22,1

ε33,1

∣∣∣∣
PureBeamBending

(3.38)

In summary, the above analysis indicates the effective flexoelectric coefficients mea-

sured in TPB are not purely functions of the flexoelectric tensor components and elastic

constants, but also include anticlastic correction factors. Reintroducing the anisotropic
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Strain Gradient FEA (1/m) Pure Beam Bending (1/m) Correction Factor
ε33,1 -0.43 -0.43 1.00
ε11,1 0.14 0.13 1.08
ε22,1 0.11 0.13 0.85

Table 3.2. Average strain gradients calculated for 10×3×0.5 mm beam dis-
placed 5 µm at its center from FEA simulations compared to the average
strain gradients predicted from pure beam bending (assuming the same ε33,1

value). The values reported here correspond to the dimensions and strain
gradients used in experiments reported in Section 3.5.

Poisson ratios into Eq. 3.33 yields

−ε11,1

ε33,1

= ν1133

(
1− ν1133

ν1133 − 1
φ

)
−ε22,1

ε33,1

= ν2233 (1− φ)

(3.39)

which can be used to rewrite Eq. 3.29, yielding general expressions for the flexoelectric

polarization components measured in TPB:

P 1 =

(
−ν1133µ1111 − ν2233µ1122 + µ1133 + φ

(
ν2

1133

ν1133 − 1
µ1111 + ν2233µ1122

))
ε33,1

P 2 =

(
−ν1133µ2111 − ν2233µ2122 + µ2133 + φ

(
ν2

1133

ν1133 − 1
µ2111 + ν2233µ2122

))
ε33,1

P 3 =

(
−ν1133µ3111 − ν2233µ3122 + µ3133 + φ

(
ν2

1133

ν1133 − 1
µ3111 + ν2233µ3122

))
ε33,1.

(3.40)

The remaining step to complete the analysis of the flexoelectric response of a sample to

TPB is to determine the average strain gradient ε33,1 from measurable quantities. For this

we return to Euler-Bernoulli beam bending theory.
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3.4.4. Application of Euler Bernoulli Beam Bending Solutions

In Chapter 2, it was shown that bending a one-dimensional beam in a TPB geometry

yielded a displacement profile of

(3.41) u(x) = − F

48D

(
4x3 − 3L2x

)
, 0 ≤ x ≤ L

2
.

Extending this Euler-Bernoulli beam theory solution [54, 56, 55] to three-dimensions

using the axes convention defined in Figure 3.2 gives

(3.42) u1(x3) = − F

48D

(
4x3

3 − 3L2x3

)
, 0 ≤ x3 ≤

L

2
.

There is an unsymmetrized strain gradient associated with this displacement

(3.43) η1,33 =
∂2u1

∂x2
3

= − F

2D
x3, 0 ≤ x3 ≤

L

2

which is related to the symmetric strain gradients [59] we have been working with via

(3.44) η1,33 = 2ε13,3 − ε33,1.

When the shear strain gradient ε13,3 is negligible (see Table 3.1), Eq. 3.44 reduces to

(3.45) ε33,1 =
F

2D
x3, 0 ≤ x3 ≤

L

2
.

Therefore, if Euler-Bernoulli beam theory is obeyed in three-dimensional samples and the

shear strain gradient ε13,3 is small, then Eq. 3.45 provides a means to determine ε33,1 using

measurable quantities available from TPB.
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To assess the quality of using Euler-Bernoulli beam theory on three-dimensional

beams, we perform FEA modelling of TPB, matching the sample dimensions and geom-

etry used in experiments. Figure 3.9 shows u1(x3), u1 computed from FEA and averaged

over the width and thickness, as a function of x3. We find u1 ∼ x3
3 as Euler-Bernoulli

beam theory predicts, as well as good quantitative agreement between the polynomial

coefficients calculated from FEA and predicted by the analytic theory.

Figure 3.9. Comparison between displacements and strain gradients com-
puted with FEA simulations and predicted by analytic Euler-Bernoulli
beam-bending theory. As predicted by Euler-Bernoulli theory, (a) the av-
erage displacement u1 is found to scale with the cube of x3 and (b) the
average strain gradient ε33,1 is found to scale linearly with x3. (c) In both
cases there is quantitative agreement between the polynomial coefficients.

This quantitative agreement between the TPB displacements and Euler-Bernoulli the-

ory is an indication that it is proper to use Euler-Bernoulli to describe the experimental

TPB strain gradients. However, to directly confirm this we compute ε33,1, which is ε33,1

calculated from finite element analysis and averaged over the width and thickness, and

compare this value to Euler-Bernoulli theory. Figure 3.9(b) shows that as with u1, ε33,1

obeys the proper Euler-Bernoulli scaling, although there are some small deviations at

the point of contact between the knife edge and sample. Figure 3.9(c) also demonstrates
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the quantitative agreement between ε33,1 calculated from FEA and predicted by Euler-

Bernoulli theory. Ultimately, it is necessary to average the strain gradient in Figure 3.9(b)

over the electrode area to connect with experiments [52]. This yields ε33,1=0.43 1/m from

FEA, which is within 5% of the Euler-Bernoulli average value of 0.45 1/m. The agreement

between the average behavior of the u1 and ε33,1 computed from FEA and the analytic

predictions based upon 1D Euler-Bernoulli theory support our use of 1D Euler-Bernoulli

values to calculate ε33,1 in experiments.

3.5. Experimental Measurements for Single Crystals

The analyses above provide the framework to write formulae for the effective flexoelec-

tric coefficient of an arbitrary crystal with a known geometry, crystallographic orientation,

and point group measured in TPB. In general, these expressions will be linear combina-

tions of flexoelectric tensor components, elastic constants, and anticlastic factors. In each

of the measurements reported in the following subsections, the effective flexoelectric co-

efficient corresponds to the slope of the x1 component of polarization and the average

strain gradient ε33,1 determined from the Euler-Bernoulli approximation.

(3.46) P 1 = µeff1133ε33,1

The sign of the effective flexoelectric coefficient is determined according to the phase

difference method described in Chapter 2. After introducing each material and presenting

the flexoelectric measurements, the exact form of µeff1133 will be given and discussed. Note,

the measurements reported in this section are limited to those performed on high quality

single crystals and materials are grouped in subsections according to their point group
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symmetry. The role of defects in flexoelectricity is considered in Chapters 5 and 6. In

all the samples reported below, b = 3 mm, L = 8.41 mm, h = 0.5 mm, a = 4 mm, and

ν ≈0.24, so φ ≈0.1 indicating there are non-negligible effects from anticlastic bending.

3.5.1. Cubic Perovskites SrTiO3 and KTaO3

STO and KTaO3 (KTO) have the archetypal ABO3 cubic perovskite structure with space

group Pm3m at room temperature and atmospheric pressure [85, 86]. This structure

consists of a network of corner-sharing BO6 octahedra with the A-site cation positioned in

the middle of each 8 octahedra [87]. Both STO and KTO are wide bandgap insulators [88,

89] with high dielectric constants (310 and 242 for STO [90] and KTO [91], respectively)

which have been the focus of extensive research in bulk and thin-film form. More recently,

they have been of interest owing to their incipient ferroelectric [92] and superconducting

properties [93, 94, 95]. In the context of flexoelectricity, STO is significant because it

is one the few materials that has had its flexoelectric response experimentally [52] and

theoretically characterized [58, 74]. Therefore, it represents an important benchmark

material for the flexoelectric effect.

Figure 3.10 shows the flexoelectric characterization of single crystals of STO and KTO.

In both cases, a highly linear polarization is induced from the applied strain gradient

and flexoelectric coefficients are found to range between ∼1-10 nC/m. The measured

values for STO are in good agreement with the literature values [52] and these are the

first flexoelectric coefficient measurements in KTO. As established in this chapter, the

effective flexoelectric coefficient measured in TPB can be related to the underlying tensor

coefficients if the sample geometry, orientation, and elastic constants are known. Since
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Figure 3.10. Flexoelectric characterization of (a) STO and (b) KTO sin-
gle crystals. The flexoelectric response is highly linear (r2 > 0.98 with
root mean square error (RMSE) < 0.05) and magnitude of the flexoelectric
coefficients ranges between ∼1-10 nC/m.

both materials have m3m point group symmetry, the KTO and STO samples with {100}

faces have the same expression for the effective flexoelectric coefficient:

(3.47) µ
(100)
eff =

s1122

s1111

µ1111 +
s1111 + s1122

s1111

µ1122 − φ
s1122

s1111

(
s1122

s1111 + s1122

µ1111 + µ1122

)

The STO sample with the (110) surface was oriented such that x2 = [110] and x3 =

[001]. For this orientation, the effective flexoelectric coefficient has the form

µ
(110)
eff =

s1111 + s1122

s1111 + s1122 + 2s1212

µ1111 +
s1111 + 3s1122

s1111 + s1122 + 2s1212

µ1122−

4s1122

s1111 + s1122 + 2s1212

µ1212 +
φ

2
µ

(110)
anticlastic.

(3.48)
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where

(3.49)

µ
(110)
anticlastic = − 4s1122µ1122

s1111 + s1122 + 2s1212

+
(s1111 + s1122 − 2s1212) s1212 (µ1111 + µ1122 + 2µ1212)

(s1111 + s1122) (s1111 + s1122 + 2s1212)
+

(−s1111 − s1122 + 2s1212) (µ1111 + µ1122 + 2µ1212)

2 (s1111 + s1122 + 2s1212)

3.5.2. Pseudocubic Rhombohedral Perovskite LaAlO3

LAO is a rhombohedral perovskite with space group R3c at room temperature and atmo-

spheric pressure [96]. The deviations from the cubic perovskite structure are very small

(the pseudocubic angle is 90.086◦ [97]), so it is common to approximate LAO as a cubic

material. LAO is frequently used as a substrate for thin film growth, especially for su-

perconductors [98], and has achieved popularity in recent years due to the discovery of a

two-dimensional electron gas at the LAO/STO interface [99]. It is an interesting material

in its own right because it has a moderately large dielectric constant [100], anomalous

Born charges [101], and is heavily twinned at room temperature as a result of its cubic

to rhombohedral phase transition at 550◦C [97]. The structure of these twins has been

studied extensively [102, 103, 66, 104, 105, 106], and LAO twins are intriguing be-

cause there is evidence of polarity [107, 108, 109] at LAO twin boundary (TB)s (for

more details on the effects of twin boundaries on flexoelectricity see Chapter 6).

Although LAO is normally twinned at room temperature, it is possible to cut a twin-

free portion out of a larger crystal. Such a sample is shown in Figure 3.11 along with its

flexoelectric response. The twin-free sample shows very linear behavior with an effective

flexoelectric coefficient of 3.2 nC/m, which is comparable to the effective coefficients



91

measured for STO and KTO even though LAO has a dielectric constant an order of

magnitude smaller than these two materials. This flexoelectric coefficient is in agreement

with a recent measurement of the flexoelectric response of LAO using a different approach

[110]. Polarized optical microscopy was used after the experiment to confirm the sample

remained twin-free throughout the course of the experiment (see Chapter 6 for a detailed

discussion of polarized optical microscopy and a further analysis of twin-boundary effects

on flexoelectricity).

Since the axes of this sample are oriented along the 〈100〉pseudo-cubic directions and

LAO is nearly cubic [97], the effective flexoelectric coefficient of LAO will be approxi-

mately given by the Eq. 3.48.

Figure 3.11. (a) Flexoelectric characterization of twin-free LAO single crys-
tal and (b) polarized optical microscopy confirming the sample remained
twin-free throughout the course of the bending experiments. The flexoelec-
tric response is highly linear (r2 > 0.99 with RMSE < 0.03). Note, the
vertical and horizontal lines in the images are stitching artifacts.
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3.5.3. Tetragonal Oxide TiO2

TiO2 exists as a number of polymorphs [111], the two most common being rutile and

anatase. The rutile phase of TiO2 studied here has the space group P4 2
m

nm at room tem-

perature and atmospheric pressure. It consists of chains of edge-sharing TiO6 octahedra

which are connected via shared corners, and is most commonly studied for high dielectric

constant [112] and catalytic [113] applications. Rutile TiO2 was analyzed here because

high dielectric constants are typically used as a proxy for strong flexoelectric couplings

[10, 11]. Although the flexoelectric response of TiO2 has been measured in the litera-

ture [114, 115], the functional form of the effective flexoelectric coefficient has not been

provided.

The flexoelectric response of TiO2 shown in Figure 3.12 is highly linearly and yields an

effective flexoelectric coefficient of the same magnitude as the cubic (and pseudo-cubic)

perovskites studied in the previous two sections. Literature values for the flexoelectric

coefficient are in good agreement with measurements indicating ∼1-2 nC/m [114, 115],

however a direct comparison is with existing measurements difficult because (1) the re-

ported flexoelectric coefficient for single crystal TiO2 measured with TPB did not report

crystallographic orientation [114] and (2) the other measurement in the literature was

performed on polycrystalline thin films using a cantilever based approach [115]. In both

cases, it is not possible to deduce the functional form of the effective flexoelectric coef-

ficient, but the order of magnitude agreement between these two measurements and my

own is encouraging.
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My measurements were performed on TiO2 beams with x1 = [100], x3 = [001], and

x2 = [010]. Note, according to the standard crystallographic convention [001] is the four-

fold axis. The functional form of the effective flexoelectric coefficient for this orientation

is

(3.50) µ
(100)
eff =

s1133

s3333

(µ1111 + µ1122) + µ1133 − φ
s1133

s3333

(
s1133

s3333 + s1133

µ1111 + µ1122

)
.

For completeness, if the sample had rotated 90◦ along the surface normal so that

x2 = [001] and x3 = [010], the functional form of the effective flexoelectric coefficient

would be

(3.51) µ
(100)
eff =

s1122

s3333

µ1111 +µ1122 +
s1133

s1111

µ1133−φ
1

s1111

(
s2

1122

s1111 + s1122

µ1111 + s1133µ1133

)
.

Figure 3.12. Flexoelectric characterization of TiO2 single crystals. The flex-
oelectric response is highly linear (r2 > 0.97 with RMSE < 0.03) with an
effective flexoelectric coefficient of 1.7 nC/m.
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3.5.4. Orthorhombic Perovskites YAlO3 and DyScO3

The majority of perovskite materials do not possess the archetypal cubic perovskite struc-

ture, but instead have a distorted orthorhombic structure with space group Pnma at room

temperature and atmospheric pressure [116]. These structures are characterized by com-

binations of octahedral rotations and anti-polar A-site displacements [117]. YAlO3 (YAO)

and DSO are two materials which possess this structure [118, 119]. From a fundamental

science perspective, DSO is an interesting material because of its low-temperature mag-

netic ordering [120], a highly anisotropic magnetic response [121], and polar phonons

[122], and YAO is widely studied for its optical properties [123]. From an applications

perspective, high dielectric constants make YAO and DSO potential gate oxide materials

[124, 125, 126]. Also, their use as thin film substrates has led to discoveries such as an

enhanced ferroelectric response in epitaxially grown STO [127].

As shown in Figure 3.13, the flexoelectric responses of both YAO and DSO are highly

linear and characterized by effective flexoelectric coefficients which are the same order

of magnitude as those measured above [27]. In both cases, the materials are oriented

such that x1 = [101], x3 = [010], and x2 = [101] in the Pnma setting. Accordingly, the

measured effective flexoelectric coefficient has the form:

(3.52) µ
(101)
eff = µ1122 + µ3322 +

4s1122

s2222

(µ1111 + µ3311) +
4s2233

s2222

(µ3333 + µ1133) + φµ
(101)
anticlastic
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where

(3.53)

µ
(101)
anticlastic = − s1122 + s2233

s2222 (s1122 + s2222 + s2233)
((2s1122 + 2s2233) (µ1111 + µ1133 + µ3311 + µ3333) +

s2222 (µ1111 + µ1133 + µ3311 + µ3333 − 2µ1313 − 2µ3113))

Figure 3.13. Flexoelectric characterization of (a) YAO and (b) DSO single
crystals. The flexoelectric response is highly linear (r2 > 0.99 with RMSE <
0.01) and magnitude of the flexoelectric coefficients ranges between ∼1-10
nC/m.

3.5.5. Flexocoupling Voltage Comparison

Recall that it is common practice to characterize flexoelectricity by the short-circuit flex-

oelectric coefficient defined as

(3.54) Pi = µEijklεkl,j
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which describe the linear coupling between polarization and strain gradient in the absence

of an electric field. An alternative formulation of flexoelectricity can be made in terms

of flexocoupling voltages, which are the materials parameters describing the gradient

in the average Coulomb potential in a crystal that arises from a strain gradient [58].

Flexocoupling voltages were introduced as scalar quantities in Chapter 2, but formally

are fourth-rank tensors like the flexoelectric coefficient. Flexocoupling voltages and short-

circuit flexoelectric coefficients are related via

(3.55) fijkl =
µEijkl
ε0χeff

where χeff is the effective dielectric susceptibility in a given crystallographic direction.

Flexocoupling voltages tend to be a more convenient metric for the flexoelectric effect

in theoretical considerations of flexoelectricity. Early estimates of the flexocoupling volt-

age based upon phenomenological theory indicated that their magnitude should be within

1-10 V and largely insensitive to differences in crystal structure [128, 41, 11, 10]. This

estimate was supported by more recent phenomenological analyses as well [129], however

there has not been a sufficient number of measurements in the literature to robustly test

this 1-10 V prediction. Table 3.3 includes the magnitudes of the measured flexoelectric

coefficients from the single crystal measurements shown in Figures 3.10- 3.13, the litera-

ture values for the effective dielectric susceptibilities [112, 125, 126, 100, 90, 91] in the

relevant crystallographic direction, and the flexocoupling voltages calculated according to

Eq. 3.55.



97

Material (surface) |µeff | (nC/m) χeff |feff | (V)
SrTiO3 (100) 12.4 ± 0.6 309 4.5 ± 0.2
SrTiO3 (110) 8.3 ± 1.4 309 3.0 ± 0.5
KTaO3 (100) 4.4 ± 0.5 241 2.1 ± 0.2

LaAlO3 (100)pc 3.2 ± 0.3 25 14.5 ± 1.4
TiO2 (100) 1.7 ± 0.3 85 2.3 ± 0.6

YAlO3 (101) 3.7 ± 0.2 14.7 28 ± 1.5
DyScO3 (101) 8.1 ± 0.4 19.4 47.2 ± 2.3

Table 3.3. Summary of effective flexoelectric coefficients, dielectric con-
stants, and effective flexocoupling voltages of all the materials investigated
in this chapter.

These measurements indicate that while the effective flexoelectric coefficients across all

the measured materials are between ∼1-10 nC/m, the corresponding flexocoupling volt-

ages show substantially larger variation and do not appear to be structurally insensitive.

Instead, it appears that low dielectric constant oxides possess flexocoupling voltages 5-

10× larger than the flexocoupling voltages of high dielectric constant oxides. Figure 3.14

summarizes these results by depicting the flexocoupling voltage averaged over all sam-

ples and crystallographic orientations for a particular materials system as a function of

dielectric constant.

Flexocoupling voltages are the more fundamental quantities describing the flexoelectric

response of a solid rather than the measured short-circuit flexoelectric coefficients [58].

This is because short-circuit flexoelectric coefficients measured experimentally have a

dielectric contribution (recall, µ = fε0χ), and flexocoupling voltages are the materials

parameters entering into the Landau energy density expansion (see discussion in Chapter 2

and Ref. [10, 11]). Therefore, the relationship in Figure 3.14 suggests that the intrinsic

flexoelectric properties of the low dielectric constant materials are larger than those of
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Figure 3.14. The average effective flexocoupling voltages measured for each
single crystal oxide investigated in this work as a function of dielectric
constant. Theoretically, the flexocoupling voltage should be a constant
between 1-10 V for all materials.

the high dielectric constant materials. Since the dielectric constant is often considered

a proxy for the polarizability of a solid, the indication that lower dielectric constant

materials exhibit a stronger propensity for flexoelectric polarization is somewhat counter-

intuitive. It is worth noting that counting arguments do not account for the difference

in the flexocoupling voltage: if the large flexocoupling voltages in DSO and YAO were

merely a consequence of the effective flexoelectric coefficient expression in Eq. 3.52 having

contributions from more flexoelectric coefficients than STO and KTO in Eq. 3.48, then

both the flexoelectric coefficients and flexocoupling voltages should be anomalously large.
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At the moment the origin of this observation is unclear, but some possible explanations

are explored in future chapters using DFT including the role of site symmetry (Chapter 4)

and surfaces (Chapter 5).
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CHAPTER 4

First Principles Theory of Bulk Flexoelectricity

4.1. Historical Context

The first theoretical treatments of flexoelectricity in solids arose in the context of

lattice dynamics in the 1950s and 1960s [12, 41]. This work was rooted in phenomeno-

logical frameworks and led to order of magnitude estimates for the flexoelectric coefficient

(i.e. µ ∼ e/a, where e is the electron charge and a is the lattice parameter [41]), and in

one case estimates of flexoelectric coefficients in a few cubic ionic insulators based upon

lattice dynamic shell models [130]. The phenomenological description of flexoelectricity

was refined over the next 20 years, culminating in a formalized method for calculating

flexoelectric coefficients from a crystal’s dynamical matrix [128].

With the benefit of hindsight, it is apparent that the roots of the first principles

theory of bulk flexoelectricity were planted in work addressing absolute deformation

potentials[131, 132, 133, 134], but the first explicit attempt at such a theory was put

forward by Resta in 2010 [135]. Using an approach analogous to Martin’s description of

piezoelectricity [4], Resta demonstrated that electronic contributions to the flexoelectric

coefficient are given in terms of induced octupole moments. Resta’s analysis, which for-

mally only applied to elemental, cubic insulators, was generalized by Hong and Vanderbilt

to work for arbitrary insulators in 2011 [136] and then expanded to include lattice con-

tributions in 2013 [58]. Simultaneously and independently, Stengel developed a theory of
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flexoelectricity rooted in density functional perturbation theory (DFPT) [59, 137]. These

works approached the same problem from different perspectives, and ultimately arrived at

a unified, first principles description of flexoelectricity. More recently, these descriptions

have been generalized as current-density responses [138], implemented in ab initio codes

with DFPT capabilities [139], extended to describe arbitrary spatial dispersions [140],

and examined for lower dimensional materials [141].

In this chapter, I first provide an overview of the first principles theory of flexoelectric-

ity put forth by Hong and Vanderbilt [58] in Section 4.2 In Section 4.3 I discuss some of

the technical details concerning implementing this theory in DFT calculations and then

provide some benchmark calculations on STO in Section 4.4. Section 4.5 studies the

effects of the exchange and correlation functional on the flexoelectric response of STO.

Then, Section 4.6 and 4.7 includes a comparison of the first principles flexoelectric coef-

ficients of STO, KTO, LAO, and GdScO3 (GSO) with the measurements in Chapter 3.

Short-comings of the first principles theory of bulk flexoelectricity and approach adopted

here are addressed in Section 4.8 and Section 4.9. I performed all DFT calcultions and

analyses described in this chapter and benefitted from discussions with Professor Laurence

D. Marks.

4.2. Theory of Bulk Flexoelectricity

4.2.1. Overview

Here I provide a brief overview of the first principles theory of bulk flexoelectricity de-

veloped by Hong and Vanderbilt [58], stating the main conclusions and focusing on the
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physical interpretation of the theory. For technical details, including derivations, please

see Ref. [58].

Hong and Vanderbilt developed expressions for flexoelectric coefficients in terms of

charge density and force responses to long wavelength phonon perturbations. They showed

it is possible to decompose a flexoelectric tensor component µαβγδ into three terms

(4.1) µαβγδ = µelαβγδ + µldαβγδ + µlqαβγδ.

µelαβγδ is the purely electronic contribution to the flexoelectric coefficient and the other two

terms are lattice-mediated contributions, the lattice-dipole interaction µldαβγδ and lattice-

quadrupole interaction µlqαβγδ.

4.2.2. Pure Electronic Contributions

The pure electronic contribution to the flexoelectric response, also known as the frozen-

ion or clamped-ion contribution, is the sum of the octupole moments of the change in

charge density induced by all sublattice displacements. In the approximation that atomic

positions are unable to relax in response to an applied deformation, this term represents

the entire flexoelectric response.

(4.2) µelαβγδ =
1

6Ω

∑
I

Q
(3)
Iαβγδ

In Eq. 4.2, Ω is the unit cell volume and Q
(3)
Iαβγδ is the third moment (octupole) of the

change in charge density ρ(r) caused by the displacement ulIτ of atom I in cell l in the
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direction τ

(4.3) Q
(3)
Iατβγ =

∫
drrα

∂ρ(r)

∂ulIτ
rβrγ

and r are spatial coordinates.

4.2.3. Lattice-Dipole Contributions

The lattice-mediated, or relaxed-ion, contributions to flexoelectric coefficients come in

two forms. The first contribution, which is active in all insulators with finite dynamical

charges, is the lattice-dipole term. It relates the dipole moment of the change in charge

density induced by a sublattice displacement to the forces induced by that sublattice

displacement.

(4.4) µldαβγδ =
1

Ω

∑
Iτ,Jτ ′

Q
(1)
Iατ (K

−1)Iτ,Jτ ′TJτ ′βγδ

Q
(1)
Iατ is the first moment (dipole) of the change in charge density induced by the displace-

ment of atom I in cell l in the direction τ

(4.5) Q
(1)
Iατ =

∫
drrα

∂ρ(r)

∂ulIτ
.

It is a measure of dynamical charge [142] known as the Callen charge under fixed di-

electric displacement boundary conditions [143], or Born charge under fixed electric field

boundary conditions [144].

The force response tensor TIτβγδ describes the force on atom I in direction τ (FIτ )

caused by a strain gradient and has the physical interpretation of sub-lattice resolved
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elastic constants (see Ref. [59] and Section 4.5). It is typically defined in terms of

unsymmetrized strain gradients ηi,jk = ∂2ui
∂xj∂xk

as

(4.6) TIτβγδ =
∂FIτ
∂ηβ,γδ

.

In practice, the force response tensor is calculated as the second moment of the change

in forces induced by the displacement of atom I

(4.7) TIτβγδ = − 1

2uI

∑
J

∆FIτ,Jβ∆Rγ∆Rδ

where ∆FIτ,Jβ is the force on atom J in direction β caused by the displacement of atom

I in direction τ . ∆R is the distance between atom J and I.

The remaining term in Eq. 4.4, (K−1)Iτ,Jτ ′ , is the (pseudo)inverse [58, 46] of the

zone-center force-constant matrix

(4.8) KIτ,Jτ ′ = −∂FJτ
∂uIτ ′

.

Note, by converting Eq. 4.4 to symmetry-adapted mode variables it is apparent that only

infrared active modes contribute to the lattice-dipole flexoelectric terms [58].

4.2.4. Lattice-Quadrupole Contributions

The other lattice-mediated contribution is the lattice-quadrupole contribution.

(4.9) µlqαβγδ = − 1

4Ω

∑
Iτ,Jτ ′

(
Q

(2)
Iατδ(K

−1)Iτ,Jτ ′ΛJτ ′βγ +Q
(2)
Iατγ(K

−1)Iτ,Jτ ′ΛJτ ′βδ

)
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In Eq. 4.9, Q
(2)
Iατδ is second moment (quadrupole) of the change in charge density induced

by the displacement of atom I in cell l in the direction τ

(4.10) Q
(2)
Iατβ =

∫
drrα

∂ρ(r)

∂ulIτ
rβ.

The force response tensor ΛJτ ′βγ describes the force on atom I in direction τ caused by a

uniform strain

(4.11) ΛIτβγ =
∂FIτ
∂ηβ,γ

.

In practice, the force response tensor is calculated as the first moment of the change in

forces induced by the displacement of atom I

(4.12) ΛIτβγ = − 1

uI

∑
J

∆FIτ,Jβ∆Rγ.

The lattice-quadrupole contribution is non-zero only for sites which lack inversion sym-

metry and recasting Eq. 4.9 in terms of symmetry-adapted modes indicates that lattice-

quadrupole moments are only non-zero for Raman active modes [58].

4.2.5. Limitations of Approach: Current Density Terms

The above approach relied upon expressing contributions to the flexoelectric tensor com-

ponent in terms of changes in charge density, but there is a fundamental limitation with

this approach: charge density is only sensitive to longitudinal polarization because charge

density and polarization are related via

(4.13) ∇ ·P = −ρ.
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This means that the charge density contains no information on any transverse parts of a

polarization given by ∇×P [58].

Generalizing Eq. 4.2, 4.4, and 4.9 to account for these missing contributions amounts

to replacing ∂ρ
∂ulIτ

with ∂Jα
∂u̇lI,τ

, i.e. reformulating the problem in terms of the change in adi-

abatic current with velocity. Performing this analysis yields two additional contributions

to the total expression for a flexoelectric tensor component, current-density contributions

to the electronic (µel,Jαβγδ) and lattice-quadrupole (µlq,Jαβγδ) terms [58, 138].

(4.14) µαβγδ = µelαβγδ + µel,Jαβγδ + µldαβγδ + µlqαβγδ + µlq,Jαβγδ.

Presently, calculation of µel,Jαβγδ and µlq,Jαβγδis difficult [138]. Calculations have shown

µel,Jαβγδ is rather small and a good approximation is to take µel,Jαβγδ = 0 [138]. There have

been no calculations of µlq,Jαβγδ, so it is difficult to know the impact of this term. Throughout

the remainder of this work we will focus on structures which by symmetry do not have

lattice-quadrupole contributions making µlq,Jαβγδ = 0 and we will assume µel,Jαβγδ = 0 [58].

4.3. Density Functional Theory Implementation

4.3.1. General Considerations

Eq. 4.2, 4.4, and 4.9 make clear that to utilize the first principles theory of flexoelectricity,

it is necessary to compute the charge and force changes induced by all unique sub-lattice

displacements in a structure. We calculate these quantities using DFT as implemented

in the all-electron augmented plane wave + local orbitals WIEN2k code [145]. Readers

wishing to learn more about DFT and WIEN2k, are directed to Ref. [146], [147], and

[145].
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Before considering the specific forms of Eq. 4.2, 4.4, and 4.9 for a cubic perovskite

structure in Section 4.3.2 and 4.3.3 , I first comment on how these calculations are per-

formed using a supercell geometry, the impact of electrostatic boundary conditions (also

see Section 2.5), and the strain convention used in the quantities defined above (also see

Section 2.3).

4.3.1.1. Supercell Geometry. The method of calculating the moments in Eq. 4.2, 4.4,

and 4.9 is similar to the supercell approach to phonons. After structural optimization

has been performed on a bulk cell and the number of unique sublattice displacements

has been identified, Nx1x1 supercells are constructed using the bulk optimized struc-

tural parameters (where N is sufficiently large to minimize spurious effects from periodic

boundary conditions) in directions consistent with the required sublattice displacements

[58]. For example, see Figure 4.1. Electronic relaxations are then performed on all the

supercells and the differences in the charge density and forces between each supercell with

a displaced atom and the unperturbed supercell are used to compute the moments needed

to calculate the flexoelectric coefficients according to 4.2, 4.4, and 4.9 .

4.3.1.2. Electrostatic Boundary Conditions. The atomic displacements described

above can be imposed according to different electrostatic boundary conditions. Although

the experimental measurements described in Chapter 3 are performed under short-circuit

(E = 0 or fixed E) boundary conditions, it is computationally advantageous to work

under open-circuit (D = 0 or fixed D) boundary conditions because long-range electric

fields lead to slower convergence. A depiction of the atomic displacement pattern used in

a typical supercell calculation, as well as the induced change in charge density, electric

field, and potential, are shown in Figure 4.2.
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Figure 4.1. Example of supercell procedure for a rock salt structure. (a)
The bulk structure is used to generate supercells with (b) no sublattice
displacements and (c) sublattice displacements. The electron density and
forces are relaxed in both supercells and the difference in the (d) charge
density and (e) forces are computed (shown here for the left half of the
supercells in (b) and (c)). Moments of (d) and (e) are used to determine
the flexoelectric response.

Throughout the remainder of this chapter, a superscript D and E will be used to

denote fixed D and fixed E quantities, respectively. Once the flexoelectric coefficients

have been computed as fixed D quantities, they are converted to fixed E quantities to

compare to experiment using

(4.15) µEαβγδ = ε0
αλµ

D
λβγδ

for the total flexoelectric coefficient and

(4.16) µel,Eαβγδ = ε∞αλµ
el,D
λβγδ
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Figure 4.2. Example of a supercell with a displacement pattern consistent
with D = 0 boundary conditions. The change in the charge density, electric
field, and potential from the unperturbed case are also shown.

for the electronic contributions. ε0
αλ is the static dielectric constant and ε∞αλ is the high

frequency dielectric constant [58].

4.3.1.3. Strain Convention. The flexoelectric coefficients in Eq. 4.2, 4.4, and 4.9 were

defined in terms of the polarization response to an unsymmetrized strain gradient

(4.17) ηα,βγ =
∂2uα
∂xβ∂xγ
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however, the experimental treatment described in Chapters 2 and 3 relied upon sym-

metrized strain gradients of the form

(4.18) εαβ,γ =
∂εαβ
∂xγ

.

These strain gradients are related [59] by

(4.19) ηα,βγ = εαβ,γ + εγα,β − εβγ,α.

Similarly, the flexoelectric coefficients defined according to the unsymmetrized and sym-

metrized convention are related [59] via

(4.20) µsymαδβγ = µunsymαβγδ + µunsymαγβδ − µ
unsym
αδβγ .

For cubic materials, which only have three independent flexoelectric tensor components

(µ1111,µ1122, and µ1212), Eq. 4.20 gives

µsym1111 = µunsym1111

µsym1122 = 2µunsym1221 − µunsym1122

µsym1212 = µunsym1122 .

(4.21)

Throughout the remainder of this chapter, all flexoelectric coefficients are computed as

unsymmetrized quantities and reported as symmetrized quantities using the conversion

in Eq. 4.21.
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4.3.2. Cubic Perovskite: µ1111

Now I consider the specific forms of Eq. 4.2, 4.4, and 4.9 for a cubic perovskite. Focusing

first on the longitudinal component µ1111 (the relevant supercell is in Figure 4.3(a)) we

need to compute Q
(1),D
I,11 , Q

(3),D
I,1111, and TDI,1111 for I={A,B,O1, O2, and O3} in addition

to the zone-center force constant matrix. The electronic contributions to µD1111 can be

obtained directly from the values for Q
(3),D
I,1111.

(4.22) µel,D1111 =
1

6Ω

(
Q

(3),D
A,1111 +Q

(3),D
B,1111 +Q

(3),D
O1,1111 +Q

(3),D
O2,1111 +Q

(3),D
O3,1111

)
µld,D1111 requires combining

(4.23)
[
Q(1),D

]
=
[
Q

(1),D
A,11 +Q

(1),D
B,11 +Q

(1),D
O1,11 +Q

(1),D
O2,11 +Q

(1),D
O3,11

]
and

(4.24)
[
TD
]

=
[
TDA,1111 + TDB,1111 + TDO1,1111 + TDO2,1111 + TDO3,1111

]
according to

(4.25) µld,D1111 =
1

Ω

[
Q(1),D

]
·
[
KD
]−1 ·

[
TD
]T
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where [K] is the zone-center force-constant matrix

(4.26) [K] =



∂FA
∂uA

∂FB
∂uA

∂FO1

∂uA

∂FO2

∂uA

∂FO3

∂uA

∂FA
∂uB

∂FB
∂uB

∂FO1

∂uB

∂FO2

∂uB

∂FO3

∂uB

∂FA
∂uO1

∂FB
∂uO1

∂FO1

∂uO1

∂FO2

∂uO1

∂FO3

∂uO1

∂FA
∂uO2

∂FB
∂uO2

∂FO1

∂uO2

∂FO2

∂uO2

∂FO3

∂uO2

∂FA
∂uO3

∂FB
∂uO3

∂FO1

∂uO3

∂FO2

∂uO3

∂FO3

∂uO3


.

Note, only derivatives along the [100] direction are needed in Eq. 4.26 because forces in

other directions are zero by symmetry. In more general cases (e.g. Section 4.3.3), more

spatial dimensions must be included in the zone-center force-constant matrix. Combining

Eq. 4.22 and 4.25 yields the longitudinal flexoelectric coefficient

(4.27) µD1111 = µel,D1111 + µld,D1111.

4.3.3. Cubic Perovskite: µ1122 and µ1212

Next we would like to compute the remaining two independent flexoelectric tensor compo-

nents. Unfortunately, owing to the limitations of the current-density approach [58, 138],

only a linear combination of them is accessible. If we consider a supercell of the rotated

perovskite structure shown in Figure 4.3(b), the longitudinal flexoelectric coefficient in

the rotated frame (denoted by ′) is

(4.28) µ′1111 =
1

2
(µ1111 + µ1122) + µ1212
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Figure 4.3. Supercells needed to compute the flexoelectric response of a
cubic perovskite. (a) A supercell oriented along 〈100〉 directions provides
access to µ1111. (b) A supercell rotated 45◦ such that x′ = [110] provides
access to µ′1111 = 1

2
(µ1111 + µ1122) + µ1212. The three oxygens in the cubic

perovskite structure are labeled in both (a) and (b).

which can be rearranged in terms of the two unknown quantities, µ1122 and µ1212.

(4.29) µL2 = 2µ′1111 − µ1111 = µ1122 + 2µ1212

The electronic contributions in this rotated frame are computed analogously to Eq. 4.22,

where each Q
(3),D
I,1111 is replaced by Q

′(3),D
I,1111.

(4.30) µ′el,D1111 =
1

6Ω

(
Q

′(3),D
A,1111 +Q

′(3),D
B,1111 +Q

(′3),D
O1,1111 +Q

′(3),D
O2,1111 +Q

(′3),D
O3,1111

)
The lattice-dipole term is more complex owing the tetragonal site symmetry of the anion

in cubic perovskites [58]. While µld,D1111 only had contributions arising from longitudinal
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displacements, µ
′ld,D
1111 has additional contributions from transverse displacements so that

(4.31) µ′ld,D1111 =
1

Ω

[
Q

′(1),D
]
·
[
K

′D
]−1

·
[
T

′D
]T

where

(4.32)
[
Q

′(1),D
]

=
[
Q

′(1),D
A,11 +Q

′(1),D
B,11 +Q

′(1),D
O1,11 +Q

′(1),D
O2,11 +Q

′(1),D
O1,12 +Q

′(1),D
O2,12 +Q

′(1),D
O3,11

]

(4.33)
[
T

′D
]

=
[
T

′D
A,1111 + T

′D
B,1111 + T

′D
O1,1111 + T

′D
O2,1111 + T

′D
O1,2111 + T

′D
O2,2111 + T

′D
O3,1111

]
and

(4.34) [K ′] =



∂F ′
A,1

∂u′A,1

∂F ′
B,1

∂u′A,1

∂F ′
O1,1

∂u′A,1

∂F ′
O2,1

∂u′A,1

∂F ′
O1,2

∂u′A,1

∂F ′
O2,2

∂u′A,1

∂F ′
O3,1

∂u′A,1

∂F ′
A,1

∂u′B,1

∂F ′
B,1

∂u′B,1

∂F ′
O1,1

∂u′B,1

∂F ′
O2,1

∂u′B,1

∂F ′
O1,2

∂u′B,1

∂F ′
O2,2

∂u′B,1

∂F ′
O3,1

∂u′B,1

∂F ′
A,1

∂u′O1,1

∂F ′
B,1

∂u′O1,1

∂F ′
O1,1

∂u′O1,1

∂F ′
O2,1

∂u′O1,1

∂F ′
O1,2

∂u′O1,1

∂F ′
O2,2

∂u′O1,1

∂F ′
O3,1

∂u′O1,1

∂F ′
A,1

∂u′O2,1

∂F ′
B,1

∂u′O2,1

∂F ′
O1,1

∂u′O2,1

∂F ′
O2,1

∂u′O2,1

∂F ′
O1,2

∂u′O2,1

∂F ′
O2,2

∂u′O2,1

∂F ′
O3,1

∂u′O2,1

∂F ′
A,1

∂u′O1,2

∂F ′
B,1

∂u′O1,2

∂F ′
O1,1

∂u′O1,2

∂F ′
O2,1

∂u′O1,2

∂F ′
O1,2

∂u′O1,2

∂F ′
O2,2

∂u′O1,2

∂F ′
O3,1

∂u′O1,2

∂F ′
A,1

∂u′O2,2

∂F ′
B,1

∂u′O2,2

∂F ′
O1,1

∂u′O2,2

∂F ′
O2,1

∂u′O2,2

∂F ′
O1,2

∂u′O2,2

∂F ′
O2,2

∂u′O2,2

∂F ′
O3,1

∂u′O2,2

∂F ′
A,1

∂u′O3,1

∂F ′
B,1

∂u′O3,1

∂F ′
O1,1

∂u′O3,1

∂F ′
O2,1

∂u′O3,1

∂F ′
O1,2

∂u′O3,1

∂F ′
O2,2

∂u′O3,1

∂F ′
O3,1

∂u′O3,1



.

In Eq. 4.32- 4.34 displacements/forces in the x and y directions are denoted by 1 and 2,

respectively. Once µ′el,D1111 and µ′ld,D1111 are computed, they can be used in conjunction with

µD1111 to obtain µDL2 = µD1122 + 2µD1212 according to Eq. 4.29.
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The ultimate goal is to isolate µD1122 and µD1212. The lattice-dipole contribution to the

transverse flexoelectric coefficient (µld,D1122) can be directly computed according to

(4.35) µld,D1122 =
1

Ω

[
Q

(1),D
11

]
·
[
KD
]−1 ·

[
TD1122

]T
using the available information in Eq. 4.23 and 4.26 in addition to

(4.36)
[
TD1122

]
=
[
TDA,1122 + TDB,1122 + TDO1,1122 + TDO2,1122 + TDO3,1122

]
.

Each TDI,1122 component corresponds to the second moment of the change in force along

the x-direction in Figure 4.3(a) from a displacement in the y-direction. Then µld,D1122 can

be used with µld,DL2 to solve for µld,D1212 according to Eq. 4.29.

Isolating the electronic contributions to the shear and transverse flexoelectric coeffi-

cients requires an approximation without the current-density information. We follow Hong

and Vanderbilt [58] in assuming the transverse contribution to the electronic flexoelectric

coefficient is zero, i.e. µJel = 0, which is equivalent to assuming

(4.37) µel1122 = µel1212.

Then, from Eq. 4.37 we get

(4.38) µel1122 = µel1212 =
µel,DL2

3
.

Ultimately µel
J is rather small, so this approximation is moderately good [138].
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4.4. Benchmark Calculations with SrTiO3

4.4.1. DFT Parameters

DFT calculations were performed with the all-electron augmented plane wave + local

orbitals WIEN2k code [145] on cubic STO (Pm3m) using the local density approximation

(LDA) functional [148] to approximate the exchange-correlation term. STO was used as

a benchmark because its flexoelectric coefficients have been calculated using other (plane-

wave pseudopotential) DFT implementations [136, 58, 74, 140]. Muffin-tin radii of

2.44, 1.72, 1.64 bohr were used for Sr, Ti, and O, respectively with a plane-wave expansion

parameter RKMAX of 6, energy cut-off of -6 Ry, and k-mesh equivalent to 8×8×8 per bulk

conventional unit cell. All calculations used a Mermin functional at room temperature.

Convergence criteria of 10−6 e, 10−4 Ry, and 10−3 mRy/bohr were used. Results were

found to be particularly sensitive to plane wave convergence.

First, bulk calculations were performed to find the optimized lattice constant (7.290

bohr). The supercells depicted in Figure 4.3 were then constructed using the bulk op-

timized lattice constants. The supercell with the [100] long axis in Figure 4.3(a) was

12 unit cells long and the supercell with the [110] long axis in Figure 4.3(b) was 8 unit

cells long. After the unperturbed supercells were converged, supercells containing the

displacements necessary to obtain the required charge density moments, force moments,

and force-constant matrices were created and converged. Numerical tests confirmed the

supercells were sufficiently large and varying the muffin-tin radii, RKMAX, and k-mesh

reported above yielded consistent values.
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Once the required supercells were converged, the 3DDENS program within WIEN2k

was used to compute the real space charge density of each supercell. The charge density

output from 3DDENS and the forces from WIEN2k were used to compute the charge

density moments, force moments, and zone-center force-constant matrices which were

then used to calculate the flexoelectric coefficients according to Eq. 4.2, 4.4, and 4.9.

Python/Matlab scripts were written to perform this analysis. It was found using 3DDENS

for heavier elements lead to an underestimation of the Callen [143] charge (Q(1),D). To

correct for this, Born [144] charges (Q(1),E) were calculated using a Berry phase approach

[70, 69, 149] and Q(1),D for heavy elements was replaced by Q(1),E

ε∞
. This lead to an

improvement in the acoustic sum rule for the Callen charges.

4.4.2. Charge Density and Force Moments for SrTiO3

First, I focus on the change in the charge density and the induced dipole and octupole

moments for the Sr, Ti, O1, and O2/O3 sites (O2 and O3 are equivalent for this case)

in the supercell with the [100] long axis. Owing to the symmetry of the supercell, the

three-dimensional charge density can be replaced by the one-dimensional planar averaged

charge density.

(4.39) ρ(x) =
1

A

∫
yz

ρ(x, y, z)dydz

Figure 4.4 shows the change in charge density between a supercell with a displaced species

and an unperturbed supercell

(4.40) ∆λ(x) = ρdisplaced(x)− ρunperturbed(x)
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for Sr, Ti, O1, and O2/O3. In all cases ∆λ(x) has the form of a dipolar distribution and

is localized to within 1 bohr of the displaced atom, quickly falling to zero.

Figure 4.4. Differences in the planar-averaged charge density of supercells
with displaced atoms and an unperturbed supercell. (a)-(d) show this dif-
ference for each displacement contributing to µ1111 in STO.

Because of this localization, moments of this charge density distribution,

(4.41) Q(n) =
1

u

∫
∆λ(x− xdisp) (x− xdisp)n dx

where Q(n) is the nth moment of the change in the charge density about the displaced atom

∆λ(x − xdisp) which has been displaced by u, are well converged. Cumulative integrals

of the first and third moments of Sr, Ti, O1, and O2/O3 are shown in Figure 4.5 to

depict the numerical stability of these quantities. While we have found there are some
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oscillations in the 3rd order moments at large distances from the displaced atom (e.g.

Figure 4.5(f) at x−xdisp = 20 bohr), these oscillations do not affect the overall result and

can be easily filtered with a low pass filter.

Figure 4.5. Cumulative integrals of moments of the differences in the planar-
averaged charge density of supercells with displaced atoms and an unper-
turbed supercell for each displacement contributing to µ1111 in STO. (a)-(d)
show the first moment convergence and (e)-(h) show the third moment con-
vergence.

Like the changes in charge density brought about by sub-lattice displacements, the

forces induced by sub-lattice displacements are also localized to within a few bohr of the

displaced atom. The forces arising from Sr, Ti, O1, and O2/O3 displacements are shown

in Figure 4.6. As a result, second moments of the force distribution about the position of

the displaced atom, given by

(4.42) Tj = − 1

2u

∑
i

Fi,j (xi − xdisp)2
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where Fi,j is the force on atom i owing to the displacement u of atom j and xi − xdisp is

the distance from atom i to the displaced atom, are well-behaved quantities. Cumulative

sums of the second moments of the forces are shown in Figure 4.7 for Sr, Ti, O1, and

O2/O3 displacements to demonstrate the numerical stability of the second-order force

moments.

Similar levels of convergence were found for the charge density and force moments

computed from the rotated supercell, so those plots are not shown here.

Figure 4.6. Differences in the forces of supercells with displaced atoms and
an unperturbed supercell. (a)-(d) show this for each displacement con-
tributing to µ1111 in STO.
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Figure 4.7. Cumulative sum of the second moment of the differences in
the forces of supercells with displaced atoms and an unperturbed supercell.
(a)-(d) show this for each displacement contributing to µ1111 in STO.

4.4.3. Comparison to Literature

Having shown how the various “microscopic flexoelectric coefficient ingredients” are com-

puted with WIEN2k and demonstrated that they are well-behaved quantities, we now

compare the results of these calculations with those in the literature. Literature values

have been reported in terms of symmetry-adapted modes (ξi) instead of atomic quantities,

so we report our quantities in Table 4.1 according to this same convention. See Ref. [58]

for the definitions of these modes. Note, in this section we will merely compare the values

shown in Table 4.1; their physical significance is discussed in Section 4.5 and 4.6.
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In general, we find good agreement with literature values. The Callen charges in our

calculations are nearly identical to the Callen charges reported by Hong and Vanderbilt

[58], as well as those reported by Stengel [150]. We find the acoustic sum rule for the

Callen charges is also well-maintained with

(4.43) Q
(1),D
Sr +Q

(1),D
T i +Q

(1),D
ξ3

+Q
(1),D
ξ4

= −0.01

according to the definitions of the symmetry adapted modes [58].

The T and Q(3) values reported here and in the literature are also close. Our calcu-

lations agree with those performed by Stengel [150] (which is encouraging because those

calculations were performed with an entirely different approach) and largely match those

reported by Hong and Vanderbilt [58]. There are some slight differences with the Hong

and Vanderbilt [58] values, particularly with respect to oxygen contributions (ξ3 and ξ4).

It is unclear if this is a consequence of the choice of oxygen pseudopotential, an arti-

fact of the rigid-core correction needed for pseudopotential codes, a typographical error

(there are several in Ref. [58]), or something else entirely. Without other calculations

for comparison it is difficult to address the origin of these differences. Ultimately, these

differences do not have a significant impact on the flexoelectric coefficients as our values

and the Ref. [58] values are within a few nC/m of one another.

4.5. Impact of the Exchange and Correlation Functional on the Bulk

Flexoelectric Coefficients of SrTiO3

Having demonstrated that the implementation of the first principles theory of flexo-

electricity in WIEN2k yields comparable values to the literature, now I investigate the



123

MM HV S

Sr 0.41 0.39 0.41

Ti 1.15 1.20 1.17

𝜉" -0.91 -0.92 -0.92

𝜉# -0.47 -0.47 -0.47

(a) 𝑄(&),) (e)

MM HV

Sr -55.92 -57.5

Ti -15.61 -16.2

𝜉" -28.47 -28.6

𝜉# -11.27 -9.5

(b) 𝑄*&
" ,) (e bohr2) (c)	𝑄*,

" ,) (e bohr2)

(d) 𝑇*&) (eV) (e)𝑇*,) (eV) (f)	𝑇&&,,. (eV)

MM HV

Sr -45.42 -43.5

Ti -44.54 -45.0

𝜉" -30.61 -44.0

𝜉# 4.65 7.7

MM HV S

Sr 7.71 8.4 7.9

Ti 4.08 3.0 3.8

𝜉" 15.57 15.7 15.3

𝜉# 11.44 12.0 11.6

MM HV S

Sr 32.48 35.7 33.2

Ti 36.87 38.9 36.3

𝜉" 25.73 13.1 24.9

𝜉# 21.06 18.2 22.7

MM HV S

Sr 15.43 17.0 16.3

Ti 52.18 52.3 49.1

𝜉" 66.15 68.7 67.2

𝜉# 2.99 3.6 3.0

(g)	𝜇0123. (nC/m)

MM HV

𝜇&&&&. -40.98 -36.9

𝜇&&,,. -42.67 -40.2

𝜇&,&,. -1.63 -1.4

Table 4.1. Comparison between the flexoelectric Q(n) and T components
and flexoelectric tensor coefficients computed here with LDA and reported
in the literature. MM = Mizzi and Marks, HV = Hong and Vanderbilt [58],
S=Stengel [150].

impact of the exchange and correlation functional on the bulk flexoelectric coefficients of

STO. Analyzing the sensitivity of DFT predictions to the exchange and correlation func-

tional is standard, but has not been performed for flexoelectric calculations. The same

computational approach described in Section 4.4 is utilized here except the exchange and

correlation terms are approximated using LDA, PBE [151], PBEsol [152], and PBEsol +

on-site hybrid [153, 154] approach (on-site hybrid fraction of 0.25 applied to Ti3d).

First, the optimized lattice parameters are compared in Table 4.2. Our calculations

reproduced the documented under- and over-estimation of the lattice parameter when

using LDA and PBE, respectively, and the good agreement between the experimental

lattice parameter [118] and the optimized lattice parameter with PBEsol [155]. The on-

site hybrid approach does the best job of reproducing the experimental lattice parameter

among the investigated functionals.
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Born charges are a dynamical charge which reflect hybridization [142]. It is common

for ABO3 perovskites to have anomalous Born charges, i.e. values which differ from

nominal charges expected in an ionic limit [156]. The Born charges shown in Table 4.2

agree with those reported in the literature, with large anomalies for Ti and O1 (∼3e),

a smaller anomaly for Sr (∼0.55 e), and minimal deviation from the nominal value for

O2/O3 (∼0.01 e) [142]. The values of the Sr and O2 Born charges are found to be largely

insensitive to the choice of functional, whereas the Ti and O1 Born charges anomalies are

slightly larger for PBE and significantly smaller for the PBEsol + on-site hybrid approach.

This reduction in the anomalous Born charges on the Ti and O1 sites is a consequence

of the improved treatment of hybridization between Ti and O1 with the PBEsol+on-site

hybrid scheme. Similar behavior in the Born charges with respect to functional have been

reported in the literature for rutile and anatase TiO2 [157].

(a) Lattice Parameters (bohr)

LDA PBE PBEsol PBEsol + hybrid Exp.
7.290 7.446 7.362 7.380 7.379

(b) Born Charge (e)

LDA PBE PBEsol PBEsol + hybrid
Sr 2.55 2.55 2.55 2.56
Ti 7.12 7.16 7.12 6.58
O1 -5.63 -5.72 -5.66 -5.19
O1 -2.04 -2.01 -2.02 -1.99

Table 4.2. (a) Optimized lattice parameter versus experiment and (b) Born
charges for STO computed with different exchange and correlation func-
tionals. Lattice parameters are in bohr and Born charges are in e.
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Unlike the variations in the STO Born charges (Q(1),E or Z∗) with the choice of

functional, we find the Callen charges (Q(1),D) reported in Table 4.3 are nearly identical

when the functional is changed. Both are measures of dynamical charge which are defined

for different electrostatic boundary conditions and related via the high frequency dielectric

constant [142, 58]. For cubic materials this relationship is

(4.44) Q(1),E = Q(1),Dε∞.

Our results indicate the decrease in the Born charge anomalies in Ti and O1 through the

use of the on-site hybrid are matched by a decrease in the high frequency permittivity:

high frequency dielectric constants from Eq. 4.44 are 6.18, 6.18, 6.22, and 5.64 with the

LDA, PBE, PBEsol, and PBEsol+hybrid functionals, respectively.

The octupole moments in Table 4.3 have larger variations with the choice of func-

tional than the Callen charges. The most significant changes in Q(3),D with functional are

associated with oxygen displacements (as much as ∼15% compared to the LDA values),

while the Sr and Ti octupolar moments are largely unaffected by functional (<5% change

compared to the LDA values). All computed Q(3),D describing the longitudinal change

in charge density to a longitudinal displacement are negative and those describing the

longitudinal change in charge density to a transverse displacement (i.e. Q
′(3),D
O1,12 ) are pos-

itive. The negative, largely consistent Q(3),D values suggest the longitudinal response is

dominated by the mostly rigid shift in the electron density caused by the atomic displace-

ment [58, 59]. Across all functionals Q(3),D values are much larger for Sr than Ti, which

is somewhat surprising since the opposite is true for Q(1),D. This is explored further in

Section 4.6.
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LDA PBE PBEsol PBEsol
+hybrid

Sr 0.41 0.41 0.41 0.45

Ti 1.15 1.16 1.15 1.17

O1 -0.91 -0.93 -0.91 -0.93

O2 -0.33 -0.32 -0.33 -0.35

(a) 𝑄""
" ,$ (e)

LDA PBE PBEsol
PBEsol
+hybrid

Sr -55.92 -57.44 -56.50 -54.74

Ti -15.61 -14.67 -15.28 -15.74

O1 -28.47 -29.39 -28.73 -27.88

O2 -7.97 -7.31 -7.70 -8.68

LDA PBE PBEsol PBEsol
+hybrid

Sr -50.67 -51.59 -51.01 -49.71

Ti -30.07 -30.21 -30.14 -30.51

O1(11) -17.70 -17.94 -17.79 -17.89

O1(12) 5.80 6.64 6.08 5.55

O3 -6.10 -5.34 -5.74 -6.78

(b) 𝑄""""
% ,$ (e bohr2)

(c)	𝑄'""""
% ,$ (e bohr2)

LDA PBE PBEsol
PBEsol
+hybrid

Sr 23.95 21.91 22.86 22.96

Ti 44.52 39.67 42.26 43.65

O1(11) 33.16 30.63 32.12 32.52

O1(12) -12.78 -10.43 -12.18 -12.62

O3 -3.36 -3.95 -3.60 -3.72

LDA PBE PBEsol PBEsol
+hybrid

Sr 15.43 13.63 14.85 14.69

Ti 52.18 43.07 48.32 50.31

O1 66.15 57.24 62.97 64.42

O2 2.12 2.27 1.97 2.35

LDA PBE PBEsol PBEsol
+hybrid

Sr 7.71 6.5 7.37 7.73

Ti 4.08 4.51 4.22 5.38

O1 17.30 16.99 16.80 16.26

O2 15.57 15.44 15.26 14.95

O3 -1.12 -2.06 -1.45 -1.61

(d) 𝑇""""$ (eV)

(e)	𝑇'""""
$ (eV)

(f)	𝑇""))* (eV)

Table 4.3. Variation in components used to calculate flexoelectric coeffi-
cients with functional. (a) Callen charges, (b) octupole moments, and (d)
second order force moments computed from the supercell with the [100] long
axis. (c) Octupole moments and (e) second order force moments computed
from the supercells with the [110] long axis. (f) Transverse second order
force moments computed from the supercell with the [100] long axis. O1,
O2, and O3 are defined in Figure 4.3. The (11) and (12) subscripts denote
the longitudinal and transverse displacements needed for Q

′(3),D and T
′D.

The T values correspond to sub-lattice resolved elastic constants [59] which are related

to the stiffness coefficients via

(4.45) cαβγδ =
1

Ω

∑
I

TI,αβγδ.
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The values in Table 4.3 combined with the lattice parameters in Table 4.2 yield the stiffness

constants given in Table 4.4. These values are consistent with literature calculations

computed through the traditional energy-based approach [158, 159, 150]. The elastic

constants in Table 4.4 suggest PBE does the best job of modeling elasticity in STO with

LDA, PBEsol, and PBEsol+hybrid predicting far too large a longitudinal stiffness.

Importantly, unlike traditional elastic constant calculations, the data in Table 4.3 gives

a site-by-site breakdown of the contributions to the elastic constants [59]. For instance,

these calculations indicate c1111 in STO is dominated by Ti and O1 contributions and

oxygen contributions largely dictate c1122. When combined with elastic stability conditions

(e.g. for cubic materials c1111−c1122 > 0 [144, 160]), the data in Table 4.3 is an alternative

way to interpret structural instabilities. As an example, TO2,1111 − TO2,1122 < 0 which

suggests a structural instability associated with O2 [155]. The relationship between

TI , ijkl and cijkl demonstrates first principles flexoelectric theory and calculations of the

sort described here could be of use in other contexts.

LDA PBEsol PBE PBEsol + hybrid Exp.
c1111 384.6 309.8 351.9 360.3 317
c1122 121.4 108.4 114.2 114.7 103
c1212 113.3 101.8 107.1 106.2 123

Table 4.4. Elastic constants computed from T values in Table 4.3 and op-
timized lattice parameters in Table 4.2 compared to experimental values
from Ref. [161]. All values are in GPa.

Ultimately, using the values of Q(n) and T in Table 4.3 with Eq. 4.2, 4.4, and 4.9 allows

one to calculate the three flexoelectric coefficients of STO. We find the differences in Q(n)

and T stemming from the use of different functionals only lead to minor variations in the

flexoelectric coefficients ∼1 nC/m as shown in Table 4.5. The effects of these differences
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are most significant on the shear coefficient owing to its small magnitude, but these

differences are well within the currently available experimental precision of flexoelectric

coefficient measurements.

LDA PBEsol PBE PBEsol + hybrid
µE1111 -40.98 -40.82 -41.03 -40.42
µE1122 -42.67 -42.18 -41.69 -40.18
µE1212 -1.63 -1.40 -1.09 -2.00

Table 4.5. Variation in the three independent flexoelectric coefficients un-
der short-circuit boundary conditions with the exchange and correlation
functional. All values are in nC/m.

4.6. Flexoelectricity in (Pseudo) Cubic Perovskites

4.6.1. Materials and Computational Parameters

Now we utilize the first principles of theory introduced in Section 4.2 with the implemen-

tation using WIEN2k described in Section 4.3 to calculate the flexoelectric coefficients

in some of the materials measured in Chapter 3. We will focus on four (pseudo) cubic

perovskites: STO, KTO, LAO, and GSO. Both STO and KTO are cubic perovskites with

space group Pm3m at room temperature and atmospheric pressure, so the flexoelectric

coefficient computed from first principles should be directly comparable to the measured

flexoelectric coefficients. LAO is a rhombohedral perovskite with space group R3c at room

temperature and atmospheric pressure, however the deviations from the cubic structure

are small (pseudocubic angle is 90.086◦[97]) so we approximate LAO as a cubic perovskite

with space group Pm3m for these calculations. GSO is an orthorhombic perovskite with

space group Pnma at room temperature and atmospheric pressure. It is investigated

in this section because it is isostructural with Pnma perovskites which exhibited large
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flexoelectric responses in Chapter 3, but chosen over DSO because it lacks the f electron

complexity (Gd is 4f7) and over YAO because it has been studied extensively in WIEN2k

(e.g., Chapter 7). I also make the crude approximation to treat GSO as a cubic perovskite

with space group Pm3m for these calculations. While this structure is not physical, the

calculated flexoelectric coefficients are still informative and we address the shortcomings

of this approximation in Section 4.8.

It was shown in Section 4.5 that different exchange and correlation functionals yielded

internal differences in the components used to calculate flexoelectric coefficients in STO,

but that these differences largely canceled such that the flexoelectric coefficients were not

particularly sensitive to the functional choice. As such, the calculations in this section use

the PBEsol [152] functional for STO, KTO, and LAO, and a PBEsol + hybrid [153, 154]

approach (with on-site hybrid fractions of 0.80, 0.50, and 0.38 for Sc3d, Gd5d, and Gd4f,

respectively [162]) for GSO. The procedure outlined in Section 4.3 was followed here with

regards to supercell construction and all calculations were performed with the all-electron

augmented plane wave + local orbitals WIEN2k code. Muffin-tin radii of 2.44, 1.72, 2.36,

1.65, 2.26, 1.80, 2.02, 1.82, 1.64 bohr were used for Sr, Ti, La, Al, K, Ta, Gd, Sc, and

O, respectively. A plane-wave expansion parameter RKMAX of 6, energy cut-off of -6

Ry, k-mesh equivalent to 8x8x8 per bulk conventional unit cell, and Mermin functional at

room temperature were used in all calculations with convergence criteria of 10−6 e, 10−4

Ry, and 10−3 mRy/bohr. The optimized lattice constants provided in Table 4.6 largely

agree with the experimental values [118, 86, 97, 125].
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SrTiO3 KTaO3 LaAlO3 GdScO3

aDFT 7.362 7.537 7.131 7.625
aexp 7.379 7.538 7.156 7.502

Table 4.6. Comparison between optimized and (pseudo)-cubic experimental
[118, 86, 97, 125] lattice parameters in bohr.

4.6.2. Flexoelectric Coefficient Calculations

Table 4.7 includes all the internal components used in Eq. 4.2, 4.4, and 4.9 to compute

the flexoelectric coefficients for the four investigated materials. Beginning with the Callen

charge, we find the Q(1),D values track with the known Born charge anomalies in these

materials: STO and KTO have anomalous charges on the B and O1 sites, and LAO and

GSO have smaller charge anomalies present on all sites. In all materials the acoustic sum

rule is obeyed to ∼0.01e.

The octupole moments in the four materials are negative (except for the transverse

components of STO and KTO) and exhibit large variations in their magnitudes depending

on the chemical species. The magnitudes of the octupole moments do not track with

dynamical charge anomalies nor simply scale with atomic number. For example, KTO

has nearly equal A, B, and O1 Q
(3),D
1111 values and STO has a much larger Q

(3),D
1111 A value

than B value, even though both materials have sizable charge anomalies on the B site and

the atomic numbers of K and Ta differ significantly. This suggests the dynamical charge

intuition developed in the context of ferroelectricity might require revisiting for octupole

moments and indicates that flexoelectricity obeys different design rules than more familiar

properties.

To further understand the octupole moments, consider an isolated atom in volume Ω

with a spherically symmetric charge distribution ρ(r) and corresponding potential V (r)
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STO KTO LAO GSO

A 0.41 0.21 0.93 0.90

B 1.15 1.57 0.60 0.67

O1 -0.91 -1.19 -0.50 -0.61

O2 -0.33 -0.30 -0.51 -0.46

(a) 𝑄""
" ,$ (e)

STO KTO LAO GSO

A -56.50 -37.01 -64.82 -67.37

B -15.28 -34.43 -20.10 -30.03

O1 -28.73 -37.69 -9.93 -14.87

O2 -7.70 -7.89 -12.69 -11.58

STO KTO LAO GSO

A -51.01 -33.49 -64.38 -62.81

B -30.14 -53.64 -24.45 -38.20

O1(11) -17.79 -21.68 -11.95 -12.50

O1(12) 6.08 9.15 -1.26 -1.30

O3 -5.74 -5.02 -15.79 -11.44

(b) 𝑄""""
% ,$ (e bohr2)

(c)	𝑄'""""
% ,$ (e bohr2)

STO KTO LAO GSO

A 22.03 17.93 36.77 16.00

B 42.26 51.77 34.06 46.23

O1(11) 32.12 39.02 29.37 33.37

O1(12) -12.18 -21.44 -3.79 -15.04

O3 -3.60 -1.61 2.68 -15.60

STO KTO LAO GSO

A 14.85 11.65 35.90 20.85

B 48.32 78.56 21.83 53.52

O1 62.97 100.62 33.36 73.81

O2 1.97 -0.39 14.28 1.81

STO KTO LAO GSO

A 7.37 7.08 10.42 3.31

B 4.22 1.85 13.07 6.90

O1 16.80 16.62 14.45 11.85

O2 15.26 14.10 16.20 12.06

O3 -1.45 -0.10 0.81 -7.22

(d) 𝑇""""$ (eV)

(e)	𝑇'""""
$ (eV)

(f)	𝑇""))* (eV)

Table 4.7. Components used to calculate flexoelectric coefficients for STO,
KTO, LAO, and GSO. (a) Callen charges, (b) octupole moments, and (d)
second order force moments computed from the supercell with the [100] long
axis. (c) Octupole moments and (e) second order force moments computed
from the supercells with the [110] long axis. (f) Transverse second order
force moments computed from the supercell with the [100] long axis. A, B,
O1, O2, and O3 refer to the sites in the ABO3 cubic perovskite. O1, O2,
and O3 are defined in Figure 4.3. The (11) and (12) subscripts denote the
longitudinal and transverse displacements needed for Q

′(3),D and T
′D.

given by Poisson’s Equation

(4.46) ∇2V (r) = −ρ(r)

ε0

.



132

In reciprocal space, this equation can be rewritten as

(4.47) v(k) = − 1

4π2k2ε0

f(k)

where v(k) and (k) are the Fourier transforms of V (r and ρ(r, respectively [163].

Following Ref. [163], the k = 0 component of v(k) is related to the average Coulomb

potential in Ω which, as discussed in Chapter 5, can be expressed in terms of electron

scattering factors [163, 164]

(4.48) V =
1

Ω

∫
V (r)dΩ =

v(0)

Ω
=

h2

2πmeΩ
f el(0)

from which it follows that

(4.49) v(0) =
h2

2πme
f el(0).

Becker and Coppens [165] have shown that an alternative expression for v(0) can be

obtained from taking Eq. 4.47 in the k → 0 limit:

(4.50) v(0) = lim
k→0

(
− 1

4π2k2ε0

〈f(k)〉
)
.

In Eq. 4.50 〈f(k)〉 is the orientational average of f(k) which to leading order in k is

(4.51) 〈f(k)〉 = −2π2

3
k2

∫
r2ρ(r)dΩ.

Combining Eq. 4.51 with Eq. 4.50 leads to

(4.52) v(0) = − 1

6ε0

∫
r2ρ(r)dΩ.
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This new form for v(0) is of interest because the integral in Eq. 4.52 represents the

static quadrupole moment of the charge distribution on an isolated atom. Stengel [137]

has shown that this quantity is equal to the octupole moment of the change in charge

density induced by a longitudinal atomic displacement defined by Eq. 4.3. Therefore,

Eq. 4.52 can be rewritten as

(4.53) v(0) = − 1

6ε0

Q3
1111

which can be combined with Eq. 4.48 to express the induced octupole moments in terms

of electron scattering factors and fundamental constants.

(4.54) Q3
I,1111 = −3ε0h

2

πme
f elI (0)

Therefore, electron scattering factors can be used to compare the DFT computed values

of Q
(3)
I,1111 to their atomic and ionic limits. Note, these limits do not represent bounds

on the values of Q
(3)
I,1111 because Eq. 4.53 is derived assuming the charge densities are

rigid. Instead, these limits indicate the similarity between the spatial distribution of the

charge density of a chemical species in a crystal and the isolated atomic and ionic charge

densities.

The values of Q
(3)
I,1111 calculated for each chemical species in Table 4.7 using the atomic

and ionic electron scattering factors taken from Ref. [166] are shown in Table 4.8. We find

that all values are negative, which must be true since the fundamental constants and elec-

tron scattering factors in Eq. 4.53 are positive quantities. The values in Table 4.7 for the A

and B sites in each perovskite (except for Ti in STO) are approximately halfway between

the atomic and ionic charge densities in Table 4.8 indicating a significant redistribution
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of charge is associated with A and B site displacements. The DFT computed Ti octupole

moment is much closer to the ionic charge density value than the other moments which

is surprising given the Born charge anomaly on the Ti site in STO. This further indicates

that the octupole moments cannot be simply considered higher order Born charges. The

O1 site in STO and KTO has much larger octupole moments than the ionic values in

Table 4.8, indicating the O1 site displacement leads to significant charge redistribution.

The O1 site in LAO and GSO as well as the O2/O3 sites in all the perovskites have

similar octupole moments to the atomic values in Table 4.8 . Ultimately, this comparison

demonstrates the necessity of performing the DFT calculations to accurately model the

changes in charge density caused by an atomic displacement, but also suggests Eq. 4.53

provides a back-of-the-envelope method to predict the electronic contributions to bulk

flexoelectric coefficients and interpret DFT computed values.

Atomic f el(0) Ionic f el(0)
Sr -73.71 -26.27
Ti -49.46 -10.45
K -50.43 -19.44
Ta -73.30
La -100.35 -39.02
Al -33.25 -3.62
Gd -86.49 -35.12
Sc -52.43 -12.51
O -11.24 -23.23

Table 4.8. Q(3) values computed using atomic and ionic electron scattering
factors according to Eq. 4.53. Scattering factors are taken from Ref. [166].
Note, an ionic electron scattering factor for Ta was not included in Ref.
[166].

Next, we focus on the second order force moments in Table 4.7. Cubic STO, KTO,

LAO, and GSO are found to have rather different elastic properties. Converting the
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second order force moments to stiffness constants using Eq. 4.45 and the optimized lattice

parameters in Table 4.6 yields the values in Table 4.9. These stiffness coefficients are in

moderately good agreement with other calculations, but poor agreement with experiment

[167, 159, 168], as expected with using the PBEsol functional (e.g. Table 4.4). Although

the agreement with experiment is poor, the second order force moments in Table 4.7 still

provide insight as sub-lattice resolved stiffness coefficients. The longitudinal stiffness of

STO, KTO, and GSO are found to be dominated by O1 contributions with minimal

O2/O3 contributions whereas LAO has comparable contributions from all atoms in in

the structure. Additionally, the T values indicate an elastic instability in the O2 site

[144, 160] is in all investigated materials.

SrTiO3 KTaO3 LaAlO3 GdScO3

c1111 351.9 476.6 356.3 369.7
c1122 114.2 99.8 163.5 65.5
c1122 107.1 78.4 133.9 58.5

Table 4.9. Elastic constants computed from T values in Table 4.7 and op-
timized lattice parameters in Table 4.6. All values are in GPa.

Combining the values in Table 4.7 with Eq. 4.2, 4.4, and 4.9 yields the three indepen-

dent flexoelectric coefficients for STO, KTO, LAO, and GSO given in Table 4.10(a). In

all materials, we find longitudinal and transverse coefficients of similar magnitude with

shear coefficient an order of magnitude smaller, independent of the choice of electrostatic

boundary condition. Under the short-circuit boundary conditions, the large dielectric

constant of STO and KTO (an order of magnitude larger than the dielectric constant in

LAO and GSO) manifests in proportionally larger flexoelectric coefficients. The open-

circuit values are given as flexocoupling voltages in Table 4.10(b). They are determined
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according to

(4.55) fijkl =
µEijkl
χε0

where χ is the dielectric susceptibility [112, 125, 126, 100, 90, 91] and ε0 is the per-

mittivity of free space, and are essentially constant across all the materials.

(a) µEijkl (nC/m)

SrTiO3 LaAlO3 KTaO3 GdScO3

µE1111 -40.82 -30.26 -3.86 -3.50
µE1122 -42.18 -36.07 -3.98 -3.46
µE1212 -1.40 -2.05 -0.16 0.10

(b) f (V)

SrTiO3 LaAlO3 KTaO3 GdScO3

f1111 -14.93 -14.19 -17.45 -14.56
f1122 -15.42 -16.91 -17.99 -20.15
f1212 -0.51 -0.96 -0.72 0.58

Table 4.10. Independent (a) flexoelectric coefficients and (b) flexocoupling
voltages in STO, KTO, LAO, and GSO.

4.7. Experimental Comparison

Using the values for the flexoelectric tensor components in Table 4.10 and the formulas

developed in Chapter 3, it is possible to predict the effective flexoelectric response to TPB.

Table 4.11 provides the effective flexoelectric coefficient for samples with 〈100〉 (pseudo)-

cubic edges in the beam bending (unclamped) and plate bending (fully clamped) limits (as

defined in Chapter 3). The predicted flexoelectric responses significantly differ from the

measured responses in all cases. In STO, KTO, and LAO, the sign and magnitude do not
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agree with experiment, and in GSO the magnitude is four times too small. Admittedly, it

is possible that the poor agreement between the LAO and GSO predictions/experiments

could stem from the approximations made in treating the two structures as cubic per-

ovskites, but the agreement with the simpler, truly cubic perovskites STO and KTO is

even worse. This indicates some missing physics in the theory described in this chapter.

Beam (φ=0) Plate (φ=1) Exp.
SrTiO3 -22.36 -29.38 +12.4±0.6
KTaO3 -25.92 -30.60 +4.4±0.5
LaAlO3 -1.83 -2.52 +3.2±0.3
GdScO3 -1.70 -2.41 -8.1±0.4

Table 4.11. Effective short-circuit flexoelectric coefficients for cubic samples
with 〈100〉 edges computed from the tensor components in Table 4.10 for
the beam and plate bending limits compared with experimental values from
Chapter 3. All values are in nC/m.

4.8. Lattice Quadrupole Contribution in LaAlO3 and GdScO3

The poor agreement between the first principles flexoelectric coefficients calculated

here and the measured flexoelectric coefficients for STO and KTO is resolved in Chap-

ter 5. However, the mean-inner potential (MIP) correction introduced in the next chap-

ter does not fix the disagreement between the predicted and measured coefficients for

LAO and GSO. This issue likely originates from approximating LAO, a rhombohedral

perovskite, and GSO, an orthorhombic perovskite, as cubic perovskites. While this is a

common approximation for LAO given its small structural distortions, this approximation

dramatically oversimplifies the highly distorted lanthanide scandate structure.

Within the context of the first principles theory of bulk flexoelectricity, approximating

both structures as cubic artificially sets all lattice-quadrupole contributions to the bulk
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flexoelectric coefficient, i.e. terms associated with Raman active modes, to zero (Sec-

tion 4.2). In reality, O and La sites in R3c LAO contribute to 4 and 1 zone-center Raman

active modes, respectively. Gd/O1 and O2 sites in Pnma GSO contribute to 6 and 12

zone-center Raman active modes, respectively [169]. The supercell approach adopted

for these calculations is ill-suited for investigating this large number of modes, and it is

difficult to estimate the magnitude of these contributions for these structures because, to

my knowledge, lattice-quadrupole terms have not been computed in distorted perovskites

(Hong and Vanderbilt [58] calculated this term for C and Si, but there is no reason to

think those values apply in oxides). Suggestions for how to approach this problem are

provided as future research directions Chapter 9.

4.9. Shortcomings of Bulk Flexoelectric Theory

Not only is the agreement poor between the experimental measurements of flexoelec-

tricity in single crystals and the first principles calculations, but even more troubling is

that the first principles theory of flexoelectricity predicts metals to have non-zero flexo-

electric coefficients. To illustrate the latter point, DFT calculations were performed with

the all-electron augmented plane wave + local orbitals WIEN2k code on FCC Al using

the LDA functional [148] to treat exchange and correlation effects. Muffin-tin radius of

2.5 bohr was used for Al with a plane-wave expansion parameter RKMAX of 7, energy

cut-off of -6 Ry, k-mesh equivalent to 20×20×20 per bulk conventional unit cell, and

Mermin functional at room temperature. Convergence criteria of 10−6 e, 10−4 Ry, and

10−3 mRy/bohr were used. Together, this yielded a bulk optimized lattice parameter of
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7.54 bohr (experimental 7.65 bohr). The procedure outlined in Section 4.3 was followed

regarding to the construction of an 8 unit cell long supercell with a [100] long axis.

Figure 4.8 contains the change in the charge density associated with the displacement

of an Al atom in FCC Al and the moments of the change in charge density associated

with this displacement. We find the dipole and quadrupole moments are zero: the former

is a requirement for a metal because a metal has a dielectric constant of infinity and the

latter is a consequence of the Al site possessing inversion symmetry. As a result, any

lattice-dipole and lattice-quadrupole contributions to flexoelectric coefficients in Al are

zero.

Unlike the dipole and quadrupole moments, the octupole moment in Figure 4.8 is finite.

Simplifying Eq. 4.2 with this charge density moment indicates a non-zero flexoelectric

coefficient of

(4.56) µD1111 =
Q

(3),D
Al

6Ω
= −122.17

pC

m

and non-zero flexocoupling voltage

(4.57) f1111 =
µD1111

ε0

= −13.80V.

These calculations suggest that a metal subjected to a strain gradient would become

polarized, which we know is not possible. While the theoretical framework developed in

this chapter is sound, we will see in the next chapter it is incomplete: the physical inter-

pretation of the flexoelectric coefficients given by Eq. 4.2, 4.4, and 4.9, and flexoelectricity

in general, requires careful consideration of surfaces. Through treating the integral role
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Figure 4.8. (a) Differences in the planar-averaged charge density of super-
cells with a displaced Al atom and an unperturbed supercell. (b) Moments
of the charge distribution in (a) about the position of the displaced atom.

of the MIP in flexoelectricity in Chapter 5, we resolve the disagreement with experiment

in Table 4.11 for KTO and STO, and the notion of flexoelectric polarization in a metal

indicated by Figure 4.8.
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CHAPTER 5

The Role of Surfaces in Flexoelectricity

5.1. Introduction

The first principles theory of flexoelectricity [135, 136, 58, 59, 138] described in

Chapter 4 makes significant progress toward a predictive, microscopic model for flexoelec-

tricity. Unfortunately, as described at the end of Chapter 4, this theory has some serious

shortcomings:

(1) The bulk flexoelectric coefficients predicted by this theory and experimental mea-

surements on high-quality, single crystalline samples often differ in both magni-

tude and sign.

(2) The theory predicts non-zero bulk flexoelectric coefficients for metals.

It is common in the literature to attribute this discrepancy to surface contributions

to the measured flexoelectric response, which are not present in the theory used in Chap-

ter 4. The first identification of the importance of surfaces in the flexoelectric response

of finite bodies can be traced to phenomenological theory [128]. This work was initially

controversial [135], but subsequent work has rigorously shown that the polarization of a

finite crystal induced by inhomogeneous strain has surface sensitive contributions, arising

from changes in what has been called a ”surface dipole” with strain, which do not go to

zero in the bulk limit and are comparable in magnitude to the bulk flexoelectric response
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[137, 74, 150]. Although some of the first ab initio calculations of flexoelectric coeffi-

cients supported this interpretation, these surface contributions have only been explicitly

considered for bulk truncated (100) STO surfaces [74], which are unrealistic (e.g. Ref.

[170]).

In Section 5.2 I motivate how surfaces contribute to the flexoelectric response of a

finite system and connect this contribution to the strain derivative of the MIP, i.e. the

difference between the average Coulomb potential and vacuum energy. Next, I use DFT

calculations on a range of experimentally observed, low energy surfaces on archetypal

ionic (MgO), covalent (Si), and mixed ionic-covalent (STO) crystals to investigate the

role of surface structure, chemistry, polarity, and adsorbates on the MIP (Section 5.3)

and MIP contributions to the flexoelectric response (Section 5.4). This work demonstrates

that small variations in surface structure, chemistry, and adsorbates lead to significant

changes in the MIP and total flexoelectric response. In Section 5.5 I combine the MIP

contributions to the flexoelectric response with the bulk flexoelectric coefficient calculated

in Chapter 4, allowing for a complete comparison with the measurements presented in

Chapter 3. Lastly, I demonstrate how the issue of finite bulk flexoelectric coefficients in

metals is resolved by considering the MIP contribution in Section 5.6. I performed all

DFT calcultions and analyses described in this chapter and benefitted from discussions

with Professor Laurence D. Marks.
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5.2. The Flexoelectric Response of a Bent Slab

5.2.1. Contributions from the Bulk Flexoelectric Effect

To analyze the flexoelectric response of a bent slab, we will first summarize the effects of

bulk flexoelectricity. In Chapters 2, 3, and 4 we have shown that short-circuit flexoelectric

coefficients µEijkl mediate the electromechanical coupling of polarization (Pi) and strain

gradient (εkl,j) in the absence of an electric field [10, 11] according to

(5.1) Pi = µEijklεkl,j.

Alternatively, this effect can be described in terms of flexocoupling voltages (fijkl) which

give the gradient of the average Coulomb potential arising from strain gradients [10, 11,

58]. Short-circuit flexoelectric coefficients and flexocoupling voltages are related through

(5.2) fijkl =
µEijkl
ε0χ

where χ is dielectric susceptibility and ε0 is the permittivity of free space. Flexocoupling

voltages will be used in this chapter because they are a more convenient description of

flexoelectricity in this context.

Now consider the slab shown in Figure 5.1. If we assume the slab is composed of a

centrosymmetric material, then there is no potential difference across an unperturbed slab.

Subjecting the slab to a constant, longitudinal strain gradient as shown in Figure 5.1(b)

leads to a potential difference across the slab owing to the bulk flexoelectric effect. If the
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longitudinal strain gradient is taken to be one-dimensional

(5.3)
dε

dx
(x) = κ

and the material has a single flexocoupling voltage (f), then the potential difference across

the slab of thickness t is

(5.4) ∆Vbulk = −
∫
Edx =

∫
f
dε

dx
(x)dx = fκt.

Figure 5.1. (a) An unperturbed slab of a centrosymmetric crystal has no
potential difference across it. (b) A slab of a centrosymmetric crystal sub-
jected to a constant longitudinal strain gradient has a potential difference
across it from the flexoelectric effect. In both (a) and (b), black lines in-
dicate atomic planes and gold electrodes on either end would measure the
open-circuit voltage.

Importantly, ∆Vbulk is equal to the total potential difference across the slab only if

the average Coulomb potential in a material is zero, which we know is not the case: the

Coulomb potential in a solid is periodic and the (macroscopic) average of the Coulomb

potential is a non-zero constant [163, 171, 165, 164]. An example of a DFT Coulomb

potential for a STO slab with a TiO2 bulk truncation is shown in Figure 5.2.
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Figure 5.2. (a) Planar averaged Coulomb potential calculated with DFT in
a STO slab with a bulk TiO2 truncation. The periodic Coulomb potential
has a well-defined macroscopic average Vavg (red). There is a potential step
V (green) associated with the change in the average Coulomb potential
inside and outside the slab. (b) It is convenient to work with an abstraction
of the crystal slab where only the potential step is considered.

Before formally treating the average Coulomb potential in a solid, we will qualitatively

demonstrate why a non-zero average Coulomb potential leads to additional contributions

to the flexoelectric response of a bent slab [137, 74, 150]. Consider a finite centrosym-

metric crystal with a slab geometry as shown in Figure 5.3. There are electric fields near

the surface of the slab from the potential step corresponding to the change in the average

Coulomb potential going from inside the crystal to vacuum. Even though there are finite

electric fields near the surface, the potential difference across the slab is zero because it

is centrosymmetric. Note, these electric fields can also be interpreted as a consequence of

the inherent inversion-symmetry breaking nature of surfaces and are sometimes referred

to as the surface piezoelectric effect [172, 173].

If the slab were to be homogeneously strained, as in Figure 5.3(b), the magnitude

of the electric fields near the surfaces would change because the difference between the



146

average Coulomb potential and vacuum depends on lattice spacing. However, there is

still zero potential difference across the slab because a homogeneous strain does not break

inversion symmetry.

If a constant strain gradient, such as the one described by Eq. 5.3, is applied to the

slab there will be a constant electric field in the bulk owing to the bulk flexoelectric

effect leading to the potential difference described by Eq. 5.4. Additionally, there will be

a contribution to the total potential difference from the electric fields near the surface:

strain gradients break inversion symmetry, so the electric fields at either surface arising

from the potential step between the bulk and vacuum no longer cancel. Figure 5.3(c)

shows how the total potential difference across the bent slab is the sum of these two

terms. Importantly, the contributions from the potential step at the surface do not go

to zero in the thermodynamic bulk limit [137, 172] and are comparable in magnitude to

the bulk flexoelectric effect [74].

5.2.2. The Mean-Inner Potential

To properly treat the electric field associated with the non-zero average Coulomb potential

in Figure 5.3, it is necessary to define some terms. Figure 5.3 shows that it is actually not

the average Coulomb potential that is the relevant quantity for the flexoelectric response

of a bent slab; rather, it is the difference between the average Coulomb potential in the

slab (Vavg) and the vacuum energy (Evac) outside the solid. This quantity is known as

the MIP (V ). See Ref. [163] and [171] for reviews of the MIP.

(5.5) V = Vavg − Evac
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Figure 5.3. Changes in the electric field (E) and electrostatic potential (V )
with strain (ε) in an infinite centrosymmetric crystal and finite centrosym-
metric crystal with a slab geometry. Black lines in the top row indicate the
position of atomic planes and grey shaded regions are vacuum. (a) An infi-
nite crystal subjected to a constant strain gradient has a constant, non-zero
electric field owing to the bulk flexocoupling voltage. (b) A finite crystal
under constant strain will have no electric field in the bulk (blue), but will
have equal and opposite electric fields (red) at the surface arising from the
potential step (purple). There is no potential difference across the slab be-
cause inversion symmetry has not been broken. (c) The symmetry of the
electric fields associated with the surface in a finite crystal (red) is broken
by a constant strain gradient. This contribution and the constant electric
field from the bulk flexoelectric effect (blue) yield a measurable potential
difference across the slab (purple).

The MIP has been extensively studied due to its importance in electron microscopy

[163, 171, 174], and there have been significant efforts to measure [175] and calculate

MIPs [176, 177, 178, 179, 180] in a wide range of materials. At a fundamental level, the
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MIP is only defined for finite-sized systems [181] because there is no reference potential in

an infinite crystal [163, 171], making the MIP an inherently surface-sensitive property.

It has been demonstrated that the MIP is sensitive to surface orientation, structure,

chemistry, and adsorbates (e.g. Ref. [176]).

Figure 5.4 provides a band diagram description of the MIP in which the surface-

sensitivity of this quantity is clear. The MIP in an insulator can be considered as

(5.6) V = ∆ + I.

In Eq. 5.6, ∆ is the difference between Vavg and the bulk valence band maximum (Ebulk
V BM)

and I is the ionization potential, i.e. the difference between Evac and Ebulk
V BM . ∆ is a bulk

property and I is a surface property [182]. For the purposes of this work, it will be useful

to decompose I further into the work function (φ, the difference between Evac and the

surface valence band maximum (VBM), Esurf
V BM) and surface valence band offset (δ, the

difference between Ebulk
V BM and Esurf

V BM).

5.2.3. The Ibers Approximation

While the MIP is only defined for finite-sized systems [181, 163, 171], it is possible to

estimate the MIP of a crystal from only its bulk structure if the crystal is approximated

as a collection of non-interacting atoms or ions [164, 163]. Within this approximation,

the issue of the reference potential is resolved because atomic/ionic energy levels have

a well-defined zero infinitely far away from the atom/ion. Ibers [164] has demonstrated

that within this approximation the MIP can be expressed in terms of electron scattering
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Figure 5.4. (a) Band diagram definition of the MIP for an insulator with
finite size. All quantities are defined in the text. (b) Partial density of
states of a (100) STO slab with a TiO2 single-layer termination (structure
shown in Figure 5.5) calculated with DFT depicting quantities defined in
(a). Blue corresponds to the partial density of states of the inner-most
TiO2 layer and red corresponds to the partial density of states (pDOS) of
the outer-most TiO2 layer.

factors according to

(5.7) V =
h2

2πmeΩ

∑
i

f eli (0)

where h is Plancks constant, m is the electron rest mass, e is the electron charge, Ω is the

unit cell volume, and f eli (0) is the electron scattering factor of species i in the unit cell

(atomic and ionic electron scattering factor values are tabulated for each element from

Dirac-Fock calculations, e.g. Ref [166]).
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5.2.4. Mean-Inner Potential Contributions to Flexoelectricity

Based upon the definition of the MIP provided above and the arguments summarized in

Figure 5.3, the total flexocoupling voltage of a finite crystal is

(5.8) ftotal = fbulk + fMIP

where fbulk is the bulk flexocoupling voltage defined in Eq. 5.2 and fMIP is the change in

the MIP with strain

(5.9) fMIP =
dV

dε
.

A rigorous proof of Eqs. 5.8 and 5.9 are provided in Ref. [137, 150], but they can be

motivated from the definition of fbulk and MIP: the total potential difference will not only

depend on the gradient of the average Coulomb potential (fbulk), but also the difference

between the average Coulomb potential and the vacuum energy (MIP). Note, Eq. 5.8

assumes contributions from defects are negligible which is not always the case (e.g. see

Chapter 6).

While fMIP has been called the surface flexocoupling voltage in the literature [137,

74], we refer to it as fMIP because only some of Eq. 5.9 is truly surface sensitive. The

bulk and surface components of fMIP can be explicitly defined by combining Eq. 5.9 with

Eq. 5.6 and Figure 5.4:

(5.10) fMIP =
d (∆ + I)

dε
= f bulkMIP + f surfMIP .
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f surfMIP , the surface-sensitive component of fMIP , describes the strain derivative of the

ionization potential. In the ensuing work, this quantity will be shown to be very sensitive

to surface structure, chemistry, and adsorbates. The bulk component of fMIP , f bulkMIP , is

given by the strain derivative of the difference between the average Coulomb potential

and the bulk VBM. This term depends only upon the bulk crystal structure and crystal-

lographic orientation. Note, Eq. 5.5 and 5.10 use the VBM to distinguish between bulk

and surface contributions to the MIP and fMIP , but this breakdown is not unique: for

other materials it may be more sensible to use another energy, e.g. the conduction band

minimum in n-type semiconductors. This choice is arbitrary and has no impact on the

physical measurement: it will cancel in Eq. 5.10.

5.3. Mean-Inner Potential Calculations

5.3.1. Background

Stengel clearly demonstrated the importance of surfaces in flexoelectricity in Ref. [74]

through DFT calculations on bulk truncated STO surfaces. While this work represents

an important step towards understanding flexoelectricity, the surfaces examined in that

work are not experimentally relevant: experimentally observed surfaces, including those

in nominally simple systems such as STO, deviate significantly from bulk truncations (e.g.

Ref. [183] and references therein). Here we consider the flexoelectric response associated

with surfaces which have been experimentally observed and/or lie near the theoretical

convex hull for archetypal mixed ionic-covalent (STO, [184, 185, 186, 187, 188, 189,

190, 191, 192, 193, 194, 195, 196]), ionic (MgO, [197, 198, 199, 200]), and covalent

(Si, [201]) crystals. This wide range of surfaces allows us to study the impact of surface
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structure, chemistry, polarity, and adsorbates on flexoelectricity. Before investigating

the impact of these factors on flexoelectricity, we first examine their impact on the MIP

because of the intimate relationship between flexoelectricity and the MIP.

5.3.2. Methods

DFT calculations were performed with the all-electron augmented plane wave + local

orbitals WIEN2k code [145]. Bulk calculations were used to obtain optimized lattice

constants for STO (Pm3m), MgO (Fm3m), and Si (Fd3m). Then, conventional slab

models (consisting of 15-20 atomic layers with 1015 Å of vacuum and the highest available

symmetry) were constructed for each investigated surface using the bulk optimized lattice

constants. Numerical tests confirmed these surface slabs were sufficiently large. Atomic

positions in the surface slabs were simultaneously converged with the electron density

using a quasi-Newton algorithm [202]. The exchange-correlation term was approximated

with the LDA functional [148]; calculations with the PBEsol functional [152] and a

PBEsol + on-site hybrid [153, 154] approach (only for STO, with an on-site hybrid

fraction of 0.25 applied to Ti 3d states) yielded qualitatively similar results.

For STO, muffin-tin radii of 2.31, 1.54, 1.40 bohr were used for Sr, Ti, and O, re-

spectively with a plane-wave expansion parameter RKMAX of 5.98, energy cut-off of -6

Ry, and k-mesh equivalent to 4x4x4 per bulk conventional unit cell. For MgO, muffin-tin

radii of 1.63, 1.20, 0.60 bohr were used for Mg, O, and H, respectively with a RKMAX of

4.42 (2.21 with H), energy cut-off of -6 Ry, and k-mesh equivalent to 10x10x10 per bulk

conventional unit cell. For Si, a muffin-tin radius of 2.00 bohr was used with a RKMAX

of 7, energy cut-off of -8 Ry, and k-mesh equivalent to 7x7x7 per bulk conventional unit



153

cell. Numerical tests in which the muffin-tin radii, RKMAX, and k-mesh reported above

were varied yielded consistent MIP values. All calculations used a Mermin functional at

room temperature. For bulk calculations, convergence criteria of 10−4 e and 10−3 Ry were

used. This yielded optimized lattice parameters of 7.290 bohr, 7.874 bohr, and 10.208

bohr for STO, MgO and Si, respectively. For surface calculations, convergence criteria of

10−4 e, 10−3 Ry, and 10−3 mRy/bohr were used with a force tolerance of 0.1 mRy/bohr.

A core-level approach [203, 204] was used to calculate the MIP for each surface

according to

(5.11) V = Vavg − Evac = (Vavg − Ecore)bulk + (Ecore − Evac)surf .

A bulk calculation was used to determine the difference between a deep core eigenvalue,

Ecore, and the average Coulomb potential, Vavg. Then, a surface slab calculation was used

to determine the difference between the Coulomb potential in the center of vacuum, Evac,

and the same deep core eigenvalue from the innermost atomic plane of the slab. Checks

were made to ensure the slab and vacuum were large enough to minimize oscillations in

the Coulomb potential in vacuum and to recover the bulk structure in the innermost slab

layer. Tests were also performed using different deep core eigenvalues for a particular

structure to confirm consistency in V calculations. The computational parameters and

method used here yielded uncertainties in V ∼0.2 V. Once V was known, the energies of

the bulk and surface VBM were used to decompose V according to Figure 5.4.
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5.3.3. (100) SrTiO3 Surfaces

We begin with the MIP of (100) STO surfaces to determine how surface chemistry and

structure affect the MIP. Cubic (100) perovskite surfaces have two bulk truncations corre-

sponding to (1x1) TiO2 and SrO single-layer (SL) terminations for STO. The (100) surface

of STO also has many TiO2 double-layer (DL) reconstructions (e.g. Ref. [183] and refer-

ences therein). The DL reconstructions studied here ((1x1), (2x2)A, (2x2)C, (2x1), and

c(4x2), see Figure 5.5 and Ref. [184, 185, 186, 187, 188, 189, 190, 191, 192, 193,

194, 195, 196]) allow for the separation of surface structure effects from surface chemistry

effects because they have minor structural differences and identical stoichiometries.

First we focus on surface chemistry. Table 5.1 indicates the MIP increases with excess

TiO2 on the surface from a value of 15.2 V for bulk-truncated SrO (-0.5 TiO2/1×1) to

17.7 V for bulk-truncated TiO2 (0.5 TiO2/1×1) to an average of 18.4 V for TiO2 DL

reconstructions (1.5 TiO2/1×1). This demonstrates the importance of surface chemistry

in determining the MIP. Table 1 shows MIPs are similarly sensitive to surface structure:

the stoichiometrically-identical DL reconstructions have a 1.7 V MIP range, reflecting the

role of differences in the surface Ti-O polyhedra coordination environment. The MIP

difference between the chemically distinct SrO and TiO2 SL bulk terminations is compa-

rable to the MIP range for the DL reconstructions, suggesting both surface chemistry and

structure play a large role in determining the MIP.

Unfortunately, there have been limited experimental investigations of MIP in STO,

making it difficult to compare our calculations; there are no MIP measurements on DL

structures and one measurement on bulk (100) STO terminations [205]. Although it is
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Figure 5.5. DFT relaxed (100) STO surface structures studied in this work
with Sr atoms in green, Ti-O polyhedral in blue, and reconstructed unit cells
outlined in black. The (100) surface of the TiO2, SrO, and (1x1) double-
layer structures correspond to the right-most atomic planes. The (100)
surface of the (2x2)A, (2x2)C, c(4x2) and (2x1) double-layer reconstructions
are shown sitting atop a bulk (100) plane.

Surface V (V) φ (V) δ (V) ∆ (V) V exp (V)
SrO 15.2 4.0 0.0 11.2 13.3
TiO2 17.7 5.6 0.9 11.2 14.6

(1x1) DL 17.6 6.0 0.7 11.0
(2x2)A 18.2 6.7 0.4 11.1
(2x2)C 18.5 7.4 0.0 11.0
c(4x2) 18.3 7.2 0.0 11.1
(2x1) 19.3 8.2 -0.1 11.0

Table 5.1. DFT calculated MIP for (100) STO surfaces. All values are de-
fined in Figure 5.4. All surfaces have the same ∆ values (within the uncer-
tainty of these calculations), whereas the work function and surface valence
band offsets vary significantly, yielding a large MIP spread for nominally
similar surfaces. The experimental values are taken from Ref. [205].

unlikely that pure bulk-like SrO and TiO2 terminated surfaces are realistic [170], we com-

pare our calculations to the existing literature [205]. The one experimental measurement

on bulk terminations of (100) STO surfaces found MIPs of 13.3 V (14.6 V) for SrO (TiO2)
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terminations [205], whereas we calculated MIPs of 15.2 V (17.7 V) for SrO (TiO2) ter-

minations. Our calculations qualitatively capture the experimental relationship between

the MIP of the bulk terminations, but the source of the discrepancy in the magnitude of

the values is unclear.

To investigate further, additional MIP calculations were performed with the PBEsol

functional and a PBEsol + hybrid approach. As shown in Table 5.2, these calculations

yielded qualitatively similar MIP to those using the LDA functional. We also cannot

attribute the discrepancy to the difference between the DFT optimized and experimental

lattice parameters because the product of the MIP and the optimized unit cell volume is

constant across all functionals [179]. The SrO and TiO2 SL work functions we calculated

are in good agreement with other DFT calculated work functions [206] and our MIP

calculations agree with electron holography measurements for MgO and Si surfaces (see

Section 5.3.4 and 5.3.5). These findings suggest that either (1) STO surfaces are poorly

modeled with functionals used here, (2) reflection high-energy electron diffraction and

electron holography measurements of the MIP are inconsistent, or (3) some contamination

affected the MIP measurements reported in Ref. [205].

5.3.4. (100) and (111) MgO Surfaces

Now we turn to the MIP of MgO (100) and (111) surfaces. MgO has archetypal polar

surfaces: bulk truncations of the (111) rock salt structure are not valence-neutral so

(111) surfaces must reconstruct, metallize, or adsorb species to stabilize [183]. First, we

calculate the MIP of bulk truncated MgO (100) to serve as a baseline for comparison
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(a) V (V)

Surface Exp. LDA PBEsol PBEsol + hybrid
SrO 13.3 15.2 14.7 14.8
TiO2 14.6 17.7 17.4 17.0

(b) V × Ω (V nm3)

Surface Exp. LDA PBEsol PBEsol + hybrid
SrO 0.792 0.873 0.869 0.881
TiO2 0.869 1.016 1.029 1.012

Table 5.2. (a) MIP of bulk truncations of (100) STO calculated with differ-
ent functionals and experiment. (b) Product of the MIP and equilibrium
volume. Experimental values are taken from Ref. [205].

with experiment and different MgO (111) reconstructions. The calculated MIP of 13.4

V for the MgO (100) surface is similar to the MIP of 13.01 V measured with electron

holography [175]. Unlike STO, the difference between the calculated and experimental

MIP for MgO is fully accounted for from the difference between the DFT optimized and

experimental lattice parameters: V LDA ·ΩLDA=0.969 V nm3 and V exp ·Ωexp=0.972 V nm3

[175, 179].

For unhydroxylated polar MgO (111) surfaces, we start with (2×2) octapolar recon-

structions which are canonical, low energy structure [197]. Surface chemistry affects polar

surface MIPs in a similar manner to how it affects non-polar surface MIPs: Table 5.3 shows

the Mg-terminated and O-terminated octapolar structures have a 2.5 V MIP difference

which is comparable to the difference between the SrO and TiO2 bulk truncations of (100)

STO. This indicates there is nothing special about polar surface MIPs other than polar

surfaces must resolve their polarity through reconstruction or other means to exist [183].



158

Note, the MgO (100) bulk truncation MIP is approximately the average of the MIP of

the octapolar structures. This follows from the difference in electron affinity of Mg and

O.

The (2×2)-α structures are similar to the (2×2) octapolar surfaces [200, 198]. There

are three variants of the unhydroxylated (2×2)-α structure which possess identical surface

chemistries and minor structural differences: the generic (2×2)-α shown in Figure 5.6 has

three oxygen surface sites and the three variants have two out of three surface sites

occupied. The (2×2)-α-O1 and (2×2)-α-O2 structures have nearly identical MIPs with

values of 18.5 V and 18.8 V, respectively, the (2×2)-α-O3 structure has a MIP of 17.1

V. This result is surprising given the structural similarities between the three variants,

and is attributed to the relative stability of these three structures: the (2×2)-α-O3 is

∼0.5 eV per (1×1) unit cell lower in energy than the other two structures [198]. These

results further indicate structural and chemical differences have a comparable impact on

the MIP.

Next, we examine the MIP of hydroxylated MgO (111) surface reconstructions [198] to

study the role of adsorbates. Table 5.3 indicates that the introduction of hydrogen tends

to reduce the MIP from 16.5 V (averaged over all unhydroxylated) to 14.1 V (averaged

over all hydroxylated structures). A clear example of this trend is in the three (2x2)-α

structures: the MIP of the (2×2)-α-OH1, (2×2)-α-OH2, and (2×2)-α-OH3 are decreased

by 3.4 V, 3.9 V, and 1.4 V relative to (2×2)-α-O1, (2×2)-α-O2, and (2×2)-α-O3, respec-

tively. The difference in the MIP reductions upon hydroxylation further emphasizes the

importance of surface structure. Finally, we find the O-rich variant of the hydroxylated

Rt3 structures has a higher MIP than the Mg-rich variant. This behavior is similar to that
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Figure 5.6. DFT relaxed (111) MgO surface structures studied in this work.
In all structures, Mg, O, and H atoms are blue, red, and black, respectively,
and reconstructed unit cells are outlined in black. The generic (2×2)-α
structure is shown with the three distinct O sites indicated by an orange
hexagon, green triangle, and purple triangle. The (2×2)-α-O1, -O2, and
-O3 structures have O at the orange hexagon and purple triangle, orange
hexagon and green triangle, and purple triangle and green triangle occu-
pied, respectively. The (2×2)-α-OH1, -OH2, and -OH3 structures have all
three sites occupied by O as well as H atop the orange hexagon and purple
triangle, orange hexagon and green triangle, and purple triangle and green
triangle, respectively.

of the (2×2)-octapolar structures, consistent with the difference in the electron affinity of

Mg and O, and indicates that the underlying surface chemistry still plays a large role in

determining the MIP in hydroxylated surfaces.

We are not aware of any MIP measurements for (111) MgO surfaces, so we cannot

make a direct comparison with experiment. We note that test calculations with different

DFT functionals changed the MIP and optimized lattice parameter so that V · Ω was

constant for a given surface, independent of the functional used. This is similar to the

effect of functionals on the MIP of STO surface.
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Surface V (V) φ (V) δ (V) ∆ (V) V exp (V)
Bulk (100) 13.4 5.5 0.1 7.8 13.01

Mg-oct 12.7 4.3 0.5 7.9
O-oct 15.2 6.6 0.8 7.8

(2×2)-α-O1 18.5 7.9 2.7 7.9
(2×2)-α-O2 18.8 8.1 2.9 7.8
(2×2)-α-O3 17.1 7.2 2.0 7.9

(2×2)-α-OH1 15.1 5.3 1.9 7.9
(2×2)-α-OH2 14.9 5.5 1.4 7.9
(2×2)-α-OH3 15.7 5.2 2.6 7.9

(1x1)H 11.7 3.8 0.0 7.9
Rt3-MgH 11.7 3.5 0.3 7.9
Rt3-OH 15.2 6.1 1.2 7.9

Table 5.3. DFT calculated MIP for each MgO surface. Values are defined
in Figure 5.4. All surfaces have the same ∆ values (within the uncertainty
of these calculations), whereas the work function and surface valence band
offsets vary significantly, leading to a large MIP spread for nominally similar
surfaces. The experimental value is taken from Ref. [175].

5.3.5. (100) Si Surfaces

The two Si (100) surfaces studied were the (1×1) bulk truncation and asymmetric dimer-

ized (2×1) reconstruction which are shown in Figure 5.7 [201]. These surfaces have

identical chemistry, minor structural differences, and, as shown in Table 5.4, a difference

of 0.5 V between their MIPs. This MIP difference is smaller, but comparable to the dif-

ferences in the MIP of the chemically identical but structurally distinct STO and MgO

surfaces discussed in Section 5.3.3 and 5.3.4. We cannot make a quantitative comparison

with experiment because we could not find MIP measurements for (100) Si surfaces and

there is a sizable spread in the available experimental values of the MIP for other Si sur-

faces [176, 177, 175]. However, our calculated MIP values are similar to some measured

MIPs for Si [176, 177, 175].
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Figure 5.7. DFT relaxed (100) Si surface structures studied in this work
with Si atoms in blue.

Surface V (V) φ (V) δ (V) ∆ (V)
(1×1) 13.0 5.3 0.2 7.5

(2×1)-asym 12.5 5.1 0.0 7.4

Table 5.4. DFT calculated MIP for each Si surface. Values are defined in
Figure 5.4. All surfaces have the same ∆ values (within the uncertainty
of these calculations), whereas the work function and surface valence band
offsets vary.

5.3.6. Ibers Approximation to the Mean-Inner Potential

The calculations in Sections 5.3.3, 5.3.4, and 5.3.5 demonstrate the MIP is sensitive to

surface structure, chemistry, and adsorbates leading to a large spread in MIP values

for nominally similar surfaces. Unfortunately, such calculations require a known surface

structure to determine the MIP, which is frequently not the case in experiment. When

the surface structure is not known, it is possible to approximate the MIP using knowledge

of the bulk structure, electron scattering factors, and experimental lattice parameters

according to the Ibers approximation [164] introduced in Section 5.2. We now evaluate

the accuracy of this approximation.

Figure 5.8 compares the MIP predicted by electron scattering factors using Eq. 5.7 to

those calculated with DFT for the surfaces analyzed in Sections 5.3.3, 5.3.4, and 5.3.5.
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We find predicted MIPs of 18.4 V (12.6 V), 15.1 V (22.3 V), and 13.8 V for MgO, STO,

and Si, respectively, using the appropriate atomic (ionic) electron scattering factors values

from Ref. [166]. The atomic and ionic electron scattering factors do a comparable job

with mean absolute errors (MAE) of 3.0 V for atomic electron scattering factors and 3.3

V for ionic electron scattering factors across all surfaces. Most MIP values computed were

∼15 V, so the MAE indicates the Ibers approximation is good to ∼20%. For individual

materials, there are minor differences with the use of ionic and atomic electron scattering

factors. MgO is better captured by ionic electron scattering factors (MAE = 2.7 V) than

atomic scattering factors (MAE = 3.5 V), whereas atomic scattering factors (MAE = 3.0

V) are more appropriate for STO than ionic scattering factors (MAE = 3.3 V). Si has no

ionic scattering factors, but the performance of atomic scattering factors is comparable

to the other materials mentioned (MAE = 3.0 V).

Figure 5.8. Comparison between the MIP calculated with DFT and with
atomic (solid) and ionic (dashed) electron scattering factors for (a) MgO,
(b) STO, and (c) Si surfaces. The MAE across all surfaces is 3.0 V and 3.3
V for atomic and ionic electron scattering factors, respectively.

5.4. Calculations of fMIP

The results from Section 5.3 clearly demonstrate the MIP is sensitive to the details

of the surface including its structure, chemistry, and adsorbates. We now explore the
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sensitivity of fMIP to these factors using the same STO, MgO, and Si surfaces shown in

Figures 5.5, 5.6, and 5.7.

5.4.1. Methods

A core-level approach analogous to Eq. 5.11 was used to calculate the fMIP for each

surface using the same DFT parameters described in Section 5.3.2.

(5.12)

fMIP =
dV

dε
=
d (Vavg − Evac)

dε
=

(
d (Vavg − Ecore)

dε

)
bulk

+

(
d (Ecore − Evac)

dε

)
surf

.

The quantity
(
d(Ecore−Evac)

dε

)
surf

corresponds to the strain derivative of the difference be-

tween Evac and Ecore from the innermost atomic plane of the slab. The strains used here

are a modified form of the clamped plate bending strain [74] introduced in Chapter 3.

(5.13) εclamped = ε


1 0 0

0 1 0

0 0 −2ν


The x3 axis in Eq. 5.13 is normal to the surface, ν = c12

c11
for (100) cubic surfaces, and

ν = c11+2(c12−c44)
c11+2(c12+2c44)

for (111) cubic surfaces (these follow from the analysis in Chapter 3

and Ref. [53]). Experimental elastic constants were used for STO [161], MgO [207], and

Si [208]. The quantity
(
d(Vavg−Ecore)

dε

)
bulk

is the strain derivative of the difference between

Vavg and Ecore. It is calculated from a set of bulk calculations performed under uniform

strains and corresponds to the hydrostatic deformation potential of Ecore [132] scaled by

the trace of Eq. 5.13.
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At least 5 strains were used to determine all slopes and the procedure was repeated

for multiple core eigenvalues to ensure consistency. Figure 5.9 demonstrates the quality

of the linear fits using the Mg1s eigenvalue as Ecore. After calculating fMIP from Eq. 5.12

it was separated into f bulkMIP and f surfMIP using the energies of the surface and bulk VBM

according to Eq. 5.10. We found the parameters and methods outlined above yielded an

uncertainty in fMIP ∼0.2 V.

Figure 5.9. A representative example of the data (blue squares) and linear
fits (black lines) used to calculate the strain derivative of the MIP. (a)
Difference between the average Coulomb potential and Mg1s eigenvalue in
bulk MgO as a function of hydrostatic strain. (b) Difference between the
vacuum energy and Mg1s eigenvalue in the innermost layer of a MgO (100)
slab as a function of clamped plate bending strain.

The clamped plate bending in Eq. 5.13 was computationally advantageous since many

of the investigated surfaces have tetragonal symmetry, but flexoelectric responses are

often reported in the φ = 0 beam bending limit [52]. To facilitate comparison with the

literature, all reported fMIP values throughout the chapter have been converted to pure

beam bending values using the relation

(5.14) f beamMIP =
1

1 + ν
f clampedMIP
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which follows from the framework developed in Chapter 3.

5.4.2. Calculations for Specific Surfaces

Table 5.5 includes the DFT calculated values of the MIP contributions to the total flex-

oelectric response (fMIP ), and the bulk (f bulkMIP ) and surface (f surfMIP ) components of fMIP

defined by Eq. 5.10 for each of the investigated surfaces.

We begin with an analysis of the (100) STO surfaces. Starting with the (1x1) SrO

and TiO2 SL structures, Table 5.5 shows that surface dependent contributions modify

fMIP by upwards of 30% and change the sign of f surfMIP . These results directly demonstrate

f surfMIP is sizable and underscore the integral role of surface chemistry in determining the

MIP contributions to the total flexoelectric response. My calculations also agree with Ref.

[74], which found fMIP of 6.6 V and 9.4 V for SrO and TiO2 SL structures, respectively.

Next we isolate the effects of surface structure on fMIP in STO by studying the

(1×1), (2×2)A, (2×2)C, (2×1), and c(4×2) DL reconstructions which have identical

stoichiometry. Table 5.5 indicates an average fMIP of 9.0 V and range of 1.6 V for the

DL reconstructions which is smaller, but comparable to, the difference in fMIP between

SrO and TiO2 terminations. This shows the fMIP has a sensitivity to the detailed surface

structure, as was the case for the MIP. However, the relationship between Ti-O polyhedra

coordination, excess TiO2 coverage, and the MIP is not reflected in the fMIP values in

Table 5.5. Instead, we find all TiO2-rich terminations possess qualitatively similar surface

contributions with f surfMIP ≥ 0 V, which is in stark contrast to f surfMIP <0 V for the SrO

termination.
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Collectively, this work shows that surface structure is important in dictating the mag-

nitude of the f surfMIP , but is a secondary consideration to surface chemistry which controls

the sign. The cleanest demonstration of this point is in the fMIP of the (1×1) and (2×1)

surfaces of Si. Table 5.5 shows that these two surfaces, which have identical surface chem-

istry and very minor structural differences compared to the structural differences in the

STO DL reconstruction, have identical fMIP within the uncertainty of these calculations.

Now we focus on MgO surfaces to further explore the relative importance of surface

chemistry and structure, and ascertain the impact of polar surfaces and adsorbates. The

fMIP of the (100) and (111) MgO surfaces in Table 5.5 demonstrate substantial surface-

dependent modifications. Like the STO surfaces, surface chemistry dictates the sign of

f surfMIP (e.g. f surfMIP in the Mg-terminated and O-terminated (2×2) octapolar structures differ

in sign and by 2.5 V, similar to the change in magnitude and sign of f surfMIP between the

(1×1) bulk SL terminations of (100) STO). In general, Table 5 indicates Mg-rich MgO

surfaces have f surfMIP ≤ 0 V, O-rich MgO surfaces have f surfMIP ≥0 V, and mixed termination

surfaces (e.g. the (100) bulk-terminated MgO surface) have f surfMIP ≈0 V.

Surface structure is also an important consideration in fMIP for MgO, particularly

when the surface chemistry is the same. For example, the (2×2)-α-O1 and (2×2)-α-

O2 structures have f surfMIP which are approximately half that of the (2×2)-α-O3 structure

despite these structures having identical stoichiometries and only small differences in sur-

face site occupancy. Similarly, the large differences in the hydroxylated (2×2)-α structures

f surfMIP highlights the important role of surface structure.

On the topic of polar surfaces, my calculations show the magnitudes of fMIP and

f surfMIP are similar for both polar and non-polar surfaces. This suggests that while polar
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surfaces can possess a wider range of fMIP values owing to their need to stabilize through

reconstruction, metallization, or adsorption, their flexoelectric response is not inherently

different than that of non-polar surfaces. On the other hand, adsorbates have a significant

effect on fMIP . On average, hydroxylation reduces fMIP from 10.7 V (averaged over all

unhydroxylated surfaces) to 9.4 V (averaged over all hydroxylated surfaces). This behavior

is most clearly shown by comparing the (2×2)-α structures, where fMIP is reduced by 1.4

V, 0.9 V, and 5.0 V upon hydroxylation of (2×2)-α-O1, (2×2)-α-O2, and (2×2)-α-O3,

respectively.

5.4.3. Ibers Approximation

As previously noted, DFT calculations require knowledge of the surface structure at a

level that is often experimentally inaccessible for typical flexoelectric experiments. In such

cases it is possible to estimate fMIP using knowledge of the bulk structure and electron

scattering factors according to the Ibers approximation. Combining Eq. 5.7 and 5.9 in

the limit of small strains yields an expression for the Ibers approximation [164] to fMIP :

(5.15) f IbersMIP ≈ V Ibers
∆Ω

Ω0

where V Ibers is the MIP at the equilibrium volume Ω0 calculated from electron scattering

factors and ∆Ω
Ω0

is volumetric strain (calculated from elastic constants, e.g. the trace of

Eq. 5.13).

Figure 5.10 contains a comparison of f IbersMIP calculated using atomic and ionic electron

scattering factors with fMIP calculated using DFT for the STO, MgO, and Si surfaces

considered in this chapter. Even though both scattering factors performed comparably in
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Materials Surface f bulkMIP (V) f surfMIP (V) fMIP (V)
SrTiO3 (100) SrO 8.1 -1.9 6.2

TiO2 8.1 1.8 9.9
(1×1) DL 8.2 1.4 9.6
(2×2)A 8.2 0.4 8.6
(2×2)C 8.1 1.6 9.7
c(4×2) 8.1 0 8.1
(2×1) 8.2 0.7 8.9

MgO (100) Bulk 6.1 -0.4 5.7
MgO (111) Mg-oct 8.9 -2 6.9

O-oct 8.9 0.5 9.4
(2×2)-α-O1 8.8 2.9 11.7
(2×2)-α-O2 8.9 2.4 11.3
(2×2)-α-O3 8.8 5.2 14.0

(2×2)-α-OH1 8.8 1.5 10.3
(2×2)-α-OH2 8.9 1.5 10.4
(2×2)-α-OH3 8.8 0.2 9.0

(1×1)H 8.8 -0.3 8.5
Rt3-MgH 8.8 -2.7 6.1
Rt3-OH 8.9 3.2 12.1

Si (100) (1×1) 5.5 0 5.5
(2×1)-asym 5.5 -0.1 5.4

Table 5.5. DFT-calculated flexocoupling voltages for each of the surfaces
explored in this work. The MIP contribution (fMIP ) is the sum of the

bulk (f bulkMIP ) and surface (f surfMIP ) components defined in Eq. 5.10. All values
correspond to φ = 0 pure beam bending (Chapter 3).

Section 5.3.6 for approximating the MIP, the atomic electron scattering factors outperform

the ionic scattering factors for approximating fMIP : across all surfaces we find MAE of

1.7 V and 3.3 V using atomic and ionic electron scattering factors, respectively. This is

also the case for each individual material system where we find MAE of 2.0 (3.4) V for

MgO, 1.3 (2.9) V for STO, and 1.0 V for Si using atomic (ionic) electron scattering factors.

Since the value of fMIP across all surfaces was ∼10 V, utilizing the Ibers approximation
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with atomic electron scattering factors to estimate MIP contributions to flexoelectricity

is good to ∼20%.

Figure 5.10. Comparison between the strain derivative of the MIP calcu-
lated with DFT and with atomic (solid) and ionic (dashed) electron scatter-
ing factors for (a) MgO, (b) STO, and (c) Si surfaces. The MAE across all
surfaces is 1.7 V and 3.3 V for atomic and ionic electron scattering factors,
respectively.

5.4.4. Trends

Table 5.5 indicates there are sizable variations in fMIP across materials systems, even for

nominally similar surfaces. Despite this, inspired by Eq. 5.15, we find V 0
∆Ω
Ω0

is a good

predictor for fMIP (r=0.87) where V 0 is the DFT value for the MIP of the equilibrium

structure and ∆Ω
Ω0

is the volumetric strain arising from bending. The slope in Figure 5.11(a)

is also very close to 1 (0.96), indicating the volume change associated with bending is the

dominant contribution to strain-induced MIP changes.

Similarly, Eq. 5.10 indicates the ionization potential could serve as a good predictor

for f surfMIP , which is confirmed by the strong correlation (r=0.79) in Figure 5.11(b). Fig-

ure 5.11(b) suggests materials with either high or low ionization potentials have strong

surface-dependent contributions to flexoelectricity, with high ionization potentials leading

to large, positive f surfMIP values and low ionization potentials leading to large, negative f surfMIP

values. Empirically, I ≈5.7 V is the cross-over from negative to positive f surfMIP values. This
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indicates the change in sign between the SrO and TiO2 bulk truncations of a STO beam

with {100} faces [74] could be replicable in other systems.

Figure 5.11. (a) Strain derivative of the MIP (fMIP ) as a function of the
product of the DFT value for the MIP of the equilibrium structure (V 0)
and volumetric bending strain (∆Ω

Ω0
). (b) Surface contributions to the strain

derivative of the MIP (f surfMIP ) as a function of ionization potential (I).

5.5. Implications for the Total Flexoelectric Response

5.5.1. Total Flexoelectric Response for Specific SrTiO3, MgO, and Si Surfaces

From Eq. 5.8, the total flexoelectric response is the sum of fMIP included in Table 5.5 for

each surface and the bulk flexocoupling voltage. Combining the first principles bulk flexo-

coupling voltage components for STO, MgO, and Si (from Ref. [58]) with the expressions

for the effective flexocoupling voltage of cubic beams with {100} faces (Chapter 3, φ=0

beam bending limit) yields fbulk values of -7.7 V for (100) STO, -2.4 V for (100) MgO,

-4.7 V for (111) MgO, and 0.8 V for (100) Si. The sum of fbulk and fMIP for each of the

surfaces studied in this work is provided in Table 5.6. It is clear from these calculations

that there is a large variation in the magnitude of the total flexoelectric response owing to
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surface-sensitive MIP contributions. For example, the total flexocoupling voltage of the

MgO (111) surfaces investigated here has a 7.9 V range. These results could explain the

variation in the sign and magnitude of experimentally measured flexoelectric coefficients

[10], though there may be additional interfacial effects from electrodes and/or adsorbed

hydrocarbons in flexoelectric experiments.

Materials Surface fbulk (V) fMIP (V) ftotal (V)
SrTiO3 (100) SrO -7.7 6.2 -1.5

TiO2 -7.7 9.9 2.2
(1×1) DL -7.7 9.6 1.9
(2×2)A -7.7 8.6 0.9
(2×2)C -7.7 9.7 2.0
c(4×2) -7.7 8.1 0.4
(2×1) -7.7 8.9 1.2

MgO (100) Bulk -2.4 5.7 3.3

MgO (111) Mg-oct -4.7 6.9 2.2
O-oct -4.7 9.4 4.7

(2×2)-α-O1 -4.7 11.7 7.0
(2×2)-α-O2 -4.7 11.3 6.6
(2×2)-α-O3 -4.7 14 9.3

(2×2)-α-OH1 -4.7 10.3 5.6
(2×2)-α-OH2 -4.7 10.4 5.7
(2×2)-α-OH3 -4.7 9 4.3

(1×1)H -4.7 8.5 3.8
Rt3-MgH -4.7 6.1 1.4
Rt3-OH -4.7 12.1 7.4

Si (100) (1×1) 0.8 5.5 6.3
(2×1)-asym 0.8 5.4 6.2

Table 5.6. The total flexoelectric response (ftotal) is the sum of fMIP and
the effective bulk flexocoupling voltage [58]
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5.5.2. Experimental Comparison with Measurements in Chapter 3

Now we revisit the bulk flexoelectric coefficients calculated in Chapter 4 and account for

fMIP to obtain the total flexocoupling voltage that is comparable to the measurements

in Chapter 3. We use the Ibers approximation [164] for the fMIP (Eq. 5.15) with atomic

electron scattering factors from Ref. [166] and experimental elastic constants from Ref.

[161, 207, 208]. The results of this process are summarized in Table 5.7 for samples

in the beam and plate bending limits with {100} faces. After accounting for fMIP , we

find good agreement between the predicted and measured effective flexocoupling voltages

for STO and KTO and poor agreement with LAO and GSO. The agreement with STO

and KTO is encouraging because the treatment of the bulk flexocoupling voltage using

the DFT approach in Chapter 4 should be robust for true cubic perovskites. The latter

disagreement is anticipated based upon the discussion in Chapter 4: LAO and GSO in

our calculations were approximated as cubic perovskites. While this approximation is

better for LAO, in both cases lattice-quadrupole contributions to the bulk flexoelectric

coefficient are neglected, which are likely sizable terms.

Bulk Bulk + Ibers Exp.
Beam (φ=0) Plate (φ=1) Beam (φ=0) Plate (φ=1)

SrTiO3 -8.18 -10.74 3.46 4.54 4.5 ±0.2
KTaO3 -12.15 -14.50 2.39 2.82 2.1 ± 0.2
LaAlO3 -8.28 -11.40 3.48 4.80 14.5 ± 1.4
GdScO3 -8.44 -11.97 1.33 1.88 -47.2 ± 2.3 (DSO)

Table 5.7. Effective flexocoupling voltages for cubic samples with 〈100〉
edges computed from the tensor components in Chapter 4, Table 4.9 for
the beam and plate bending limits compared with experimental values from
Chapter 3. Columns 2 and 3 only include fbulk, and columns 4 and 5 in-
clude fbulk and fMIP within the Ibers approximation using atomic electron
scattering factors. All values are in V.
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5.5.3. Prediction of Flexoelectric Response in Other Cubic Materials

It is also possible to the predict total flexoelectric responses in a wider range of materials

by combining Eq. 5.15 with the flexocoupling voltages of all the cubic materials whose

bulk flexocoupling voltage tensor components were calculated in Ref [58]. Table 5.8 in-

cludes the predicted total flexocoupling voltages for samples with {100}-type faces in the

beam-bending (φ=0) limit. As mentioned in the previous section, we find good agreement

with the experimental STO flexocoupling voltages, which we have measured as 4.5 V and

others have measured as 2.2 V [52]. There is poor agreement with the experimental

BTO flexocoupling voltage of 22 V [53], which likely stems from the presence of precursor

ferroelectric domains in experiments [53, 209, 210] and does not necessarily invalidate

the Ibers approximation in this context. A more complete comparison to experimen-

tal measurements is not possible because of a deficiency in the number of experimental

flexoelectric investigations on single crystals.

5.6. Revisiting the Finite Bulk Flexoelectric Coefficient of Al

In Chapter 4 I demonstrated FCC Al has finite octupole moments which manifest in

non-zero bulk flexocoupling voltages. For example, I showed that f1111 = -13.80 V. This

result was troubling because an elemental metal like Al should not support a polarization.

The resolution to this issue is in the MIP contribution we have described in this chapter:

the total flexocoupling voltage is the sum of the bulk flexocoupling voltage and the MIP

contribution, and a potential difference will develop across a bent slab only if the total

flexocoupling voltage is non-zero.
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fbulk (V) f IbersMIP (V) ftotal (V)
C -5.0 16.4 11.4
Si 0.0 6.4 6.4

MgO -3.9 9.2 5.3
NaCl -7.4 6.3 -1.1
CsCl 0.0 10.1 10.1

BaZrO3 -11.3 13.8 2.5
BaTiO3 -12.2 11.2 -0.9
PbTiO3 -10.5 9.7 -0.7
SrTiO3 -7.8 11.6 3.8

Table 5.8. Bulk and MIP contributions to the total flexocoupling voltage
of bent beams with {100}-type faces for a range of cubic materials. Bulk
contributions are calculated from flexocoupling tensor components reported
in Ref. [58]. MIP contributions are estimated with the Ibers approximation
with atomic scattering factors from Ref. [166] and Poisson ratios from Ref.
[161, 207, 208].

The above suggests that the MIP contribution to the total flexocoupling voltage, for

any given strain gradient configuration, must be equal and opposite to the effective bulk

flexocoupling voltage. As a test, I calculated fMIP from a surface slab of FCC aluminum

subjected to longitudinal strains as shown in Figure 5.12 using the approach described

in Section 5.4 where the clamped plate bending strains were replaced with a longitudinal

strain of

(5.16) εlong = ε


1 0 0

0 0 0

0 0 0

 .

With this strain profile, fbulk=f1111. Therefore, if the arguments presented in this chapter

are correct we should find fMIP = −f1111.



175

We performed these calculations with WIEN2k parameters that matched those used

in the calculations presented in Section 4.9. The results of the surface slab calculations

and the bulk calculation used to obtain fMIP are shown in Figure 5.12(b)-(c). We find

d(Vavg−EAl1s)
dεvol

=14.61 V and d(EAl1s−Evac)
dε11

= -0.85 V. The sum of these two quantities gives

fMIP=13.76 V, which, within the uncertainty of these calculations, demonstrates

(5.17) ftotal = f1111 + fMIP = 0V

for elemental Al. This result makes very clear that only by including the MIP contribu-

tions to the total flexoelectric response does one obtain a physically consistent description

of flexoelectricity.

Figure 5.12. (a) Al surface slab used in the simulation subjected to a lon-
gitudinal strain ε11. (b) Difference between the average Coulomb potential
and Al1s eigenvalue in bulk Al as a function of hydrostatic strain. (c) Dif-
ference between the vacuum energy and Al1s eigenvalue in the innermost
layer of a Al (100) slab as a function of longitudinal strain. Data from each
calculation are blue squares and linear fits are black.
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CHAPTER 6

Extrinsic Contributions to Flexoelectricity

6.1. Introduction

One of the primary tenants of materials science is understanding and manipulating de-

fects to engineer materials properties. Though the field of flexoelectricity is still nascent,

there have been many demonstrations that extrinsic contributions to flexoelectricity (i.e.

terms related to microstructure, point defects, etc.) are as, if not more, important than

intrinsic contributions (i.e. terms which depend on bulk crystallography and chemistry).

For example, experiments have shown free carriers in semiconductors [114], polar nano-

regions in relaxor ferroelectrics [209, 211], and polar selvedge regions in ferroelectric

ceramics [212] significantly modify the overall flexoelectric response of a sample. Simi-

larly, large flexoelectric polarization has been observed around dislocation cores [30] and

crack tips [31], and we have investigated the importance of surfaces in Chapter 5. Exper-

imentally isolating extrinsic and intrinsic contributions to flexoelectricity is an important

step toward improving our fundamental understanding of flexoelectricity, closing the siz-

able divide between the experimental and theoretical states of the field [10, 11], and

substantiating the viability of flexoelectricity for practical applications.

After providing an overview of the experimental methods used for the work described

in this chapter, I explore extrinsic contributions to flexoelectricity in three cases. First, in
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Section 6.3 I explore the implications of TB polarization and microstructure on the flexo-

electric response of twinned LAO, showing TBs have flexoelectric coefficients substantially

higher than the surrounding bulk [75]. This work also demonstrates how oxides with fer-

roelastic phase transitions, such as LAO, offer a rich platform for controlled studies of

flexoelectricity which bridge the gap between single crystals and polycrystalline ceramics.

Next, in Section 6.4 I explore the flexoelectric response of Nb-doped STO single crystals.

These measurements indicate doping yields a ∼103 increase in the effective flexoelectric

coefficient over undoped STO single crystals, providing further indication of the general-

ity of the observations reported by Ref. [114]. In Section 6.5 I describe the observation

of anomalously large flexoelectric responses in MgO crystals and discuss some possible

origins of this phenomenon. Experiments meant to further explore the results presented

in Section 6.4 and 6.5 were hindered by the onset of the COVID-19 pandemic, so future

research directions on these topics are presented in Chapter 9. I performed all analyzes,

simulations, and measurements, and Binghao (Evan) Guo also assisted with some of the

flexoelectric sample preparation and TPB measurements. The measurements on LAO

are described in Ref. [75]. All work benefitted from discussions with the LDM group

members, especially Professor Laurence D. Marks.
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6.2. Methods

6.2.1. Flexoelectric and Mechanial Characterization with Dynamic Mechani-

cal Analysis

Flexoelectric and mechanical characterization were performed using TPB as described in

Chapters 2 and 4. Here we only provide specific details which differ from the procedures

described there.

A TA Instruments RSA-III DMA was used to bend samples at 33 Hz while a Signal

Recovery 7265 Dual Phase DSP LIA measured the short-circuit current generated due to

the flexoelectric effect. Unless otherwise stated, a constant static force of ∼1.5 N was used

to hold the sample in place while an oscillatory force was applied. Temperature was con-

trolled for temperature-dependent experiments using a forced-air convection oven on the

DMA. It was changed in small increments (<5 ◦C) and the sample was allowed to equili-

brate for ∼5 minutes before flexoelectric characterization. Each data point shown in the

temperature-dependent data corresponds to the slope of a line made from measurements

of at least 5 strain gradient values.

6.2.2. Polarized Optical Microscopy

A polarized optical microscope operates under the same principles as a traditional optical

microscope except it possesses polarizing plates before and after the sample [213]. The

polarizing plate before the sample (known as the polarizer) polarizes the white light from

the source and the polarizing plate after the sample (known as the analyzer) polarizes the

light leaving the sample. Most commonly, the polarizer and analyzer are aligned in the

crossed position so no transmitted light reaches the detector without a sample present. In
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this configuration, contrast is generated from spatial variations in the refractive properties

of the sample, making this imaging mode sensitive to the grain and domain orientation.

As such, this technique is commonly used in the mineral science and ferroic communities

to characterize microstructure [213].

In this work, reflection and transmission mode images were acquired on an Olympus

PMG 3 and a Nikon SMZ 1500, respectively. A Nomarski prism was used to enhance

contrast in the reflection geometry. There were no qualitative differences between the

transmission and reflection images for the samples used for flexoelectric characterization.

6.2.3. Impedance Spectroscopy

Impedance spectroscopy refers to a set of characterization techniques commonly used in

the dielectric and electrochemical communities which measure the frequency response of

impedance [214]. Impedance is the ratio of an applied AC voltage

(6.1) Vapplied = |V |ei(ωt+δ)

to the induced current

(6.2) Imeasured = |I|ei(ωt+φ)

and is given by

(6.3) Z =
|V |ei(ωt+δ)

|I|ei(ωt+φ)
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where Z is impedance, |V | and |I| are the amplitudes of the voltage and current, δ and φ

are phase shifts, and ω is frequency. Impedance contains information on the resistance,

capacitance, and inductance of a sample.

Since the samples used for flexoelectric characterization are essentially parallel-plate

capacitors, the dielectric constant can be extracted by fitting the measured impedance of

the flexoelectric samples to the equation for the impedance of a capacitor

(6.4) Z =
1

iωC

where C is capacitance. The capacitance obtained from Eq. 6.4 is related to the dielectric

constant via the expression for the capacitance of a parallel-plate capacitor

(6.5) C =
A

d
ε0εr

where A is the electrode area, d is the sample thickness, ε0 is the permittivity of free

space, and εr is the relative permittivity of the sample. The measurements reported here

utilized a Solartron 1260 Impedance Spectrometer. The frequency of the AC voltage was

swept from 1 kHz to 1 MHz and the AC voltage was kept at 100 mV.

6.2.4. X-ray Diffraction

x-ray diffraction (XRD) is one of the primary materials characterization tools. Instead of

providing an overview of XRD techniques, which can be found in numerous texts such as

Ref. [215], I will briefly describe the XRD technique utilized in this work to investigate

MgO crystals: ω−φ maps [216]. ω−φ maps are a series of ω rocking curves acquired as

function of rotation about the surface normal. This measurement allows one to discern the
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number of, and angular relationship between, grains/domains in a polycrystalline sample.

The convention used to define angles here is illustrated in Figure 6.1.

𝜙

2𝜃 𝜔

Figure 6.1. Illustration of a typical XRD geometry. ω is the angle between
the sample surface and incident beam, 2θ is the angle between the incident
beam and the detector, and φ is the rotation angle about the surface normal
of the sample.

All diffraction patterns were acquired on a Rigaku Smartlab with a 9 kW rotating Cu

source, Ge (220) 2 bounce monochromator, 1 mm incident slit, 2 mm receiving slits (RS1

and RS2), and 5 mm length limiting slit. ω − φ maps were acquired at 0 ≤ φ ≤ 360◦

with a step size of 5◦ and ω = 42.908◦ ± 0.48◦ with a step size of 0.0004◦ and speed of

0.48◦/min. The detector was fixed at 2θ=42.908◦ for the ω − φ maps.
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6.3. Twin Boundary Mediated Flexoelectricity in LaAlO3

6.3.1. Twinning in LaAlO3

LAO is a rhombohedral 332 perovskite with space group R3c at room temperature and

atmospheric pressure [96] that is commonly used as a substrate and film in epitaxial

thin-film growth [217, 218]. It undergoes an improper ferroelastic phase transition at

550 ◦C from a high temperature cubic phase to a low temperature rhombohedral phase

characterized primarily by octahedral rotations about the cubic [111] directions [97]. Since

there are four axes about which the octahedral rotations can occur, the phase transition

yields four rhombohedral twin domains [102, 103] each of which is separated by a TB.

These twins can be paired in 12 different strain-free configurations [105, 106] leading to

a rich array of TB microstructures as shown in Figure 6.2.

The crystallography of the TBs [102, 103, 216, 105, 106] as well as their mechanical

response to dynamic mechanical stimuli has been extensively studied [97, 66, 104, 219,

220, 221, 222] making LAO a great candidate to examine TB effects on flexoelectricity.

While experiments on twinned STO have indicated the existence of TB contributions

to flexoelectricity [52], there has been no quantitative analysis of TB flexoelectric con-

tributions such as determining the flexoelectric coefficient of a TB. Moreover, although

simulations have suggested ferroelastic microstructure is important in other electrome-

chanical contexts [223, 224, 225], the role of TB microstructure in flexoelectricity has

not been addressed.
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1000 µm

(a)

1
2

50 µm

(b)

Figure 6.2. Polarized optical micrographs of the (001)pc surface of a LAO
crystal acquired in the cross-polarized position. (a) Positions 1 and 2 indi-
cate one of the more common twin microstructures seen in these samples:
lamellar twins oriented along the 〈001〉pc directions. (b) Polarized optical
micrograph showing how lamellar twins can meet in complex ways.

6.3.2. Twin Boundary Dynamics with Dynamic Mechanical Analysis

The low-frequency mechanical response of twinned materials is dominated by the dy-

namics of TBs and well suited for characterization with dynamic mechanical analysis,

especially with TPB [60, 66, 226]. Extensive investigations of the mechanical properties

of LAO with TPB have shown they depend sensitively on the frequency and amplitude of

the oscillatory force, magnitude of the static force, temperature, and TB microstructure

[97, 66, 104, 219, 220, 221, 222]. For the purposes of this work, the relevant findings

are summarized in the phase diagram shown in Figure 6.3.

At high temperatures (T > Tc) LAO is in its paraelastic phase [66]. There are no TBs

and the mechanical response is that of a single crystal. As the temperature is lowered

below Tc LAO twins as described in Section 6.3.1. The mechanical properties of twinned

LAO for T∗<T<Tc are dominated by TB motion which causes ferroelastic LAO to be

significantly softer than paraelastic LAO [66]. The mechanical response in this regime is

also time-dependent and is often referred to as anelasticity. TBs in LAO remain mobile
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Mobile TBs

RT T*(Fstatic)

Fstatic

T

Pinned TBs

Tc

ParaelasticFerroelastic

No TBs
A

B

Figure 6.3. TPB ”phase diagram” of LAO at fixed frequency (∼10-100 Hz)
and dynamical force. Above Tc, LAO is cubic and twin-free. When the
temperature drops below Tc, LAO undergoes a cubic to rhombohedral phase
transition and twins. For T∗<T<Tc, the mechanical properties of twinned
LAO are dictated by TB motion. When T<T∗ long-range TB motion is
not possible and mechanical properties are controlled by TB deformation.
A and B denote the experiments in Section 6.3.3, respectively. The star
indicates the location of the experiments in Section 6.3.4.

until the temperature, static force, and frequency combination drop below a critical value

(T∗) at which point the TBs are immobilized by pinning. This is not a sharp transition

[66, 222] and is dependent on microstructure and defect distribution (represented as a

dashed line in Figure 6.3). When T < T∗ long-range TB motion does not occur and the

mechanical response is controlled by TB deformation. Samples at low static forces appear

softer in this regime than samples at high static forces because the extent to which TBs

deform in response to the dynamic force is sensitive to the static force [227].

We leverage the known impact of TBs on the mechanical properties of LAO described

above to isolate TB contributions to flexoelectricity. First, in Section 6.3.3.1 we measure

the effective flexoelectric coefficient as a function of temperature across the pinned-to-

mobile TB transition (Path A in Figure 6.3). By connecting the temperature dependence

of the flexoelectric coefficient to that of TB mobility, we demonstrate the existence of
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TB contributions to flexoelectricity. Next, in Section 6.3.3.2 we measure the flexoelectric

response at room temperature as a function of static force (Path B in Figure 6.3). This ex-

periment demonstrates TB flexoelectric properties without contributions from TB motion

or dynamic deformation are accessible at high static forces at room temperature. These

intrinsic TB flexoelectric properties are characterized in Section 6.3.4 and explained in

terms of a catenary cable model in Section 6.3.5. Estimates of TB flexoelectric coefficients

are provided in Section 6.3.6.

6.3.3. Dynamic Twin Boundary Contributions

6.3.3.1. Flexoelectric Response as Function of Temperature. At room tempera-

ture TBs are pinned defects which deform under external forces, but there is no long-range

motion because of pinning site interactions. It is established that TBs become mobile when

temperature is increased as this provides thermal energy for TBs to escape pinning sites

[97, 66, 104, 219, 220, 221, 222]. At first, increasing temperature locally enhances

TB deformations, but after a sample-dependent threshold (typically ∼100 ◦C), large-scale

TB motion and annihilation become possible. When TBs become mobile, their elastic

properties exhibit a dramatic softening and increased attenuation (measured as tan(δ),

the ratio of the real and imaginary components of the dynamic modulus, see Chapter 2).

These behaviors are reflected in the temperature dependence of the flexoelectric re-

sponse and attenuation of a twinned LAO sample shown in Figure 6.4. Namely, µeff

increases between ∼30-100 ◦C as TBs become more deformable and decreases once TB

motion becomes possible, with a maximum corresponding to the onset of motion. The

mechanical response of the sample as a function of temperature is consistent with the TB
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mobility explanation for the temperature-dependent flexoelectric characterization: there

is a maximum in internal friction at ∼80 ◦C which coincides with the maximum in the

flexoelectric response. Additionally, imaging of the sample before and after the measure-

ment confirms TB motion because there are microstructural changes in the sample after

the temperature dependent experiments.

The flexoelectric response of twinned materials when TB motion is possible is not solely

a function of the individual TB properties, but will be sensitive to TB microstructure,

distribution of pinning sites, etc. Therefore, while Figure 6.4 clearly demonstrates an

enhanced flexoelectric response in twinned samples originating from TBs, it is difficult to

use such experiments to discern the flexoelectric properties of the TBs themselves. For

this we use room temperature measurements in which TB motion contributions to the

flexoelectric response are suppressed.

6.3.3.2. Flexoelectric Response as a Function of Static Force. At room tempera-

ture TBs are immobile owing to pinning [66]. At low static forces the mechanical response

of twinned materials is dominated by dynamic TB deformations which have a softening

effect [227]. At high static forces, these dynamic TB deformations are suppressed [227].

This behavior is in sharp contrast to single crystal samples where the mechanical prop-

erties measured in TPB are insensitive to static force. As a consequence, unlike the

flexoelectric characterization shown in Chapters 2 and 3 where the flexoelectric response

of single crystals was proportional to dynamic force and insensitive to static force, the

flexoelectric response of twinned LAO should depend on static force.

Figure 6.5 shows the characterization of a sample with a mixture of TBs at a constant

dynamic force while varying the static force holding the sample in place during TPB.
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Figure 6.4. Characterization of LAO crystal with a mixture of TB orienta-
tions as a function of temperature at fixed static force. The temperature
dependence of (a) the effective flexoelectric coefficient and (b) elastic atten-
uation correlates with the known temperature dependence of TB motion,
with the peak corresponding to the onset of TB motion. Lines are visual
guides. (c) Imaging of the sample before and after temperature-dependent
flexoelectric characterization confirms changes to the microstructure.

As established in Section 6.3.2, at low static forces dynamic TB deformation is relatively

unhindered, whereas at high static forces dynamic TB deformations are largely suppressed.
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This behavior is confirmed by the storage modulus and attenuation measurements shown

in Figure 6.5.

In addition to these changes in the mechanical properties, Figure 6.5 indicates an in-

crease in the flexoelectric polarization as the static force is decreased. We attribute this

enhancement to dynamic TB deformations. Like the temperature dependent flexoelec-

tric enhancements, these flexoelectric contributions are sensitive to microstructure and

defects. At high static forces, the dynamic TB deformations are suppressed and the flex-

oelectric response approaches a constant behavior. Since there are minimal dynamic TB

deformations in this high static force regime, any differences between the flexoelectric re-

sponses of twinned crystals are a consequence of the intrinsic flexoelectric properties of the

TBs. Measurements in this regime are used in Section 6.3.4 to quantify the flexoelectric

properties of TBs.

Figure 6.5. Characterization of LAO crystal with a mixture of TB orienta-
tions as a function of static force at room temperature and fixed dynamic
force. (a) Flexoelectric polarization decreases with increasing static force
because of dynamic TB deformations. Solid line is a fit using a catenary
cable model (Section 6.3.5). (b) Storage modulus and tan(δ) for sample
with mixture of Type I and II orientations as a function of static force. The
sample is softer and has increased elastic attenuation at lower static forces
owing to dynamic TB deformations.
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6.3.4. Intrinsic Twin Boundary Flexoelectricity

Having determined that the intrinsic flexoelectric properties of TBs can be probed at

room temperature with high static forces, we now seek to minimize the complexities

associated with TB microstructures (e.g. see images in Figures 6.2 and 6.4) and separate

TB and crystallographic effects. To accomplish this, in Section 6.3.4.1 we investigate

the flexoelectric response of LAO samples with uniform TB microstructures cut to have

identical sample geometries (10 mm × 3 mm × 0.5 mm beams) and crystallographic

orientation (all surfaces are {100}pc planes). The TBs in each of these samples have TB

normals perpendicular or parallel to the long axis of the sample (Figure 6.6). The former

case will be referred to as Type I TBs, and the latter as Type II TBs. After characterizing

the flexoelectric responses of samples with pure Type I and II TBs in Section 6.3.4.1, we

then investigate the flexoelectric response of a sample with a mixture of Type I and II

TBs in Section 6.3.4.2.

6.3.4.1. Pure Twin Boundary Samples. The flexoelectric responses of both the pure

Type I and II samples are shown in Figure 6.6. The initial flexoelectric response of the

Type I sample was linear with µeff = 3.6±0.2 nC/m. I found the flexoelectric response

remained linear after continuously increasing and decreasing the strain gradient (a process

which we will refer to as strain gradient cycling), but µeff increased, eventually reaching

a steady-state value of 4.8±0.3 nC/m. The Type II sample exhibited qualitatively similar

behavior in that the flexoelectric response of the sample was linear, but µeff increased

from 3.1±0.3 nC/m to a steady-state value of 3.5±0.2 nC/m after strain gradient cycling.
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Figure 6.6. Flexoelectric characterization of LAO crystals with uniform,
lamellar TB microstructures. (a) Type I boundaries have normals (n̂) per-
pendicular to the long axis of the sample (x̂) as shown by reflection polar-
ized optical microscopy. The flexoelectric response of the Type I sample
was linear and increased to an effective steady-state flexoelectric coefficient
of 4.8±0.3 nC/m after strain gradient cycling. (b) Type II boundaries have
normals parallel to the long axis of the sample as shown by reflection polar-
ized optical microscopy. The flexoelectric response of the Type II sample
was linear and increased to an effective steady-state flexoelectric coefficient
of 3.5±0.2 nC/m after strain gradient cycling. Circles and dashed lines cor-
respond to the initial measurements and linear fit, respectively. Similarly,
squares and solid lines correspond to the steady-state measurements after
gradient cycling and linear fit, respectively. Uncertainties correspond to the
95% confidence interval of the fit. Images are false-colored for clarity.

The flexoelectric response of twinned LAO shown in Figure 6.6 differs from the flexo-

electric response of twin-free LAO in two important ways. First, the flexoelectric response

of samples with TB is larger than that of twin-free samples. Recall from Chapter 3 that

twin-free LAO had an effective flexoelectric coefficient of µeff = 3.2±0.3 nC/m. Compar-

ing these values to the steady-state flexoelectric responses of the twinned samples shown in

Figure 6.6 suggests that twin boundaries are mechanically polarized by strain gradients
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with flexoelectric contributions that are distinct from the bulk. We find TB polariza-

tion can increase the effective flexoelectric coefficient by upwards of 50% over twin-free

samples; this is similar to the difference between the effective flexoelectric coefficients of

single crystals with different crystallographic orientation (e.g. see measurements of the

flexoelectric coefficients of STO crystals with (100) and (110) surfaces in Chapter 3).

Second, the flexoelectric response of LAO with twins differs from the measurements

performed on twin-free LAO, and all other single crystals analyzed in Chapter 3, be-

cause of the time-dependent nature of the flexoelectric response. To investigate the time-

dependent response, I performed additional flexoelectric measurements on subsequent

days (Figure 6.7). We found that the enhancements were partially reversible, with the

effective flexoelectric coefficients returning to the same steady-state value after strain gra-

dient cycling. Additionally, as shown in Figure 6.8, imaging the Type I and II samples

after flexoelectric characterization reveals no evidence for microstructure changes, which

confirms the elastic nature of the time-dependent flexoelectric enhancements and indicates

they are associated with TB deformation, not TB motion.

Figure 6.7. Measurements performed on subsequent days on the Type I
sample. In both (a) and (b) circles and dashed lines correspond to the
initial measurement data and linear fit, respectively. Similarly, squares and
solid lines correspond to the steady-state measurement data and linear fit,
respectively. (c) The values of the effective flexoelectric coefficients with
uncertainties corresponding to the 95% confidence interval of the linear fits.
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Figure 6.8. Imaging of Type I and II samples after flexoelectric characteri-
zation using reflection polarized optical microscopy confirms no permanent
changes to the microstructure. Both samples still have uniform lamellar TB
microstructures. The splotches correspond to left-over electrode.

We attribute the reversible, time-dependent flexoelectric behavior shown in Figures 6.6

and 6.7 to residual dynamic TB deformation [66, 227]. Even at the high static forces

used here, some dynamic deformations can occur because of the statistical distribution

of pinning sites and TB-pinning site interactions. This is reflected in the elastic response

data shown in Figure 6.9 where the pure Type I and II samples are softer and exhibit more

internal friction than the twin-free sample, but are significantly stiffer than situations in

which dynamic TB deformations occur freely (Figure 6.5).

6.3.4.2. Mixed Twin Boundary Samples. Next, the flexoelectric response of sample

with a mixture of Type I and II TBs at fixed static force was measured under the same

conditions as the measurements in Figure 6.6. As shown in Figure 6.10, µeff increased

from an initial value of 3.6±0.1 nC/m to a steady-state value of 4.0±0.2 nC/m (as de-

termined from the first 5 data points in each data set) after strain gradient cycling. This

time-dependence is similar to those of the pure Type I and II samples and the steady-state

µeff is between those of the pure Type I and Type II samples, consistent with the mixture
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Figure 6.9. Storage modulus and tan(δ) for a twin-free sample and samples
with Type I, Type II, and a mixture of Type I and II orientations. The
data was acquired at a constant frequency (33 Hz), static force (1.5 N) and
dynamic force (0.6 N).

of Type I and II TBs present in the sample. Additionally, these measurements indicate a

non-linear flexoelectric response when the strain gradient exceeds ∼0.25 m−1. This starkly

contrasts with the flexoelectric responses of the other twinned samples and single crystals

investigated in Chapter 3, which remained linear for all strain gradients used. The non-

linearity became more pronounced in steady-state, but a linear flexoelectric response was

always recovered by decreasing the strain gradient below ∼0.25 m−1. Given the return to

linear flexoelectricity below a certain strain gradient, and that post-experiment imaging

confirmed no permanent changes to TB microstructure (Figure 6.10), the non-linearity is

attributed to TB-pinning site interactions. This behavior is consistent with the catenary

cable model described in Section 6.3.5.

6.3.5. Catenary Cable Model

To understand the flexoelectric properties of TBs, it is useful to analyze a simple model

for a pinned defect: the one-dimensional catenary cable [56]. Consider a one-dimensional
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Figure 6.10. Flexoelectric characterization of a LAO crystal with a mixture
of Type I and II TB orientations. (a) The initial flexoelectric response is
linear at low strain gradients with an effective flexoelectric coefficient of
3.6±0.1 nC/m, and non-linear above a strain gradient of ∼0.25 m−1. (b)
The steady-state flexoelectric response after strain gradient cycling remains
linear at low strain gradients with an increased effective flexoelectric coef-
ficient of 4.0±0.2 nC/m. There is pronounced non-linear behavior above
∼0.25 m−1. (c) Imaging the sample with a mixture of Type I and II TBs
before and after flexoelectric characterization using reflection polarized op-
tical microscopy confirms no permanent changes to the microstructure. The
vertical lines in the pre-experiment image are imaging artifacts. The cen-
tral bright region in the post-experiment image is left-over electrode. There
is a black portion in the middle of the sample in the post-experiment im-
age because the sample fractured into two pieces after the experiment was
performed.

representation of the flexoelectric effect

(6.6)
dP

dt
= µ

dκ

dt
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where t is time and µ is the flexoelectric coefficient linearly relating the change in polar-

ization (dP
dt

) to the change in strain gradient (dκ
dt

). For TPB, it is useful to expand dκ
dt

in

Eq. 6.6 as a function of static force (fS) and dynamic force (fD)

(6.7)
dP

dt
= µ

(
∂κ

∂fS

dfS
dt

+
∂κ

∂fD

dfD
dt

)

which reduces to

(6.8)
dP

dt
= µ

∂κ

∂fD

dfD
dt

because fS is constant in TPB experiments.

Next, we recognize that the strain gradient in a bent feature is proportional to its

central displacement (e.g. see Chapter 4)

(6.9) κ = Cu

where C is a geometric/elastic constant. Using Eq. 6.9 to express Eq. 6.8 in terms of u

yields

(6.10)
dP

dt
= Cµ

∂u

∂fD

dfD
dt
.

Eq. 6.10 indicates that a non-linear elastic material (i.e. a material exhibiting a non-linear

response between u and f) can yield a non-linear flexoelectric response with only linear

flexoelectric couplings.
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Now it is necessary to specify ∂u
∂fD

for a pinned defect. We approximate the deformation

of a pinned defect as a catenary cable.

(6.11) u(x) =
T

fS + fD
cosh

(
fS + fD

T
x

)

where x is the position along a defect subjected to a force f = fS + fD. T is a constant

related to line tension. Figure 6.11 shows catenary cable solutions [56] for different values

of T/f .

-2 -1 0 1 2

x (a.u.)

0

2
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6

u
 (

a
.u

.)

T/f = 0.5
T/f = 1
T/f = 2

Figure 6.11. Catenary cable solutions for different values of T/f .

For simplicity, we work with the average displacement uavg between two pinning sites

spaced L apart.

(6.12) uavg =
1

L

∫ L/2

−L/2
u(x)dx = 2

T 2

(fS + fD)2 L
sinh

(
(fS + fD)L

2T

)

Substituting Eq. 6.12 into Eq. 6.10, we find



197

(6.13)

dP

dt
= Cµ

(
T

(fS + fD)2 cosh

(
(fS + fD)L

2T

)
− 4

T 2

(fS + fD)3 L
sinh

(
(fS + fD)L

2T

))
dfD
dt

With the approximation dfD
dt
≈ ωfD where ω is the oscillatory frequency of the experiment,

Eq. 6.13 can be written as

(6.14)

dP

dt
= Cµ

(
T

(fS + fD)2 cosh

(
(fS + fD)L

2T

)
− 4

T 2

(fS + fD)3 L
sinh

(
(fS + fD)L

2T

))
.ωfD

This model captures much of the essential physics behind the effects of pinned TBs on

flexoelectricity. As an example, consider the experiments shown in Figure 6.5 and 6.10.

In the former case, dP
dt

was measured as a function of fS for a fixed fD and in the latter dP
dt

was measured as a function of fD for a fixed fS. Setting C = µ = T = L = ω = 1, these

two experiments would yield polarization responses shown in Figure 6.12, which are in

excellent agreement with the flexoelectric characterization shown in Figure 6.5 and 6.10.

Figure 6.12. Flexoelectric polarization of a pinned defect modeled as a cate-
nary cable as (a) a function of static force for a fixed dynamic force and (b)
a function of dynamic force for a fixed static force.
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6.3.6. Estimating Twin Boundary Flexoelectric Coefficients

Together, the measurements shown in Section 6.3.3 and 6.3.4 and the model in Sec-

tion 6.3.5 indicate that TBs in LAO are mechanically polarized by strain gradients with

flexoelectric contributions that are distinct from, but comparable in magnitude to, the

bulk. Now we attempt to use the measurements in Figure 6.6 to estimate the TB flexo-

electric coefficients responsible for the flexoelectric enhancements in twinned LAO.

The crudest estimate is to ignore the effects of TB orientation and use the average

measurement of µeff for the Type I and II samples and the TB-free sample to isolate the

contributions stemming from TBs. To do this, we utilize an approach based upon the

rule of mixtures sketched in Figure 6.13.

𝑃" 𝑃#

𝐴%&%'()*+%

𝐴" 𝐴#

Figure 6.13. Rule of mixture approach to the polarization material with two
polarizable regions, 1 and 2. The polarization measured by the electrode
will be given by the product of the polarization in each region and the areal
fraction of the region covered by the electrode.

In short, because both the bulk and TBs can develop a polarization in response to

the beam bending strain gradients, the total polarization of a twinned sample measured

in the x1 direction (P1) is the sum of two contributions

(6.15) P1 = (1− f)P bulk
1 + fP TB

1
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where P bulk
1 is the contribution arising from the sample bulk, P TB

1 is the contribution

arising from TBs, and f is the fraction of the electrode area consisting of TBs. Since

each polarization in Eq. 6.15 arises from same applied strain gradient, Eq. 6.15 can be

rewritten as

(6.16) P1 = µtwinnedeff ε33,1

where µtwinnedeff is the effective flexoelectric coefficient of a sample with twins.

(6.17) µtwinnedeff = (1− f)µbulkeff + fµTBeff

For lamellar TB microstructures, f ≈ ρw where ρ is the linear TB density and w is the

TB width. The TB density can be extracted from images of the samples (approximately 50

mm−1 from Figure 6.6 and TB widths have been measured using XRD (w ≈2 nm [228]).

Together this gives f ≈ 10−4which when combined with µtwinnedeff =4.8 nC/m (Type I value)

and µbulkeff =3.2 nC/m indicates µTBeff ∼10 µC/m. This value is comparable to flexoelectric

coefficients of bulk polar materials [53] which supports the interpretation that like TBs

in STO [229] and CaTiO3 [230], LAO TBs are polar [107, 108, 109].

Instead of working with the average flexoelectric coefficient of the Type I and II sam-

ples, we account for the differences in crystallographic orientation to obtain a better ap-

proximation for the TB flexoelectric coefficients. To begin, we derive expressions for µIeff

and µIIeff which are the effective flexoelectric coefficients of the samples solely containing

Type I and II TBs, and replace µTBeff in Eq. 6.17 with them.
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Type I TBs are parallel to the x1-x3 plane, so contributions to the polarization from

Type I TBs, P TB,I
1 , can only couple to ε33,1 and ε11,1.

(6.18) P TB,I
1 = µTB1133ε33,1 + µTB1111ε11,1

Similarly, Type II TBs are parallel to the x1-x2 plane, so contributions to the polarization

from Type II TBs, P TB,II
1 , can only couple to ε22,1 and ε11,1. Therefore,

(6.19) P TB,II
1 = µTB1122ε22,1 + µTB1111ε11,1.

In the pure beam bending limit and assuming (1) TBs with different orientations have the

same flexoelectric coefficient tensor, and (2) bulk Poissons ratio applies to TBs, Eqs. 6.18

and 6.19 become

(6.20) P TB,I
1 =

(
µTB1133 − νµTB1111

)
ε33,1

(6.21) P TB,II
1 = −ν

(
µTB1133 + µTB1111

)
ε33,1.

Therefore

(6.22) µIeff = µTB1133 − νµTB1111

(6.23) µIIeff = −ν
(
µTB1133 + µTB1111

)
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After reintroducing the bulk contributions, we have an expression for the total polarization

in the Type I and II samples analogous to Eq. 6.17

(6.24) P I
1 = (1− ρIw)P bulk

1 + ρIwP
TB,I
1 =

(
(1− ρIw)µbulkeff + ρIw

(
µTB1133 − νµTB1111

))
ε33,1

(6.25)

P II
1 = (1− ρIIw)P bulk

1 + ρIIwP
TB,I
1 =

(
(1− ρIIw)µbulkeff − ρIIwν

(
µTB1133 + µTB1111

))
ε33,1

yielding the following expressions for µIeff and µIIeff .

(6.26) µIeff = (1− ρIw)µbulkeff + ρIw
(
µTB1133 − νµTB1111

)

(6.27) µIIeff = (1− ρIIw)µbulkeff − ρIIwν
(
µTB1133 + µTB1111

)
.

From Eq. 6.26 and 6.27, measurements on the TB-free, Type I, and Type II samples,

and the literature Poissons ratio [168] and TB width [228], µTB1133 ≈ 11±3.0 µC/m and

µTB1111 ≈ -18.0±4.0 µC/m. These values are comparable to flexoelectric coefficients to

the order of magnitude estimate from Eq. 6.17 and are consistent with LAO TBs being

polar. Note, as described in Chapter 4, beam-bending experiments of bulk materials alone

cannot be used to determine individual flexoelctric tensor coefficient components because

the effective flexoelectric coefficients measured in beam-bending for different directions

are not linearly independent expressions [52]. However, this is not the case for TBs, as

shown above, because TBs are essentially 2D objects.
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6.4. Barrier Layer Enhancements in Nb-doped SrTiO3

6.4.1. Background on Barrier-Layer Mechanism

Ref. [114] demonstrated that oxygen-vacancy doped BTO and Nb doped TiO2 single

crystals exhibited effective flexoelectric coefficients ∼103 times larger than their undoped

counterparts. They attributed this to the barrier-layer mechanism: the flexoelectric polar-

ization is screened in the conducting bulk, leaving only contributions from the nominally

insulating surfaces [231]. These near-surface regions have very large polarizations owing

to the thickness dependence of the capacitance of a parallel plate capacitor (Eq. 6.5).

Barrier-layer or Maxwell-Wagner capacitors leverage this inverse scaling of capacitance

with dielectric thickness to dramatically increase capacitor storage density. The funda-

mental principle of a barrier layer capacitor is illustrated in Figure 6.14. Commercially,

barrier-layer capacitors consist of reduced ceramics which have been partially re-oxidized

at grain boundaries and/or surfaces creating thin insulating regions surrounded by con-

ducting regions [231].

Putting the observations of Ref. [114] on firmer theoretical ground, Tagantsev and

Yurkov [172] showed that in 1D, the polarization (P) arising from a near-surface piezoelec-

tric layer in the presence of a strain gradient ( dε
dx

) under short-circuit boundary conditions

(E = 0) is

(6.28) P = e∗Esurfλ
dε

dx
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(a) Uniform dielectric with no free charge

No field

Bulk dielectric

Applied field

Ptotal = Pbulk

(b) Uniform dielectric with free charge

No field Applied field

-
+ - + Ptotal = Pbulk - Pfree

- -

+ +

Insulating surface

(c) Surface barrier-layer dielectric with free charge

No field Applied field

-+

+-

-

+ +-+
+

- -
Ptotal = 2Psurf

Figure 6.14. (a) A dielectric under an applied field will polarize. (b) Free
charge in the dielectric will screen the polarization. (c) If the bulk dielectric
has an insulating surface layer and enough free charge to completely screen
the bulk polarization, only the polarization of the insulating surface will
contribute to the total polarization.

where

(6.29) e∗Esurf = eEsurf
hεbulk

2λεbulk + hεsurf
.
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In Eqs. 6.28 and 6.29, eEsurf is the short-circuit surface piezoelectric coefficient, h is the

thickness of the bulk region of the sample, λ is the thickness of the piezoelectric near-

surface region, εbulk is the dielectric constant of the bulk material and εsurf is the dielectric

constant of the surface.

In their analysis Tagantsev and Yurkov [172] neglected the bulk flexoelectric effect

which is effectively the situation for bent barrier-layer dielectrics where the free charge

in the bulk acts to screen the bulk flexoelectric field [114]. If we are to assume that this

screening is perfect, i.e. εbulk →∞, then

(6.30) e∗Esurf = eEsurf
h

2λ

by L’Hospital’s Rule. From Eq. 6.28 and Eq. 6.30 it follows that

(6.31) P = eEsurf
h

2

dε

dx
.

Therefore, if one uses the conventional definition for the short-circuit effective flexoelectric

coefficient measured in a bending experiment

(6.32) µEeff =

(
dP

d
(
dε
dx

))
E

for a barrier-layer sample in which Eq. 6.31 applies, then µEeff is given by

(6.33) µEeff = eEsurf
h

2
.
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The measurements reported by Ref. [114] suggest a thickness dependence to the effective

flexoelectric coefficients measured in doped semiconductors, however the linearity of this

relationship is an open question.

6.4.2. Flexoelectricity in Nb-Doped SrTiO3

While measurements investigating the barrier-layer mechanism have been performed on

doped BTO and TiO2, STO is one of the best characterized flexoelectric materials, so it

is natural to explore the barrier-layer phenomenon in this materials system. Moreover,

doped STO is commonly used as a substrate/thin film [217, 218] where these effects

will likely be more relevant, owing to the size dependency of strain gradients, and there

is evidence indicating the near-surface region of Nb-doped STO is insulating [232, 233,

234]; this is a pre-requisite for the barrier-layer mechanism [231, 114].

The results of the flexoelectric characterization of two STO single crystals doped

with 1.4 at% Nb are shown in Figure 6.15. These samples had {100}-type faces and

exhibited highly linear responses with an average effective flexoelectric coefficient ∼20

µC/m. Similar to the measurements on doped BTO and TiO2, the effective flexoelectric

response of doped STO single crystals is ∼103 larger than that of undoped STO single

crystals (Chapter 3).

Using Eq. 6.33 in conjunction with the measured value of the effective flexoelectric

coefficient (µeff = 20 µC/m) and known thickness (h = 0.5 mm) yields eEsurf ≈0.08 C/m2.

Piezoelectric coefficients are commonly reported as charge constants [114, 3] defined as

(6.34) dEsurf = eEsurfs11.
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Figure 6.15. Flexoelectric characterization of Nb-doped STO single crystals
with {100}-type faces. The flexoelectric response is highly linear (r2 >0.98
with RMSE < 0.03) with an average effective flexoelectric coefficient of 20
µC/m.

Using the elastic compliance of STO yields dEsurf=0.3 pC/N=0.3 pm/V. For comparison,

the charge constant piezoelectric coefficient of quartz is ∼2pm/V [114, 3], which indicates

the surface piezoelectric coefficient of STO is smaller than, but comparable to, some

common bulk piezoelectrics. Note, particularly rigorous sample treatments (besides a

bake to burn off hydrocarbons before electrode deposition) and surface characterization

were not employed in the experiment shown in Figure 6.15, so it is possible the true

surface piezoelectric coefficient is different.

The measurement of this surface piezoelectric coefficient can be directly compared to

the MIP contributions to the flexoelectric response (Chapter 5). The short-circuit surface

piezoelectric coefficient is the change in the surface polarization (Pλ) with strain (ε).

(6.35) eEsurf =

(
dPλ
dε

)
E

.
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Recall the definition of the MIP contribution to the flexoelectric response

(6.36) fMIP =
dV

dε
.

If we assume the variation in the MIP is characterized by a constant electric field E over

a piezoelectric surface region with thickness λ then Eq. 6.36 can be rewritten as

(6.37) fMIP = −λdE
dε
.

Since the flexocoupling voltage is an open-circuit quantity, the electric field in Eq. 6.37

can be replaced with the polarization using

(6.38) P = −ε0E

which yields

(6.39) fMIP =
λ

ε0

(
dP

dε

)
D

=
λ

ε0

eDsurf

where eDsurf is the open-circuit surface piezoelectric coefficient. The last step needed

to compare the measured surface piezoelectric coefficient to the MIP contribution is to

change the constant condition on the surface piezoelectric coefficient.

(6.40)

(
dP

dε

)
D

=

(
dP

dε

)
E

+

(
dP

dE

)
ε

(
dE

dε

)
D
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Substituting the definitions
(
dP
dε

)
D

= eDsurf ,
(
dP
dε

)
E

= eEsurf ,
(
dP
dE

)
ε

= χε0, and E = 1
ε0

(D −

P ) gives

(6.41) eDsurf =
1

1 + χ
eEsurf

which can be combined with Eq. 6.39 to yield

(6.42) fMIP =
λ

ε0εr
eEsurf .

Eq. 6.42 relates the measured value of eEsurf=0.08 C/m2 to the (nominally) known

fMIP through the unknown thickness of piezoelectric surface region and surface dielectric

constant. It would be desirable to use Eq. 6.42 to predict the thickness of the piezoelec-

tric surface region, however the thickness depends sensitively upon the surface dielectric

constant. Assuming the Ibers approximation for fMIP (11.6 V for STO, see Chapter 5),

in the limit that εr=1 Eq. 6.42 predicts λ=1.3 nm, which is reasonable and close to the

predicted thickness of the surface piezoelectric region [235]. However, while the surface

dielectric constant is smaller than the bulk dielectric constant, it is more commonly taken

to be εr=10 for materials with large dielectric constants like STO [172]. Using this sur-

face dielectric constant gives λ=40 nm, which is too large and points to some discrepancy

in the above analysis. It is unclear at the present time if this is because (1) εr=10 is a

poor approximation and the surface dielectric constant in the surface piezoelectric region

is substantially smaller than the surrounding bulk, (2) it is improper to interpret the

enhanced flexoelectric response of doped STO as a surface piezoelectric effect, or (3) the

disagreement is a consequence of sample preparation (e.g. adsorbates on the surface).
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At any rate, these measurements clearly demonstrate large flexoelectric enhancements in

doped STO and warrant future research.

6.5. Flexoelectricity in MgO

6.5.1. Background

MgO possesses a rock salt structure with space group Fm3m at room temperature and

atmospheric pressure. It is an archetypal ionic material with a large band gap and simple

electronic structure that lacks d or f electrons. This simplicity makes it ideal to test flex-

oelectric theories and calculations. Theoretical predictions in the literature suggest bulk

flexoelectric coefficient values between 10 pC/m and 100 pC/m [58, 236]. There are no

reported experimental attempts to measure the flexoelectric response of MgO, presum-

ably because theory predicted the effect to be so small in this material. In Section 6.5.2

I provide the first measurements of flexoelectricity in MgO crystals. We find the flex-

oelectric response to be large compared to the first principles calculations presented in

Section 6.5.3, even when the MIP contribution is accounted for. The measured dielec-

tric response is found to be in agreement with single crystal literature values, but XRD

indicates the nominally single crystalline MgO samples are actually polycrystalline (Sec-

tion 6.5.4). Future research directions to understand this behavior are given in Chapter 9.

6.5.2. Flexoelectric characterization of MgO crystals

Figure 6.16 shows the flexoelectric characterization of crystals of MgO with two different

crystallographic orientations. The relationship between the measured polarization and

applied strain gradient is found to be highly linear with flexoelectric coefficients of 2.1±0.3
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nC/m for the sample with the (100) surface and 5.4±0.6 nC/m for the sample with the

(111) surface. Using the dielectric constant of 9.8 for MgO [237] yields flexocoupling

voltages of 62±7 V and 24±3V for the (100) and (111) samples, respectively.

According to the framework developed in Chapter 3, the effective flexoelectric co-

efficient different samples are expressed in terms of the underlying flexoelectric tensor

components (in the beam bending limit) by

(6.43) µ
(100)
eff =

s1122

s1111

µ1111 +
s1111 + s1122

s1111

µ1122

for the sample with the (100) surface (x
′
1=[100], x

′
2=[010], and x

′
3=[001]) and

(6.44)

µ
(111)
eff =

2(s1111 + 2s1122)

3(s1111 + s1122 + 2s1212)
µ1111+

4(s1111 + 2s1122)

3(s1111 + s1122 + 2s1212)
µ1122−

8(s1111 + 2s1122)

s1111 + s1122 + 2s1212

µ11212

for the sample with the (111) surface (x
′
1=[111], x

′
2=[121], and x

′
3=[101]).

Figure 6.16. Flexoelectric characterization of MgO crystals. The flexoelec-
tric response is highly linear (r2 >0.97 with RMSE < 0.03) with effective
flexoelectric coefficients of 5.4 nC/m and 2.1 nC/m for the samples with
the (111) and (100) surfaces, respectively.
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6.5.3. First principles calculations of flexoelectricity in MgO

First principles calculations of the flexoelectric coefficient tensor for MgO found in the

literature indicate short-circuit values of µ1111=-1.1 nC/m, µ1122=-0.6 nC/m, and µ1212=-

0.3 nC/m [58]. Using these values with the elastic constants of MgO of s1111= 4.4 × 10−12

Pa−1, s1122 = -1.1× 10−12 Pa−1, and s1212= 7.1 × 10−12 Pa−1 and Eqs. 6.43 and 6.44 yield

the predicted effective flexoelectric coefficients and flexocoupling voltages in Table 6.1 for

the beam (φ=0) and plate (φ=1) bending limits. While accounting for the MIP contribu-

tions to the effective flexoelectric response through the Ibers approximation (Chapter 5)

addresses the sign issue, the flexoelectric responses measured in Figure 6.16 are signifi-

cantly larger than those predicted from first principles, even in the plate bending limit.

Bulk Bulk + Ibers Exp.
Beam (φ=0) Plate (φ=1) Beam (φ=0) Plate (φ=1)

µ
(100)
eff (nC/m) -0.18 -0.22 0.55 0.73 5.4 ±0.6

f
(100)
eff (V) -2.25 -2.81 6.95 9.49 24 ± 3

µ
(111)
eff (nC/m) -0.32 -0.36 0.41 0.61 2.1 ± 0.3

f
(111)
eff (V) -4.05 -4.63 5.15 7.67 62 ± 7

Table 6.1. Effective flexoelectric coefficients and flexocoupling voltages for
the (100) and (111) MgO samples using flexoelectric tensor components
from Ref. [58] and elastic constants from Ref. [207] for the beam and
plate bending limits compared with experimental values. Columns 2 and 3
only include bulk flexoelectric contributions, and columns 4 and 5 include
bulk and MIP contributions within the Ibers approximation using atomic
electron scattering factors [164, 166].

As there are known issues with computing flexoelectric coefficients from first princi-

ples with DFT implementations relying on pseudopotentials, I computed the flexoelectric

coefficients of MgO with the all-electron code WIEN2k [145] to investigate if this could
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be the origin of the discrepancy. The same approach described in Chapter 4 is used where

the bulk flexoelectric coefficients are obtained from moments of the changes in charge

density and forces induced by symmetrically inequivalent sub-lattice displacements [58].

Table 6.2 summarizes the results of the DFT-calculated flexoelectric tensor compo-

nents using the LDA [148] and PBEsol [152] functionals. Because MgO has such a simple

structure, it does not support some of the potential sources of enhanced flexoelectricity

seen in other single crystals in Chapter 4: there are no lattice-quadrupole terms and MgO

has no anomalous Born charges. Overall, the values in Table 6.2 computed with LDA

are in good agreement with the literature, and the short-circuit flexoelectric coefficients

are within ±0.1 nC/m of those in Ref. [58]. We find the different functionals yield very

similar Q and T tensor components with minimal net effect on the flexoelectric tensor

components. The largest difference between the LDA and PBEsol computed values are

the flexocoupling voltages; this originates from a difference in the static dielectric constant

predicted by each functional (PBEsol gives 10.19 whereas LDA gives 9.51).

Regardless, neither functional resolves the large discrepancy with the experimental

measurements, even after including MIP contributions (Table 6.3 ). As a final check, I

investigated the variation in the flexoelectric coefficients as a function of volume to rule out

any issue originating from differences between the DFT optimized lattice parameter and

the experimental lattice parameter. Figure 6.17 shows that the short-circuit flexoelectric

tensor components are relatively insensitive to volumetric strain.

Since the first principles calculations shown above yielded similar values to the litera-

ture values, the predictions appear to be largely invariant to the functional, and volumetric
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(a) Q and T Tensor Components

Q(1),E (e) Q(1),D (e) Q
(3),D
L1 (e bohr2) Q

(3),D
L2 (e bohr2) TDL1 (eV) TDL2 (eV) TE1122 (eV)

Mg 1.97 0.62 -14.07 -21.77 17.84 29.22 7.63
1.98 0.61 -14.19 -22.25 16.77 28.89 7.44

O -1.97 -0.62 -12.89 -13.77 19.56 10.74 9.71
-1.98 -0.61 -12.79 -13.63 18.66 10.42 9.50

(b) Bulk Flexoelectric Tensor Coefficients

µ1111 µ1212 µ1122

Fixed D (pC/m) -113.62 -19.47 -80.98
-110.93 -18.31 -78.24

Fixed E (nC/m) -1.08 -0.19 -0.77
-1.13 -0.19 -0.80

Flexocoupling (V) -14.35 -2.46 -10.23
-13.90 -2.29 -9.80

Table 6.2. Summary of MgO flexoelectric first principles calculations. The
top and bottom entries in each row corresponds to calculations using LDA
and PBEsol, respectively. (a) Moments of the change in charge density
and forces owing to Mg and O displacements. (b) Bulk flexoelectric tensor
components.

Figure 6.17. Variation in the effective short-circuit flexoelectric coefficient
for a (100) MgO sample in the beam bending limit (φ=0) calculated with
the LDA functional as a function of volumetric strain.
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Bulk Bulk + Ibers Exp.
Beam (φ=0) Plate (φ=1) Beam (φ=0) Plate (φ=1)

µ
(100)
eff (nC/m) -0.33 -0.41 0.40 0.54 5.4 ±0.6

f
(100)
eff (V) -4.17 -5.22 5.03 7.08 24 ± 3

µ
(111)
eff (nC/m) -0.49 -0.57 0.24 0.40 2.1 ± 0.3

f
(111)
eff (V) -6.34 -7.26 2.86 5.04 62 ± 7

Table 6.3. Effective flexoelectric coefficients and flexocoupling voltages for
the (100) and (111) MgO samples using flexoelectric tensor components in
Table 6.2 and elastic constants from Ref. [207] for the beam and plate
bending limits compared with experimental values. Columns 2 and 3 only
include bulk flexoelectric contributions, and columns 4 and 5 include bulk
and MIP contributions within the Ibers approximation using atomic elec-
tron scattering factors [164, 166].

effects on the bulk flexoelectric tensor components seem to be small, there must be some

additional contribution to the flexoelectric response of MgO beyond bulk and mean-inner

potential contributions. To quantify the issue, I define the excess flexoelectric coefficient

for each sample according to

(6.45) µexcess = µmeasured −
(
µbulkDFT + µIbers

)
.

Using the values from Figure 6.16 and Table 6.3, µ
(100)
excess= 1.6 nC/m and µ

(111)
excess=5.0 nC/m.

6.5.4. Dielectric and Structural Characterization

Short of the first principles theory of flexoelectricity missing some important physics

(which seems unlikely for a simple material like MgO), the excess flexoelectric coefficients

must stem from extrinsic contributions. The first experiment to deduce the origin of

these extrinsic contributions was to measure the dielectric properties of the sample using



215

impedance spectroscopy. Since the electrode configuration used for flexoelectric charac-

terization is essentially a parallel-plate capacitor geometry, it was possible to perform

dielectric characterization on the same samples whose flexoelectric properties were shown

in Figure 6.16. Impedance spectroscopy measurements on these crystals (Figure 6.18)

yielded dielectric constants in good agreement with the literature values for MgO single

crystals [237]. This suggests that whatever is responsible for the flexoelectric enhance-

ment does not manifest in changes in the dielectric response.

Figure 6.18. Dielectric characterization of MgO crystals. The imaginary
component of the impedance is inversely proportional to the frequency,
with a corresponding capacitance of 3.03 pF. Using the sample thickness
(0.5 mm), electrode area (1.74 × 10−5) m2), and this capacitance with the
capacitance of a parallel-plate capacitor yields a dielectric constant of 9.84.

Next, structural characterization of the MgO crystals was performed with XRD be-

cause MgO single crystals purchased from vendors are notoriously polycrystalline [238].

If the MgO crystals were polycrystalline with a similar grain boundary density to the TB

density in LAO [75], then a possible explanation for the large flexoelectric response of

MgO is grain boundary contributions.
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ω − φ maps to detect the presence of multiple grains were measured on MgO crystals

from the same batch of crystals from which the samples measured in Figure 6.16 were

made. The width of a ω−φ map is twice the miscut and grains appear as multiple curves

[216, 238]. The results of this experiment are shown in Figure 6.19(a). From this map

the maximum miscut is found to be 0.18◦, and there are clear indications of multiple

grains.

Figure 6.19. (a) ω − φ map from a (100) MgO crystal around the (200)
diffraction condition. Intensity is plotted on a log scale. (b)-(c) Rocking
curves about the (200) diffraction condition for different values of φ.

In order to analyze the crystallinity in each grain and more readily count the number

of grains, Figure 6.19(b)-(c) shows representative cross-sections of the ω − φ map in

Figure 6.19(a) at fixed φ values. These diffraction patterns are traditional rocking curves.

They clearly show there are ∼5 misoriented domains that each have high crystallinity

(FWHM of rocking curve ∼20 arcsec/0.006◦). Since the x-ray optics in this experiment

were adjusted so the beam illuminated ∼50% of the surface of the 10 mm × 10 mm

sample and the attenuation length of MgO at the experimental conditions is ∼70 m,

these measurements indicate there are ∼20 grains in a typical flexoelectric sample with

dimensions 10 mm × 3 mm × 0.5 mm [215]. The number of grain boundaries is likely
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too few to account for the excess flexoelectric coefficients (e.g. compared to the number

of TBs in LAO).

Future research into the role of adsorbed water, built-in strain, and point defect con-

tributions are suggested in Chapter 9.
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CHAPTER 7

The Interplay Between Electronic Structure, Surface Structure,

and Flexoelectricity in Lanthanide Scandates

7.1. Introduction

Lanthanide scandates are distorted orthorhombic perovskites (space group Pbnm at

room temperature and atmospheric pressure [118]) which are most commonly of interest

for use as substrates for thin film growth [127] and as catalytic supports [239, 240].

However, many aspects of lanthanide scandates relevant to these applications are poorly

understood including the nature of their 4f electrons [162] and the atomic and electronic

structure of their surfaces [241]. This chapter includes a summary of the work I have

performed on lanthanide scandates, much of which has been performed in collaboration.

I begin with the utilization of x-ray photoelectron spectroscopy (XPS), ultraviolet pho-

toelectron spectroscopy (UPS), and DFT to characterize the bulk electronic structure of

DSO, GSO, and TbScO3 (TSO) in Section 7.3 (I performed and analyzed the XPS/UPS

measurements and simulated XPS spectra from DFT calculations performed by Professor

Laurence D. Marks [162]). Then in Section 7.4 I discuss solving the (110) surface of

DSO (I acquired and analyzed the AFM and XPS data and performed the pDOS analy-

sis, Dr. Pratik Koirala was responsible for the transmission electron diffraction (TED),

Zachary R. Mansley developed the XPS model, and Professor Laurence D. Marks per-

formed the DFT calculations [241]). In Section 7.5 I discuss the observation of large
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charging [162, 27, 242] in lanthanide scandates (I acquired and analyzed the XPS and

UPS data. Dr. Ahmet Gulec obtained the electron-energy loss spectroscopy (EELS)

data and I performed the analysis with Dr. Pratik Koirala. Dr. Pratik Koirala performed

the reflection electron-energy loss spectroscopy (REELS) measurement and Tiffany Ly ob-

tained the secondary electron (SE) image. Dr. Ryan Paull supplied the GSO nanoparticles

[239, 240] and Tiffany Ly supplied the KTO nanoparticles [243]). Lastly, in Section 7.6

I explain how the scandates’ propensity for charging and large flexoelectric coefficients

(Chapter 3) lead to large, reversible bending in electron microscopes (Dr. Pratik Koirala

made the initial observation and performed all transmission electron microscopy (TEM),

and I performed the flexoelectric characterization. The analysis was the result of much

discussion between Professor Laurence D. Marks, Dr. Pratik Koirala, and myself. [27]).

7.2. Methods

7.2.1. X-ray and Ultraviolet Photoelectron Spectroscopy

Photoelectron spectroscopies are surface-sensitive probes of electronic structure which

operate on the photoelectric effect: a sample subjected to sufficiently high energy elec-

tromagnetic radiation will eject electrons with a kinetic energy equal to the difference

between the energy of the incident radiation and the binding energy of the electron in the

sample [244, 245]. Information about the underlying electronic structure of the sample

is determined from the binding energies, intensities, and angular distribution of ejected

photoelectrons. Two common forms of photoelectron spectroscopy use an X-ray source

(i.e. XPS) or an ultraviolet source (i.e. UPS). Comprehensive reviews of these techniques
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and more detailed accounts of the operating principles can be found in Ref. [244] and

[245].

In the experiments reported in this chapter, XPS measurements were performed on

an ESCALAB 250Xi equipped with a monochromated, micro-focused Al K-Alpha (1486.6

eV) x-ray source. A 180◦ double focusing hemispherical analyzer with a dual detector sys-

tem was used in constant analyzer energy mode [162]. First, general survey spectra were

used to check for impurities and then higher resolution XPS spectra to study particular

peaks were acquired with a pass energy of 20 eV, step size of 0.1 eV, spot size of 650

µm, and averaged over 10-20 scans. UPS measurements were performed on the same

instrument using a He II (40.8 eV) UV source with a photon flux of ∼1.5 × 1012 pho-

tons/second, pass energy of 2 eV, step size of 0.05 eV, spot size of ∼1.5 mm, and averaged

over 20 scans. The ESCALAB 250Xi was also used for the REELS experiments described

in Section 7.5. These measurements were taken using a 1 keV incident energy with an

emission current of 5 µA, 150 µm aperture, dwell time of 50 ms, and pass energy of 10

eV with a 0.1 eV step.

XPS spectra were collected with an argon flood gun operated at a beam voltage of

2 V, emission current of 50 µA, focus voltage of 20 V, and extractor bias of 30 V to

minimize charging. The chamber pressure was ∼10−7 mbar when the flood gun was used.

Some residual charging persisted even with a flood gun, so spectra were shifted using the

adventitious C1s peak centered at 285 eV (if this peak was sufficiently intense) or the

Sc3p peak at 30.8 eV.

UPS charge compensation using the flood gun was not possible because artifacts from

its use masked the relatively low photoelectron intensity. Other charge compensation
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methods were also not possible: the UPS incident photon energy is too low to induce

C1s photoemission, and secondary electron emission masked the Sc3p. Therefore, only

relative UPS binding energies are meaningful in the data reported in Section 7.3.4.

7.2.2. Transmission Electron Microscopy

TEMs utilize high energy electron beams to characterize the structure and chemical com-

position of materials. Interested readers are directed to one of numerous textbooks (e.g.

Ref. [246]) for overviews of TEM, its operating principles, and a review of some of the

more common operating modes. Egertons book on EELS [247] is particularly relevant

for the work described in Section 7.4.5 and 7.5.2. The TEM results shown in Section 7.4

and 7.6 utilized a Hitachi H8100 operated at 200 kV with a nominal exposure time of 0.1

seconds and electron flux in the range of 1- 100 electrons/nm2s. The bending experiments

were done starting with a spread beam which was gradually converging. SE imaging of

the nanoparticles included in Figure 7.12(d) was performed on a Hitachi HD-2300 STEM

operated at 200 kV. The EELS data reported in Sections 7.4.5 and 7.5.2 were acquired

on a JEOL ARM200CF equipped with a cold field emission source and a CEOS probe

spherical-aberration corrector operated at 200 kV with a semi-convergence angle of 27

mrad. A dispersion of 0.05 eV/channel, collection angle of 22 mrad, and acquisition time

of 1 µs (although in practice this is closer to 0.1 ms due to detector limitations) were

used on a Gatan Enfina EELS spectrometer. The data in Section 7.5.2 consisted of 100

individual spectra acquired at these conditions under constant illumination.
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7.2.3. Atomic Force Microscopy

AFM is a versatile materials characterization tool with many modes of operation. Detailed

explanations of this method and its capabilities and limitations can be found in reviews

such as Ref. [248]. In Section 7.4.3 tapping mode AFM imaging was used to measure

topography with a Bruker Dimension FastScan AFM operated in air.

7.2.4. Density Functional Theory Calculations

DFT calculations were performed with the all-electron augmented plane wave + local

orbitals WIEN2k code [145]. For the bulk calculations described in Section 7.3, muffin

tin radii of 1.68, 1.82, and 2.02 were used for O, Sc, and Dy, respectively. These radii

minimized the O2p tails within the metal muffin tins which can perturb the calculation

of the exact-exchange corrections. The plane-wave expansion parameter RKMAX was

9.0 and the k-mesh was 8x6x8. An on-site hybrid approach [153, 154] with the PBEsol

function [152] was used to approximate the exchange and correlation term. On-site hybrid

fractions of 0.38, 0.50, and 0.80 for the Dy4f, Dy5d, and Sc3d orbitals, respectively, were

used; how these were selected is described in Section 7.3.5 [162]. Section 7.3.5 also

explains how a generalized gradient approximation (GGA) approach using the PBEsol

functional was used in conjunction with the on-site hybrid calculations to simulate XPS

spectra [162]. The (110) surface of DSO described in Section 7.4.4 was simulated with

a 70.000×7.926×7.936 Å cell containing 260 atoms (92 unique) with P121/m1 symmetry

and approximately 14 Å of vacuum [241]. An RKMAX was of 7.0 was used with a 6×6×1

mesh. The surface calculations used the on-site hybrid approach with the same on-site
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hybrid fractions given above. All calculations used ferromagnetic ordering, and spin-orbit

couplings were not considered.

7.3. Bulk Electronic Structure of (Gd,Tb,Dy)ScO3

7.3.1. Motivation

Understanding the electronic, magnetic, and catalytic properties of lanthanide scandates

requires thorough characterization of their electronic structures, especially their valence

band (VB)s. The prevailing interpretation is that the valence band is comprised of lan-

thanide 4f (Ln4f), scandium 3d (Sc3d), and oxygen 2p (O2p) states [120, 249, 250, 251,

252], although there is some ambiguity regarding the positions of these states stemming

from the inherent difficulty of treating 4f states in DFT: mean-field approaches often

poorly model correlated electrons. More often than not, Ln4f are treated as atomic-like

states far from the VBM, which is taken to be dominated by O2p contributions [120].

Here we use a combination of photoelectron spectroscopies and first principles cal-

culations to characterize the electronic structure of lanthanide scandates (GSO, TSO,

and DSO). XPS and UPS are used to experimentally measure the valence bands of these

three lanthanide scandates and then a method is developed to simulate their photoelec-

tron spectra. The consistency between simulated and experimental spectra points toward

substantial contributions from Ln4f states in the VB [162].

7.3.2. Sample Preparation

10 mm × 10 mm × 0.5 mm single crystalline substrates of [110] oriented GSO, TSO,

and DSO (Pbnm convention) were purchased from MTI Corp. Samples were annealed at
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1050◦C for 10 hours in air to promote surface ordering. Additionally, samples were baked

at 600◦C for 6 hours in air immediately prior to XPS and UPS measurements to minimize

surface contamination, and then placed in the high vacuum chamber of the XPS system

to degas overnight. The color of the DSO changed from yellow to brown after the 1050◦C

anneal, whereas GSO and TSO remained white. This color change may indicate small

concentrations of point defects (e.g. Dy and O vacancies [253, 254]). No color changes

were observed after the 600◦C bake.

7.3.3. Valence Band XPS Measurements

XPS spectra of GSO, TSO, and DSO acquired following the methods described in Sec-

tion 7.2 are shown in Figure 7.1. Under the experimental conditions, the 95% probe depth

of photoelectrons contributing to these spectra, estimated as 3× the inelastic mean free

path, is ∼10 nm [255].

First, we focus on the near-valence region with binding energies greater than 15 eV.

In this region, all three scandates exhibit a peak at 30.8 eV originating from Sc3p states,

Ln5p doublet peaks near 20 and 28 eV, and an O2s peak at 23 eV. The Sc3p peak at 30.8

eV is invariant for the three different lanthanide scandates investigated here, reflecting the

similar Sc bonding environment in these three materials. On the contrary, the Ln5p and

O2s peaks differ in the scandates, increasing in binding energy with the atomic number

of the lanthanide species: this increase is attributed to the increase in nuclear charge of

the Ln species in LnScO3 as Ln changes from Gd to Tb to Dy [244, 245]. These peak

assignments are consistent with existing literature [249, 250, 251].
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Figure 7.1. Experimental XPS spectra acquired with 1486.6 eV incident
x-rays for (a) GSO, (b) TSO, and (c) DSO after origin correction.

Next we focus on the VBs which in all three spectra span 15 eV. Unlike the near-valence

region, the valence band XPS spectra qualitatively differ between the three scandates. The

GSO VB spectrum has two major peaks at 4 eV and 8 eV, the TSO VB spectrum has

a sharp peak at 2 eV and a wide feature centered at 9 eV, and the DSO VB spectrum

consists of three peaks at 4 eV, 6 eV, and 9 eV. At the incident x-ray energy of 1486.6

eV used in these experiments, the Ln4f cross-sections are orders of magnitude larger than

the O and Sc states contributions to the VB, indicating these differences originate from

Ln4f states [256].

7.3.4. Valence Band UPS Measurements

To confirm that Ln4f states are responsible for the differences in the VB spectra measured

with XPS, VB UPS spectra were acquired because O2p cross-sections are∼2-5 times larger

than Ln4f cross-sections at the UPS incident photon energy [256]. Figure 7.2 shows UPS

VB spectra for the three scandates. This technique is more surface-sensitive than XPS:

the 95% probe depth of photoelectrons is ∼1.2 nm at the experimental conditions [255].

Whereas the VB XPS spectra in Figure 7.1 were qualitatively different for GSO, TSO,
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and DSO, the UPS spectra are nearly identical, consisting of two major peaks separated

by 4-5 eV.
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Figure 7.2. Experimental UPS spectra acquired with 40.8 eV photons for
(a) GSO, (b) TSO, and (c) DSO. Because of charging, only relative binding
energies have meaning in these spectra. The spectrum for each lanthanide
scandate is qualitatively similar, consisting of two peaks separated by 4-5
eV. Secondary electron emission begins to occur at (a) ∼25 eV, (b) ∼27 eV,
and (c) ∼20 eV, masking higher binding energy features of the VB spectra.

Together, the experimental spectra in Figures 7.1 and 7.2 and the literature cross-

sections indicate the VB in all three scandates consists mainly of Ln4f contribution (XPS)

and O2p contributions (UPS). However, owing to the experimental resolution limits there

is some ambiguity regarding the location of these states, their distribution, and the role

of Sc3d states (Sc3d cross-sections are much smaller than the Ln4f and O2p cross-sections

at the incident energies used for these experiments). We turn to DFT to simulate the

XPS spectra and address these questions.

7.3.5. X-ray Photoelectron Spectroscopy Simulations

XPS spectra were simulated using a four-step method.

7.3.5.1. Ground State Electronic Structure. First, it is necessary to obtain an ac-

curate ground state electronic structure. We found conventional LDA+U and GGA+U

methods, independent of the functional, resulted in highly-localized, essentially atomic



227

4f occupied states, which disagrees with the spectra in Figure 7.1. The on-site hybrid

method, which uses an exact-exchange hybrid correction within the muffin tins, was found

to give an improved description of the electronic structure. After the atomic positions and

bulk optimized lattice constants were calculated using the on-site hybrid method with the

PBEsol functional, the optimal hybrid fractions were found by varying the hybrid frac-

tions to minimize the forces on the atoms using the known bulk positions. Optimized

on-site hybrid fractions were found to be 0.80 for Sc3d, 0.50 for Dy5d, and 0.375 for Dy4f

states, within an uncertainty of approximately 0.05. The same values were used for the

Ln and Sc species in TSO and GSO.

The pDOS from the on-site hybrid calculations are shown in Figure 7.3. The VBM

in each plot is set to 0 eV and negative energies indicate occupied states. We found only

O2p, Sc3d, and Ln4f states made significant contributions to the VB, so all other states

are excluded from this analysis. The O2p and Sc3d VB contributions are similar in all

three scandates (O2p states are delocalized and have the largest contributions, while the

Sc3d states have minor contributions throughout the valence band), whereas the Ln4f

contributions are noticeably different. Gd has one 4f peak since Gd3+ has no minority 4f

electrons. The presence of minority 4f electrons causes a minority 4f state close to or at

the VBM and splits the majority 4f state, as seen for TSO and DSO.

The pDOS in Figure 7.3 indicate band gaps of 5.2 eV, 4.9 eV, and 5.3 eV for GSO,

TSO, and DSO, respectively, which are similar to reported band gaps [252, 242, 27]. The

Sc3d and O2p contributions to the conduction band are similar in all three materials, being

dominated by Sc3d, and the unoccupied Ln4f states are all minority spin. The placement

of unoccupied Gd4f states in the band gap is likely a consequence of the system-dependent
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nature [153] of the hybrid fraction (the optimized values were acquired on DSO), but

ultimately does not impact the XPS simulations, which only use occupied states.
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Figure 7.3. pDOS of (a) GSO, (b) TSO, and (c) DSO from on-site hybrid
DFT calculations. The upper and lower panels correspond to the spin up
and spin down pDOS, respectively. Blue lines indicate Ln4f, black lines
correspond to Sc3d, and red lines show O2p pDOS. Negative energies are
taken to be occupied states and the VBM has been set to 0 eV. For visual
clarity, in this figure the O2p and Sc3d pDOS have been scaled by a factor
of 10.

7.3.5.2. Relaxation Effect. Having established a means to model the ground state

electronic structure in the lanthanide scandates, we now turn to relaxation effects. The

removal of a photoelectron in photoelectron spectroscopies modifies the occupancy of

a given state and causes an energy level shift [244, 245]. To model this effect, we

adopt a Slater-Janak transition state method [257, 258, 259, 260]: since the Hubbard

U is defined as the correction that makes the energy of a particular state independent

of occupancy [261], calculating the Hubbard U for a particular state is equivalent to

correcting for a hole in that state. Performing this procedure for the 4f states by placing

the 4f electrons into the core and varying their occupancy yielded U = 8.2 eV, J = 0 eV

which when used with GGA+U with PBEsol calculations led to 4f energies with better

agreement to the XPS in Figure 7.1.
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The energies of the 4f states from the GGA+U with PBEsol calculations account for

the loss of a photoelectron during the XPS process, so these energies were used to linearly

scale the on-site hybrid energies, which provide a better representation of the ground state

electronic structure. This process effectively placed the on-site hybrid 4f positions at the

same energy as the GGA+U 4f positions. Gd was used to determine the scaling factor

since it had the simplest 4f structure (scaling factor = 1.7). The same scaling factor was

used for TSO and DSO.

7.3.5.3. Photoionization Cross-sections and Peak Broadening. To quantitatively

compare the pDOS in Figure 7.3 with the spectra in Figure 7.1, the differences in the

photoionization cross-sections of different states must be accounted for. Literature pho-

toionization cross-sections are often not accurate for valence bands [262] because they are

calculated for isolated atoms [256], which neglect the effects of reconfiguration [244, 245]

and dielectric screening [263]. Using the literature values led to simulated spectra overly

weighted by Ln4f contributions when compared to the spectra in Figure 7.1. As an alterna-

tive, I utilized the literature cross-sections as starting points and varied the cross-sections

to find the best agreement with the data in Figure 7.1. GSO was used for this process

because the states close to the VBM can only come from O2p contributions since Gd has

no minority 4f electrons. We found the simulated and experimental intensities matched

if the O2p cross-section was increased by a factor of 10 compared to the literature value

and the Gd4f and Sc3d cross-sections were left unchanged. The O2p cross-sections in the

TSO and DSO pDOS were also scaled by this factor of 10.

Lastly, Gaussian broadening was used to address the combined effects of instrument

resolution, thermal broadening, and state lifetime which are present in experiment [244,
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245]. Gaussian broadening values of 0.57 eV (Gd4f), 0.30 eV (Tb4f), 0.41 eV (Dy4f),

and 0.30 eV (O2p, determined from GSO) were found to reproduce the experimental peak

widths.

7.3.5.4. XPS Simulations. Combining the steps outlined in Section 7.3.5.1- 7.3.5.3

yielded the XPS simulations for GSO, TSO, and DSO shown in Figure 7.4. In each plot,

the VBM is 0 eV and each spectrum has been normalized by its maximum intensity.

There are differences ∼0.5-1 eV between the experimental and simulated peak positions.

These simulations provide a reasonable match with the experimental spectra: the GSO

simulation reproduces a two-peak structure, the TSO simulation exhibits a sharp peak

at the VBM and a wide peak spanning ∼5 eV, and the DSO simulation possesses a

three-peak structure.
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Figure 7.4. Comparison between experimental XPS spectra (dashed lines)
and simulated XPS spectra (solid lines, black) for (a) GSO, (b) TSO, and
(c) DSO. The upper and lower panels correspond to the spin up and spin
down pDOS, respectively. The simulations correspond to the sum of the
O2p pDOS (solid lines, red), Sc3d pDOS (not shown), and Ln4f pDOS
(solid lines, blue). Each spectrum has been normalized by its maximum
VB intensity and each VBM has been set to 0 eV.

The simulated spectra in Figure 7.4 match the experimental XPS spectra well. To-

gether, these results support the generally accepted interpretation that O2p states are

delocalized throughout the VB in lanthanide scandates [120, 249, 250, 251, 252]. The
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Sc3d cross-sections were too low to probe Sc3d states directly with XPS or UPS, but the

simulations in Figure 7.4 (which accurately capture the 4f peak structure and O2p de-

localization) indicate Sc3d states have a very small, delocalized contribution throughout

the VB in all the scandates. This is also consistent with existing literature.

The Ln4f VB contributions are more complex than the O2p or Sc3d contributions. It

is common to treat Ln4f states as highly localized, essentially atomic states which exist

at energies well below the VBM and have little consequence for properties. The results

shown above indicate that the minority Ln4f and O2p states are at comparable energies

to the VBM, which suggests minority Ln4f electrons may have a more significant impact

on lanthanide scandate properties. It is worth noting the addition of minority 4f electrons

lead to worse agreement between our simulations and experiment, which may stem from

the existence of different spin configurations.

7.4. Surface Atomic and Electronic Structure of (110) DyScO3

7.4.1. Motivation

As mentioned in Section 7.1, much interest in lanthanide scandates is related to their use as

thin film substrates [127] and catalytic supports [239, 240]. Oxide surfaces are known to

deviate from their bulk atomic and electronic structure in a bid to stabilize, and a detailed

understanding of the exact surface structure is critical to both applications [183]. Bulk

truncations in 332 perovskites along {100} pseudo-cubic planes (which includes the (110)

surface of DSO) are not valence neutral; they must, for example, reconstruct, adsorb a

foreign species, or metallize to exist [183].
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There has been some work to understand the pseudo-cubic surfaces of lanthanide

scandates. For example, the review by Biswas et al. [264] indicates the existence of

both A and B site terminations, but no exact surface structures or chemistries have been

reported [265, 266, 267]. In this section, I describe the work to solve a Sc rich double

layer with a Sc3O4 termination on the (110) surface of DSO using a combination of XPS,

AFM, TED, and DFT [241]. Then I discuss the experimental evidence for a surface state

associated with this surface reconstruction [242].

7.4.2. Sample Preparation

10 mm × 10 mm × 0.5 mm single crystalline substrates of [110] oriented DSO (purchased

from MTI Corp) were cut into 3 mm discs with an ultrasonic cutter, mechanically thinned

to ∼100 µm thick using silicon carbide sandpaper, and dimpled with a Gatan 656 Dimple

Grinder and 0.5 µm diamond slurry until the center thickness was ∼15 µm. A Gatan

Precision Ion Polishing System (PIPS-I) was used to Ar+ ion mill the samples to electron

transparency. An initial energy of 5 keV and milling angle of 10◦ were used, which were

gradually reduced to 3 keV and 4◦ respectively for final polishing and surface cleaning.

Afterwards, the samples were annealed in a tube furnace for 10 hours at 1050 ◦C in air.

7.4.3. Stepped, Sc-rich Surfaces with (1×1) Periodicity

AFM and TED were used to characterize surface topography and structure. Following

the sample treatment in Section 7.4.2, AFM images (in tapping mode) were acquired with

the experimental conditions described in Section 7.2. An image of a 2 µm × 2 µm area of

a [110]-oriented, self-supported DSO TEM sample is shown in Figure 7.5(a). This image
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indicates that the annealing conditions yielded a terraced, atomically stepped surface,

similar to what has been found for other oxides [264, 268]. TED (also performed under

the conditions described in Section 7.2) on the same samples resulted in the diffraction

pattern shown in Figure 7.5(b). This pattern exhibits no evidence of additional reflections

and minimal diffuse scattering, indicating a well-ordered 1×1 surface with no surface

reconstructions or additional phases, and few bulk defects [241].

Figure 7.5. Characterization of (110) DSO surface. (a) AFM indicates
atomically terraced surfaces. (b) TED along the [110] zone axis demon-
strates a lack of extra surface diffraction spots and minimal diffuse scatter-
ing. (c) angle-resolved x-ray photoelectron spectroscopy (AR-XPS) inten-
sity ratios of the integrated Sc2p and the Dy3d signals compared to modeled
signals with different Sc-rich surfaces.

Surface chemistry was examined using AR-XPS (experimental conditions described in

Section 7.2). Figure 7.5(c) depicts the ratio of the Sc2p intensity to the Dy3d intensity as a

function of angle. Normal incidence is defined to be zero degrees according to convention,

so surface contributions become more prominent as the angle increases. As such, the

increase in the ratio of Sc2p and Dy3d intensities with angle shown in Figure 7.5(c)

indicates the DSO surface is Sc rich. To quantify the amount of Sc at the surface, the

intensity ratio was modelled with a layer model [269, 270, 271], taking the relative
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photoionization cross-sections, inelastic mean free paths, and relative atomic densities of

the different species into account. As shown in Ref. [241], the intensity ratio from a

ScO−2 terminated slab is given by

(7.1)
ISc2p
IDy3d

=
αSc2pρSc
αDy3dρDy

1

D2
Sc2p − 1

D2
Dy3d − 1

DDy3d

where αi is the photoionization cross section of the indicated orbital, ρi is the areal number

density of the atom, and Di = exp(− t
cos(θ)λi

) is an exponential damping function which is

a function of the layer thickness t, inelastic mean free path of the electron λi, and angle

towards the detector θ. The intensities from samples with different surface chemistries

can be included by modifying Eq. 7.1 with additional layers. The results of this modeling

for a number of different Sc surface layers are shown in Figure 7.5(c). Although there

is a large uncertainty associated with these measurements (from surface contamination,

photoelectron channeling, etc.), the experimental data indicates a scandium oxide double

layer with some stoichiometry ScxOy.

7.4.4. Surface Atomic and Electronic Structure from Density Functional The-

ory

The XPS data and modeling shown in Figure 7.5(c) are consistent with a scandium oxide

double layer, but the experiments were too coarse to determine the exact chemistry. Since

oxide surfaces adhere to chemical constraints, such as valence neutrality and Paulings

Rules [183], it is possible to generate chemically sensible scandium oxide double layer

structures (which, for example, are valence neutral, maximize symmetry, and maintain

reasonable coordination) with bulk periodicity (Figure 7.5(b)) and compare the energetic
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stability of the structures using DFT calculations to identify the lowest energy structure

[241].

The combination of the experimental and chemical constraints yields (110) surfaces

with Sc3O4 surface chemistry, corresponding to six occupied Sc polyhedral sites for the

outermost layer out of the eight available sites. DFT calculations were performed (using

the parameters and approach described in Section 7.2) on all unique permutations and

the lowest energy minimized structure is shown in Figure 7.6 [241]. This structure is

a Sc rich double-layer dominated by ScO5[] octahedra with a vacant site. It is like the

STO (001) double-layer reconstructions, which follows from the similarity between the

1×1 (110) surface of GSO (an orthorhombic perovskite) and 2×2 (001) surface of STO.

Figure 7.6. Lowest energy, DFT relaxed structure for (110) DSO. Directions
are given with respect to the Pbnm convention. Bulk ScO6 octahedra are
grey, surface ScO5[] octahedra are blue, and surface ScO4 tetrahedra are
red. Dy atoms are pictured as blue spheres.

Having determined the atomic structure of the (110) DSO reconstruction, we now

analyze deviations from the bulk electronic structure arising from the Sc rich surfaces
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using DFT. We focus on differences in the VB and in-gap surface states because both

are important for electronic applications. Figure 7.7 compares the Dy4f, Sc3d, and O2p

pDOS associated with the surface shown in Figure 7.6 [241]. The VB is dominated by

filled O 2p and Dy4f states, and the conduction band (CB) by unoccupied Sc3d states, as

was found in Section 7.3 for the bulk. The Dy4f states are essentially bulk-like throughout

the slab and their VB contributions match those discussed in Section 7.3. The Sc3d and

O2p pDOS differ near the surface depending on the Sc-O coordination environment. Fig-

ure 7.7 shows the pDOS associated with ScO6 octahedra, ScO5[] surface octahedra with a

missing oxygen, and ScO4 surface tetrahedra in the DSO slab. The ScO6 octahedra pDOS

taken from the central-most slab layer are nearly indistinguishable from independent bulk

calculations, indicating sufficiently large slabs were used in the simulations. The Sc3d

and O2p states in the surface double layer show sizable differences from the bulk pDOS:

ScO4 and ScO5[] states are concentrated near the VB maximum and minimum, respec-

tively. There are in-gap surface states with mostly Sc3d character located 4-5 eV above

the VBM. These are primarily associated with the surface ScO4 tetrahedra.

7.4.5. Experimental Observation of Surface States with Electron Energy Loss

Spectroscopy

EELS measurements on the DSO samples analyzed above provide experimental evidence

for the surface states indicated in Figure 7.7. These measurements were acquired under

the conditions described in Section 7.2 and have been charge corrected according to the

procedure in Section 7.5.2 [242]. Figure 7.8(a) shows the low-loss EELS region for the

[110]-oriented DSO sample and Figure 7.8(b) shows the region surrounding the zero loss



237

Figure 7.7. pDOS associated with Dy4f, Sc3d, and O2p states in a DSO
slab with the surface shown in Figure 7.6. Positive and negative pDOS val-
ues are spin up and down, respectively. Negative and positive energies are
occupied and unoccupied states, respectively, and zero is the bulk VBM. In
each panel, states from the central-most layer of the surface slabs (black,
solid lines) are compared to states from separate bulk calculations (black,
shaded). The red in the Dy4f panel are pDOS from the Dy in the second
subsurface layer. The blue and red in the Sc and O panels show pDOS asso-
ciated with ScO5[] and ScO4, respectively. The occupied Sc and unoccupied
O states are scaled by 10 for clarity.

peak (ZLP). Figure 7.8(b) indicates the presence of a feature at 3.8 eV. The location of this

peak is attributed to the surface acceptor states with primarily Sc3d character at ∼3.7 eV

above the VBM shown in Figure 7.7. Besides the agreement with the peak location, the
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peak intensity is consistent with that of a surface state: estimating the sample thickness

as 50 nm and the total surface thickness as 1.5 nm (2 surfaces), one would expect surface

energy loss features to be 6% of the intensity of bulk energy loss features [247]. This is

reasonably close to our findings.

Figure 7.8. (a) Charging-corrected EELS spectrum using the cross-
correlation procedure described in Section 7.5.2. (b) The spectrum indi-
cates an in-gap feature at approximately 3.8 eV (blue arrows). (c) Example
of Fourier-ratio deconvolution analysis, demonstrating the 3.8 eV feature
(black dashed line) is present independent of the full-width-half-maximum
of the Gaussian deconvolution function when modeling the ZLP as a Pear-
son VII function. Similar results were found using other ZLP models.

It is important to address the possibility that the peak in 3.8 eV is an artifact, which

is confounded by the typical difficulties associated with treating the ZLP and its long

tail [247, 272]. We adopt a Fourier-ratio deconvolution method [247, 272, 273, 274]

using a Gaussian deconvolution function to investigate this possibility. Since an experi-

mental instrument response function was unavailable, the instrument response function

was modelled with several functions (simple truncations, power law, Gaussians, Gaussian-

Lorentzian mixtures, Pearson VII) fit to the experimental ZLP. An example of the Fourier-

ratio deconvolution is shown in Figure 7.8(c). The persistence of the 3.8 eV feature for

every ZLP model used and for a wide range of Gaussian deconvolution full-width-half-

maximum values indicates the 3.8 eV feature is not an artifact.
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Although not an artifact, it is possible that the 3.8 eV feature is a result of a Cerenkov

process [275], since DSO has a moderately high dielectric constant [125] and is firmly

in the Cerenkov regime under the experimental conditions used here. However, the good

agreement between the experimental peak location and the independent DFT calculations

of the surface, which was consistent with XPS and TED, and the agreement between the

peak intensity and the intensity of a surface state imply that this feature is not a Cerenkov

loss.

7.4.6. Applicability to Other Lanthanide Scandate Surfaces

As shown in Ref. [241], the surface structure described above for the (110) surface of

DSO is found to occur on (110) GSO surfaces and there is evidence for it on (110)

TSO surfaces. Since it exists independent of the A-site cation, it is possible the same

reconstruction could be found on other (110) lanthanide scandate surfaces, beyond DSO,

GSO, and TSO. Furthermore, since the {100} pseudocubic surfaces of 332 perovskites

have the same valence and structural units, this double layer reconstruction may lie on

the convex hull for other {100} pseudocubic surfaces.

7.5. Large Charging in Lanthanide Scandates

7.5.1. Motivation

Most insulators subjected to sufficiently high energy illumination will charge [276, 277].

The charging can be net positive or negative depending on the material, sample, and ex-

perimental conditions, and the magnitude and spatial extent of charging will also depend

upon these factors. Over the course of working with the lanthanide scandates, we have
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observed that they charge far more than most materials. For the purposes of the work

described in Section 7.3 and 7.4, the charging was undesirable: charging complicates XPS

and electron microscopy experiments so samples with a propensity for charging will fre-

quently be processed (e.g. depositing carbon passivating films) to avoid charging effects.

Here we use XPS and EELS to show the presence of large charging in the lanthanide

scandates, some of its effects, and methods to overcome it (when this is desirable). We

also use UPS, REELS, and SE imaging to explain the origin of the charging, laying the

groundwork for Section 7.6 where we show “charging ain’t all bad” [242] and can be a

source of new science [27].

7.5.2. Charging in XPS

Sample holders in XPS are usually made of metal and grounded to mitigate charging

effects [244, 245]. Even with the grounding, charging is generally a problem for thick

insulators: their negligible conductivity means they cannot compensate for the ejected

photoelectrons [277]. This form of charging in XPS leaves the sample positive, reducing

the kinetic energy of the ejected photoelectron which manifests as a binding energy shift

to higher energies. Commonly, this is corrected by aligning the XPS spectrum to some

standard (either a Au4f7/2 or adventitious C1s peak) and/or using an argon flood gun to

provide a source of charge compensation [244, 245]. An example of an XPS spectrum

for an insulator exhibiting typical charging is the STO spectrum shown in Figure 7.9.

This spectrum was acquired for a STO (100) sample which was processed under similar

conditions to the DSO sample preparation conditions described in Section 7.2 with no
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charge compensation mechanisms. There is ∼10 eV binding energy shift, indicative of

charging, but the peak structure is still very well defined.

In more extreme charging cases, the energies of the photoelectrons are shifted and the

peak structure is heavily affected. An example of this behavior is shown with the DSO

spectrum in Figure 7.9. This sample was processed as described in Section 7.2. There is

∼700 eV binding energy shift and no discernable peak structure. Depositing a thin layer

of carbon onto the sample does little to change the binding energy shift, but does lead to

the presence of some peaks indicating some charge compensation.

Figure 7.9. XPS spectra acquired from the (100) surface of a STO single
crystal (red) and the (110) surface of a DSO single crystal (blue) with no
charge compensation. The lack of peak structure and sizable binding energy
shift in the DSO spectrum compared to the STO spectrum indicates large
charging. Common charge passivation techniques such as carbon coating
(green) have little effect.
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7.5.3. Charging in EELS: Rapid Spectra Acquisition and Cross-Correlation

A low-loss EELS spectrum for a charged DSO sample with a standard acquisition time

(in practice, this spectrum is the sum of 100 individual spectra, each of which has a

shorter acquisition time, see Section 7.2) is shown in Figure 7.10(a) [242]. Although

some peak locations are discernible, charging-related instabilities reduce the signal-to-

noise ratio (SNR), making quantitative analysis nearly impossible. By analyzing the

individual spectra (e.g. Figure 7.10(b)) which sum to the spectrum in Figure 7.10(a),

it is apparent that the low SNR originates from interactions between the electron beam

and charge on the sample, which induce energy loss shifts. This shift was quantified by

tracking the ZLP position in each individual spectrum (an example of which is included in

Figure 7.10(b)). As shown in Figure 7.10(c), the ZLP position varies by ∼2 eV throughout

the experiment, with the average position of the ZLP tending to a steady-state, positive

value under continued beam exposure. We interpret this steady-state as a saturation of

charging and the positive average ZLP shift as positive charging (in agreement with the

XPS data in Figure 7.9). Even though the average ZLP position tended to a steady-

state value, the spread was consistently ∼0.5 eV. This suggests that charging saturated

on average, but local fluctuations in the charge distribution were present as the sample

interacted with the beam.

To mitigate the charging effects, the origin in each individual spectrum contributing

to the spectrum in Figure 7.10(a) was shifted using cross-correlation before performing

the sum [242]. Figure 7.11(a) demonstrates significant improvements in the SNR from

correcting for charging shifts from cross-correlating the ZLP position, and Figure 7.11(b)

indicates a 0.5 eV reduction in the full-width-half-max of the ZLP. The higher SNR
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Figure 7.10. (a) EELS spectrum of charged DSO obtained by summing
100 spectra, each with an effective acquisition time of 0.1 ms and no charge
correction. (b) A single spectrum included in the sum shown in (a). (c) ZLP
position of each spectrum shows energy loss shifts due to charging effects.
The average ZLP position (red dashed line) tends to saturate, but the spread
about the average indicates local fluctuations in the charge distribution
persist.

spectrum in Figure 7.11(a) enables a quantitative analysis of the low-loss region. As has

already been described in Section 7.4.5, there is evidence for an energy loss associated

with a surface state in Figure 7.11(c). Additionally, it is possible to extract the band

gap from the charge-corrected spectrum. Since DSO is a large band gap insulator, a

linear-fit method was used to find the band gap. The linear-fit method consists of finding

the intersection between a line fit to the onset of the loss spectrum and a horizontal line

at the background level [278]. Data was smoothed using a moving average of 5 data

points prior to linear fitting. As shown in Figure 7.11(c), this process yielded a minimum

energy loss of ∼5.4 eV, which is similar to literature values [252] and the measurements

in Section 7.6.

7.5.4. Origin of Charging

Section 7.5.2 and 7.5.3 provide two examples of large charging in lanthanide scandates,

and some ways to overcome the charging, but do not explain the origin of the charging.

Excessive charging in the lanthanide scandates occurs because their band gaps and work
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(a) (c)(b)

Figure 7.11. (a) EELS shown in Figure 7.10(a) after an origin correction
using cross-correlation. (b) The ZLP full-width-half-maximum was reduced
by 0.5 eV after charge correction. (c) The band gap of DSO was determined
to be 5.4 eV using a linear-fit method with the spectrum in (a). The linear
fit marking the onset of the loss spectrum is a red dashed line and the
background level is a black dashed line. The arrow indicates the in-gap
feature at ∼3.8 eV.

functions are approximately equal [27]. Consequently, if there are few trap states (e.g.

from defects), excited electrons which normally could reside in unoccupied states exit the

material and leave the sample positively charged [27, 242].

To confirm this interpretation, the band gap and work function were measured on a

DSO sample prepared according to Section 7.2. Figure 7.12(a) shows a UPS spectrum

used to extract the work function, which corresponds to the lowest measured photoelectron

kinetic energy. A value of 5.8 eV is obtained from a linear extrapolation to the region

shown in the inset of Figure 7.12(a) [27]. Note, the low kinetic energy tail consists of

secondary electrons which have suffered inelastic collisions, so the signal does not provide

information on occupied DSO states. Figure 7.12(b) includes a REELS measurement

which shows DSO possesses a band gap of 5.7 eV [27]. Both the work function and band

gap values are in agreement with the literature, and similar to the EELS measurement in

Section 7.5.3. The band diagram in Figure 7.12(c) summarizes the origin of charging in

the scandates.
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The SE image in Figure 7.12(d) is a way to visualize, and confirm, the understand-

ing summarized in Figure 7.12(c). The SE image contains GSO [239, 240] and KTO

nanoparticles [243], supplied by Dr. Ryan Paull and Tiffany Ly, respectively. The GSO

nanoparticles have lower signal and less topographic contrast than the KTO nanoparti-

cles, except near the conducting carbon support or KTO nanoparticles. The lower signal

is because the GSO nanoparticles are charged significantly more positively than the KTO

nanoparticles. The lack of topographic contrast indicates a long electron mean free path

[27].

7.6. Flexoelectric Bending of Lanthanide Scandates

7.6.1. Background

In 1968, Bursian and Zaikovskii [13] noticed BTO films tended to bend when subjected

to electric fields. They found that a potential of 20 V applied to a 2.5 µm BTO thick film

yielded curvatures∼150 m−1. In a subsequent paper, Bursian and Trunov [279] derived an

expression for the curvature (κ) that developed in terms of the applied potential difference

(V ), the flexural rigidity of the sample (D), and the flexoelectric coefficient (µ).

(7.2) κ =
µV

D

For an isotropic plate-like sample (Chapter 3), the flexural rigidity is

(7.3) D =
12 (1− ν2)

Y d3

where Y is the Youngs modulus, ν is the Poisson ratio, and d is the elastic thickness

[54, 56]. Combining Eq. 7.2 and 7.3 yields an expression for the curvature in terms of
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Figure 7.12. (a) UPS spectrum of DSO sample with an embedded subpanel
showing the fine details of the edge. A linear fit yields a work function of
5.8 eV. (b) REELS spectrum with an incident energy of 1 keV. A linear fit
yields a band gap of 5.7 eV. (c) A band diagram summary for the scandates
where the shaded band is occupied and the unshaded band is unoccupied.
(d) SE image of GSO and KTO nanoparticles (imaging conditions given in
Section 7.2). Typically, SE images show strong topographic contrast, e.g.
the KTO nanoparticle at 1. GSO nanoparticles have significantly less signal
and topographic contrast, such as at 2, but exhibit enhanced signal where
local charge compensation is possible, such as near the carbon support at
3 or the KTO nanoparticles at 4.

sample dimensions, elastic constants, the strength of the flexoelectric coupling, and the

applied potential difference.

(7.4) κ = µV
12 (1− ν2)

Y d3
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Under the conditions used in Bursian and Zaikovskii’s [13] experiment, Eq. 7.4 predicts

the measured curvature. In addition, Eq. 7.4 indicates κ ∼ 106-1010 m−1 for nm thick

films because the flexural rigidity of a plate scales as the cube of the elastic thickness [27].

In the subsequent sections we describe the direct observation of large flexoelectric

bending at the nanoscale in lanthanide scandates. This bending is found to be intimately

tied to the charging introduced in Section 7.5 and a consequence of the flexoelectric re-

sponse measured in Chapter 3. These measurements demonstrate that the large nanoscale

curvatures predicted by Eq. 7.4 are physically realistic and not merely extrapolations [27].

7.6.2. Bending Observation in the TEM

Samples used in this study were prepared according to the procedure outlined in Sec-

tion 7.2 and TEM was performed as described in Section 7.2. Figure 7.13 includes a

sequence of frames in which the illumination of a TEM electron beam caused bending in

a thin DSO sample [27]. The bending increased and decreased as the electron flux was

increased and decreased, and the sample bent away from the beam if the beam was not

centered on the sample. If the bending was too severe, the sample would fracture, but

the bending was generally reversible.

The bending occurred along the length and width of the sample such that the sample

approach a spherical shape as the electron flux was increased. A depiction of the bending

is included in Figure 7.14(a). The curvature along the length and width of the sample as

a function of flux shown in Figure 7.14(b) was extracted from the images in Figure 7.13
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Figure 7.13. Downward bending of a [110] oriented DSO sample under the
electron beam. Eight frames from a video indicate the bending increases as
the flux increases. In each frame, the number in the bottom right corner
is the approximate electron flux (electrons/nm2s) and the bending angles
(with respect to the reference frame) along the length (blue) and width
(red) of the feature are given at the top right corner.

and is empirically described by

(7.5) κ = A

(
1− exp

(
− J
B

))
+ κ0

where κ is the curvature, J is the flux, A and B are constants, and κ0 is the (unmeasured)

curvature of the reference frame. Eq. 7.5 indicates the curvature saturates as a function

of flux, suggesting a link to the saturation of charging described in Section 7.5.
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Figure 7.14. (a) Bent samples, drawn as black cantilevers, exhibited curva-
tures along the length (κL) and width (κW ). (b) Curvature (κ) along the
length and width of the feature in Figure 7.13 as a function of beam flux
(J). Dashed lines are fits to Eq. 7.5.
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The bending described in Figures 7.13 and 7.14 occurred for∼50 different features from

20 different samples, including DSO, TSO, GSO samples. Similar charging and bending

were not found to occur in STO, KTO, NdGaO3 (NGO), or LAO (NGO and LAO charged

a little, but significantly less than the scandates and with minimal bending).

7.6.3. Connection to Charging

It was established in Section 7.5 that lanthanide scandate samples dramatically charge,

and that this charging is related to their electronic structure [27]. As was the case in XPS

and EELS experiments, there was considerable sample charging in these exerpiments even

though the electron fluxes used were significantly lower than electron fluxes typically used

for high resolution imaging or chemical analysis (e.g. in Figure 7.13 the electron fluxes

were ∼1-100 electrons/nm2s whereas typical fluxes are ∼104-106 electrons/nm2s). The

charging was linked to the bending because when a sample was coated with a carbon

coating, charging was non-existent and minimal bending was observed. This suggests the

bending occurs because of charging and that charge saturation with flux is responsible for

the behavior shown in Figure 7.14(b).

High energy electrons in typical electron microscope act as a white source for inelastic

scattering. At low accelerating voltages (e.g. those used in a typical scanning electron

microscope), a net accumulation of electrons in the sample is possible, but beyond a

material and sample specific energy threshold there will be a net loss of SEs in the sample,

causing the sample to be net positive [276]. The charging will tend to increase with

electron flux and one would anticipate the top surface of the sample to charge positive with

respect to the bottom surface owing to the nature of SE emission [27, 276]. Accompanying
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this inhomogeneous charge distribution is a potential difference across the sample which

has a maximum value of the band gap in the limit of a thin insulator: once the potential is

sufficiently large, any additional charging is mitigated by Zener tunneling [280]. Thus, for

a sufficiently high incident flux the charging and potential should saturate, as is observed.

A qualitative depiction of the charging is shown in Figure 7.15.

200 kV electrons

+ +++
+ +
+

!V ≈ Eg

Figure 7.15. Schematic illustrating electron beam-induced charging. Elec-
tron beam-sample interactions cause asymmetric SE emission, yielding an
inhomogeneous charge distribution in the sample (blue). For a thin, in-
sulating sample, the maximum potential difference accompanying this in-
homogeneous charge distribution is limited by Zener tunneling and will be
approximately equal to the band gap.

7.6.4. Link to Flexoelectricity

Eq. 7.4 provides a means to quantitatively connect the flexoelectric measurements on

DSO in Chapter 3 with in-situ TEM observations described above. Recall, in Chapter 3

we found µeff=-8.1 nC/m for a DSO sample with the same crystallographic orientation

as the samples bent in the TEM. If we use the literature Poissons ratio of 0.25 [281], a

Voigt-Reuss-Hill average [282, 281] for the Youngs modulus of 183 GPa (the sample is a

single crystal, but it is ambiguous what elastic tensor components should be used), and
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approximate the potential difference as the band gap (Section 7.6.3), the last quantity

we need to use Eq. 7.4 is the thickness. Based upon EELS measurements, the samples

were ∼50 nm thick at the base of the bending features and ∼5 nm or less at the edges,

corresponding to an average thickness of 22.5 nm. Using these values in Eq. 7.4, we obtain

a curvature of 2.5×105 m−1, which is in semi-quantitative agreement with the saturated

curvatures ∼3×105 m−1 shown in Figure 7.14(b). In passing, we will also note that using

a low energy ion-beam mill to disorder the DSO sample surface led to less severe charging

and near-complete reduction in bending. This indicates the surface plays a large role in

the observed charging and bending, which is consistent with attributing these observations

to flexoelectricity (Chapter 5).
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CHAPTER 8

How Flexoelectricity Drives Triboelectricity

8.1. Background

Charge transfer associated with rubbing or contacting two materials is known as tri-

boelectricity or the triboelectric effect [283, 284, 285]. It is a very familiar phenomenon,

as anyone who has touched a doorknob on a cold winter’s day will surely attest, with

a long history dating to at least 600 BC. These first observations of triboelectricity are

often attributed to a Greek philosopher named Thales of Miletus who, as the story goes,

observed that fur attracted dust after it had been rubbed by amber [284]. Not only are

these observations consequential for triboelectricity, but they are also important for the

history of materials science: the word electron comes from lektron, the Greek word for

amber [284].

The first modern scientific studies of triboelectricity occurred in the early 1900s when

Shaw quantified triboelectric charge transfer and created the (now defunct) triboelec-

tric series [286]. In the ensuing decades there has been much progress (see, e.g., Ref.

[283], [284], and [285] for summaries) in understanding triboelectric charge transfer

arising from metal-on-metal contact in terms of contact potential differences (i.e. work

function differences between different metals drive electron transfer [287]), but the ther-

modynamic driver for charge transfer in metal-on-insulator and insulator-on-insulator

contact is unresolved [285]. There is experimental evidence for the exchange of electrons
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[288, 289, 290], ions [291, 292], or charged molecular fragments [293] during contact in

different cases, and almost as many models as there are experiments. Some of the more

common mechanisms that are invoked to explain triboelectricity in insulators include

temperature differences [294] and trapped charge [295, 296, 297].

Triboelectricity is thought to play a significant role in many physical processes, rang-

ing from planetary formation [298] to dust storms [299], so furthering the fundamental

physics of triboelectricity could have important implications for many academic areas

beyond the triboelectric effect. In addition, triboelectricity has consequences in indus-

tries such as pharmaceuticals manufacturing [300] and xerography [301], and can lead to

electrostatic discharges which can cause fires with devastating consequences.

Before Bowden and Tabor [302] developed a nanoscale understanding of friction and

wear in terms of asperity contact, adhesion, and deformation, Volta and Helmholtz sug-

gested rubbing was important in the context of triboelectricity because it increases the

number of contact points between two contacting bodies [303, 304, 305]. To date, little

attention has been given to the role of microscopic deformations at asperity contacts in

triboelectricity [40], although there is much evidence that macroscopic deformations play

an important role [306, 307, 308, 309, 310].

In this chapter, I analyze the electrical changes arising from elastic deformations dur-

ing contact using flexoelectricity. In Section 8.2 I show that elastic strain fields during

typical asperity contact generate potential differences via the flexoelectric effect which

are sufficiently large to cause charge transfer [40]. I generalize and expand the model in

Section 8.3 to incorporate band structure and treat contact-induced band bending effects



254

[311]. After exploring some general consequences of this framework in Section 8.4, spe-

cific band bending profiles are computed using first principles and FEA simulations for

contact between dissimilar materials (Si sphere on STO flat) and similar materials (STO

sphere on STO flat) in Section 8.5. In Section 8.6 I explain how the contact-induced band

bending profiles computed in Section 8.5 relate to charge transfer mechanisms involving

trap states and ion transfer. Lastly, I connect the flexoelectric model for triboelectricity

to a number of experimental observations in Section 8.7. The initial idea for the work

described in Section 8.2 was conceived by Professor Laurence D. Marks and the analysis

was conducted in collaboration with Dr. Alex (Yu-Wei) Lin [40]. I performed all simu-

lations and analyses in Sections 8.3 - 8.7 and benefitted from discussions with Professor

Laurence D. Marks [311].

8.2. Flexoelectric Couplings During Contact and Pull-Off

8.2.1. Overview

The goal of this section is to estimate the size of the electric fields (and ultimately the

change in the electrostatic potential) arising from contact deformations through flexoelec-

tricity [40]. This is simplest beginning with the definition of the flexocoupling voltage

introduced in Chapter 2,

(8.1) Ei = −fijklεkl,j

where Ei is the electric field arising from the strain gradient εkl,j which is mediated by

the flexocoupling voltage fijkl [10, 11]. For simplicity, we consider an isotropic material

characterized by a single flexocoupling voltage such that the flexocoupling voltage tensor
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has the form

(8.2) fijkl = f (δijδkl + δikδjl + δilδjk)

and only consider the component of the electric field that will be normal to the contact

interface (see Section 8.2.2 for a discussion of the contact geometry). Taking z to be this

direction and combining Eq. 8.1 and 8.2 gives

(8.3) Ei = −f dε

dz

∣∣∣∣
eff

where

(8.4)
dε

dz

∣∣∣∣
eff

= 3εzz,z + εxx,z + εyy,z + εzx,x + εxz,x + εzy,y + εyz,y

Now we use analytic theories of contact to acquire expressions for the strain gradients in

Eq. 8.4 for indentation and pull-off.

8.2.2. Contact Strain Gradients

8.2.2.1. Indentation. The venerated Hertzian contact model is used to describe inden-

tation [312]. We focus on the simple case of a flat, elastic half-space (commonly referred

to as the flat in contact mechanics literature) indented by a rigid sphere. Taking both

materials to be homogeneous and isotropic, the stresses in the deformed flat in cylindrical
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coordinates [313] are given by

σrr
P

=
1− 2ν

3

a2

r2

(
1−

( z

u1/2

)3
)

+
( z

u1/2

)3 a2u

u2 + a2z2
+

z

u1/2

(
u

1− ν
a2 + u

+ (1 + ν)
u1/2

a
tan−1

( a

u1/2

)
− 2

)(8.5)

σθθ
P

= −1− 2ν

3

a2

r2

(
1−

( z

u1/2

)3
)

+
z

u1/2

(
2ν + u

1− ν
a2 + u

+ (1 + ν)
u1/2

a
tan−1

( a

u1/2

))(8.6)

σzz
P

= −
( z

u1/2

)3 a2u

u2 + a2z2
(8.7)

σrz
P

= − rz2

u2 + a2z2

a2u1/2

a2 + u
(8.8)

where

u =
1

2

{
(r2 + z2 − a2) +

(
(r2 + z2 − a2)2 + 4a2z2

)1/2
}

(8.9)

P =
3F

2πa2
(8.10)

a =

(
3FR

4Y
(1− ν2)

)1/3

(8.11)

In these expressions, P is the contact pressure, F is the applied force, a is the deformation

radius, Y is the Youngs modulus, ν is the Poissons ratio, and r and z are cylindrical

coordinates.

The strains in cylindrical coordinates are obtained from Eq. 8.5- 8.8 using Hookes law

(8.12) εrr =
1

Y
(σrr − ν(σθθ + σzz))
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(8.13) εθθ =
1

Y
(σθθ − ν(σrr + σzz))

(8.14) εzz =
1

Y
(σzz − ν(σθθ + σrr))

(8.15) εrz =
2(1 + ν)

Y
σrz

An appropriate transformation can then be applied to Eq. 8.12- 8.15 to get Cartesian

strains which can be differentiated to determine the strain gradient components entering

into Eq. 8.4.

Because of the axial symmetry of the sphere-on-flat case, only five strain gradient

components in Eq. 8.4 are symmetrically inequivalent (εyz,y = εzy,y and εxz,x = εzx,x.

They are depicted in Figure 8.1(a)-(e) as contour plots. The spatial distributions of each

strain gradient component depend on external parameters (applied force, indenter size)

and materials properties (Youngs modulus, Poissons ratio). To develop some intuition

about the magnitude of the strain gradients, we calculate the average of dε
dz

∣∣
eff

within

the indentation volume (approximated as a3). The average effective strain gradient is

negative and scales inversely with indenter radius because the indented material develops

a curvature opposite to the direction of the applied force with a magnitude dictated

by the indenter size. Figure 8.1(f) demonstrates the magnitude of the average effective

strain gradient associated with Hertzian indentation is ∼108 m−1 in all materials at the

nanoscale, suggesting large flexoelectric responses are possible.

8.2.2.2. Pull-Off. Pull-off is modelled using JKR theory [314], a simple modification

of Hertzian contact which treats adhesion. The JKR pull-off force, i.e. the tensile force
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Figure 8.1. (a) (e) Symmetrically inequivalent strain gradients arising from
Hertzian indentation of an elastic half-space entering Eq. 8.3. Lines indicate
constant strain gradient contours in units of 106 m−1, z is the direction
normal to the surface with positive values going into the bulk, x is an
in-plane direction, and the origin is the central point of contact. Data
corresponds to 1 nN of force applied to an elastic half-space with a Youngs
modulus of 3 GPa and a Poissons ratio of 0.3 (typical polymer) by a 10 nm
rigid indenter. (f) The magnitude of the average effective strain gradient
(| dε

dz

∣∣
eff
|) as a function of indenter radius (R).

required to separate an indenter from the surface, is

(8.16) Fadh = −3

2
π∆γR

where ∆γ is the adhesive energy per unit area and R is the radius of the indenter. Replac-

ing the applied force in the Hertzian indentation strain gradient expressions developed in

Section 8.2.1 with Eq. 8.16 provides pull-off strain gradients immediately before contact

is broken. These strain gradient distributions are qualitatively similar to those shown

in Figure 8.1 and the average effective strain gradient within the pull-off volume is also

∼108 m−1 in all materials at the nanoscale. The major difference between indentation
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and pull-off is a change in sign of the strain gradients (the force is applied in the opposite

direction).

8.2.3. (Flexo) Electric Fields During Contact

We now substitute the strain gradient components shown in Figure 8.1 for indentation

and pull-off into Eq. 8.3. The electric field component in Eq. 8.3 arising in the indentation

case is shown in Figure 8.2, assuming a positive flexocoupling voltage (the signs of the

electric field are reversed for the pull-off case, but the result is otherwise similar). Because

the electric field induced by the flexoelectric effect is the effective strain gradient scaled

by the flexocoupling voltage, its magnitude is linearly proportional to the flexocoupling

voltage and inversely proportional to the indenter size. This leads to average electric fields

in the indentation/pull-off volume ∼108-109 V/m for all materials at the nanoscale [40].

8.2.4. Surface Potential

The electric fields induced by the flexoelectric effect in the deformed body will generate a

potential difference on its surface relative to the potential in the undeformed portions of

the deformed body. The flexoelectric surface potential difference can be estimated from

the normal component of the electric field via

(8.17) V (x, y) = −
∫
Ez(x, y, z)dz

Note, this is not a proper electrostatic potential since we have only considered a com-

ponent of the electric field, but is indicative of the magnitude of the potential difference
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Figure 8.2. (a) Normal component of the electric field given by Eq. 8.3 in-
duced by Hertzian indentation via a flexoelectric coupling. Lines indicate
constant electric field contours in units of MV/m, z is the direction normal
to the surface with positive values going into the bulk, x is an in-plane
direction, and the origin is the central point of contact. Data corresponds
to 1 nN of force applied to an elastic half-space with a Youngs modulus of
3 GPa and a Poissons ratio of 0.3 (typical polymer) by a 10 nm indenter.
A flexocoupling voltage of 1 V is assumed. (b) Magnitude of the average
electric field (|Ez|) in the indentation/pull-off volumes as a function of in-
denter radius (R) assuming a flexocoupling voltage of 1 V (dashed) and 10
V (solid).

at the surface induced by the contact deformations. Figure 8.3 shows the surface poten-

tial difference calculated from Eq. 8.17 along the deformed surface of a typical polymer

(Youngs modulus of 3 GPa, Poissons ratio of 0.3, and adhesion energy of 0.06 N/m)

with a flexocoupling voltage of 10 V. The pull-off surface potential difference is larger in

magnitude and spatial extent than the indentation surface potential difference, and both

are sensitive to the applied force, indenter size, and materials properties of the deformed

body (Youngs modulus, Poissons ratio, adhesion energy, flexocoupling voltage).

To understand how the indentation and pull-off surface potential differences scale with

the applied force, indenter size, and materials properties, we calculated the indentation

and pull-off surface potential differences while varying one property/parameter with all
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Figure 8.3. Surface potential along the surface of the deformed body for
indentation (solid) and pull-off (dashed). x is an in-plane direction and
the origin is the central point of contact. Data corresponds to 1 nN of
force applied to an elastic half-space with a Youngs modulus of 3 GPa, a
Poissons ratio of 0.3, adhesion energy of 0.06 N/m (typical polymer), and
flexocoupling voltage of 10 V by a 10 nm indenter.

other terms held constant. Then, power-law fits to the minimum surface potential dif-

ference during indentation and maximum surface potential difference during pull-off were

used to determine the scaling behavior in Figures 8.4 and 8.5. The end results are sum-

marized in the expressions

(8.18) Vindentation,min ∝ −f
(

F

R2Y

)1/3

(8.19) Vpull−off,min ∝ f

(
∆γ

RY

)1/3
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Figure 8.4. Scaling of the minimum surface potential difference during in-
dentation with applied force (F ), indenter radius (R), Youngs modulus (Y ),
flexocoupling voltage (f), and Poisson ratio (ν). Surface potential differ-
ences are calculated numerically (blue squares) by varying one quantity
while keeping all other parameters constant (constant values are black text
in each plot). Red lines show fits to the calculated values and the equation
of fit is in red text.

8.2.5. Connections to Experiment

The above model demonstrates the existence of large electric fields and potential differ-

ences during contact and has many features which can explain numerous triboelectric

observations. First, stick-slip tribocurrents exhibit bipolar characteristics which is con-

sistent, with the change in the sign of the surface potential difference for indentation and

pull-off predicted by our model [315]. Second, tribocurrents scale with indentation force

to the 1/3 power, which is the same force scaling of the indentation surface potential differ-

ence in our model [316]. Thirdly, non-uniform tribocharge patterns [317, 318, 319, 320]

can be explained because local variations in surface topography will dictate which con-

tacting body locally acts as the indenter and, consequently, the charge transfer direction
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Figure 8.5. Scaling of the maximum surface potential difference during pull-
off with adhesion energy (∆γ), indenter radius (R), Youngs modulus (Y ),
flexocoupling voltage (f), and Poisson ratio (ν). Surface potential differ-
ences are calculated numerically (blue squares) by varying one quantity
while keeping all other parameters constant (constant values are black text
in each plot). Red lines show fits to the calculated values and the equation
of fit is in red text.

[321]. Finally, it is known that macroscopic curvature biases tribocharging with convex

and concave samples tending to charge negative and positive, respectively [306, 322].

This change in charge transfer with curvature is a natural consequence of the flexoelectric

model developed above.

8.3. Contact-Induced Band Bending: The Framework

8.3.1. Overview

Section 8.2 demonstrated the presence of large potential differences between two materi-

als in contact owing to flexoelectricity. Even under some simplifications, the flexoelectric

model for triboelectricity in Section 8.2 was able to qualitatively connect with many

experimental observations [40]. In this section we solidify the theoretical basis of the
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arguments in Section 8.2 by formally incorporating band structure and developing con-

nections to ab initio theory [311]. The underlying premise of this formalism is shown

in Figure 8.6: rather than thinking purely about the contact-induced potential difference

(as was done in Section 8.2), it is necessary to consider the band bending induced by

the elastic deformations associated with contact. In the Schottky-Mott limit of no charge

transfer [323, 324], this amounts to analyzing the spatial variation of the CB and VB

edges of two bodies in contact arising from elastic deformations. Developing a framework

for this analysis is the goal of this section.

Figure 8.6. (a) Schematic of contact between a sphere and flat showing
the contact induced deformation fields in the flat and adsorbed species on
the surface. (b) Contact-induced band bending arises from flexoelectricity,
which can cause the occupation of trap states, bulk charge transfer, or the
adsorption of charged species depending on the materials, geometry, and
extent of deformation.

8.3.2. A Flexoelectric Contact Model

Inhomogeneous strain in a centrosymmetric insulator will change the energy of a band

feature Ei referenced to vacuum Evac according to

(8.20) ∆ (Ei(r)− Evac(r)) = ∆V FxE(r) + (ϕ+Di) ε(r)
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The first term ∆V FxE(r) describes the bulk flexoelectric effect (Chapter 4), i.e. the

change in the average Coulomb potential from strain gradients [58]. The second term

ϕ gives the shift in the MIP induced by strain ε (Chapter 5). The third term Di is the

relative deformation potential, i.e. the strain-induced local change in the energy of a band

feature relative to the average Coulomb potential [325, 326]. For two materials (A and

B) in contact, Eq. 8.20 applied to the VBM must be combined with their work function

difference (∆φ) to describe the relative offset between the materials.

(8.21) ∆
(
EA
V BM(r)− EA

vac(r)
)

= ∆
(
EB
V BM(r)− EB

vac(r)
)

+ ∆φ

Eq. 8.20 and 8.21 represent a general description of the band structure changes in

centrosymmetric insulators arising from flexoelectricity [311]. We focus on flexoelectric-

ity because it is important at the small length scales relevant to asperity contact due to

the intrinsic size-dependence of strain gradients, and it is a coupling that occurs in all

insulators [10, 11]. Piezoelectricity is neglected because explanations for triboelectric-

ity using piezoelectricity are known to be inadequate [283], and unlike flexoelectricity,

piezoelectricity occurs only as a bulk property in a sub-set of materials [6, 3].

To explore these expressions for specific cases we must make some simplifications.

First, we limit ourselves to elastic contact and axially symmetric contact geometries.

Second, we consider cubic materials, reducing the number of non-trivial bulk flexoelectric

coefficients (Chapter 3). Third, we only treat volumetric strain effects on ϕ and Di as

the dominant shear strain effect is to split, not shift, energy levels [132]. Now we develop

expressions for ∆V FxE(r), ϕ, and Di with these simplifications.
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8.3.3. The Bulk Flexoelectric Term

As described in Chapter 2 and 3, the polarization Pi in a centroysmmetric insulator with

dielectric and flexoelectric couplings is

(8.22) Pi = ε0χijEj + P FxE
i

where ε0 is the permittivity of free space, χij is the dielectric susceptibility, Ej is the

electric field, and P FxE
i is the flexoelectric polarization given by

(8.23) P FxE
i = µijklεkl,j

where µijkl is the short-circuit flexoelectric coefficient tensor and εkl,jis the symmetrized

strain gradient [10, 11, 150].

From electrostatics [73], the electric field and charge density are related via

(8.24) ∇ · E =
ρb + ρf
ε0

where the total charge density is expressed as the sum of the bound charge (ρb) and free

charge (ρf ). These charges are related to the polarization and dielectric displacement

through

(8.25) ∇ ·P = −ρb

and

(8.26) ∇ ·D = ρf
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Assuming a perfect insulator (ρf = 0) with cubic symmetry (χij = χδij), Eq. 8.22- 8.26

indicate the electrostatic potential and flexoelectric polarization are related by

(8.27) ∇2V =
1

ε0(1 + χ)
∇ ·PFxE

where we have used E = −∇V . Eq. 8.27 is a Poisson equation with a flexoelectric charge

density

(8.28) ρFxE = − 1

1 + χ
∇ ·PFxE

Recasting Eq. 8.27 in integral form (assuming there is an appropriate reference, see next

paragraph)

(8.29) V (r) =
1

4πε0(1 + χ)

∫
Ω

PFxE(r′) · (r− r′)

|r− r′|3
dΩ′

which reduces to Eq. 8.30 for axially symmetric cases.

(8.30) V (r) =
1

ε0(1 + χ)

∫
Ω

PFxE(r′) · (r− r′)

|r− r′|3
ρdρdz

In Eq. 8.30 ρ is the radial coordinate and z is the axial coordinate.

As shown in Ref. [58] and Chapter 4 and 5, bulk flexoelectric coefficients describe the

gradient of the average Coulomb potential arising from strain gradients, so the potential in

Eq. 8.30 implicitly references the undeformed average Coulomb potential. If the crystal

is large enough and the deformations sufficiently localized, then the average Coulomb

potential Vavg is recovered far from the contact point and is a suitable reference potential.
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Explicitly including this reference yields

(8.31) ∆V FxE(r) = V (r)− Vavg =
1

ε0(1 + χ)

∫
Ω

PFxE(r′) · (r− r′)

|r− r′|3
ρdρdz

Lastly, to use Eq. 8.31 we must know PFxE. Since we are assuming cubic materials

symmetry, there will only be three independent flexoelectric coefficients: the longitudinal

(µL), transverse (µT ), and shear (µS) coefficients (Chapter 3). Taking these coefficients

to be known quantities (in practice we use the DFT calculated coefficients, Chapter 4),

the components of PFxE in cylindrical coordinates assuming axial symmetry are

Pr = µLεrr,r + µT (εθθ,r + εzz,r) + 2µSεrz,z

Pz = µLεzz,z + µT (εθθ,z + εrr,z) + 2µSεrz,r

Pθ = 0

(8.32)

8.3.4. The Mean-Inner Potential Term

As described in Chapter 5, the potential change given by Eq. 8.31 is incomplete: the

average Coulomb potential must be referenced to vacuum which requires knowing the

change in the difference between the vacuum energy and average Coulomb potential (i.e.

the MIP) with strain.

(8.33) ϕ =
d (Vavg − Evac)

dε
=
dV

dε

Values for ϕ in Eq. 8.33 are approximated from electron scattering factors (Chapter 5).
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8.3.5. The Deformation Potential Term

The last term in Eq. 8.20 is the relative deformation potential of the CB and VB edges.

The relative deformation potential is the change in the energy of band feature Ei with

respect to the average Coulomb potential as a function of strain ε.

(8.34) Di =
d (Ei − Vavg)

dε

Since we are neglecting shear effects, hydrostatic deformation potentials can be calculated

using finite differences from DFT calculations on bulk structures with uniform volume ex-

pansions/compressions about the optimized lattice constant. Specifically, the hydrostatic

deformation potential Di, where i is some band feature such as the CB minimum, is given

by

(8.35) Di ≈
(Ei − Vavg)+ − (Ei − Vavg)−

3 (ε+ − ε−)

Ei refers to the band feature and Vavg refers to the average Coulomb potential in the

expanded (+) and compressed (−) strained structures. Examples of these calculations

are reported in Table 8.1 where hydrostatic strains of ±0.1% have been used. DFT

calculations were performed using WIEN2k [145] with the parameters given in Chapter 5.

DV B (eV) DCB (eV)
SrTiO3 -15.6 -17.2

Si -11.9 -10.2

Table 8.1. Hydrostatic deformation potentials for the CB minimum and VB
maximum in STO and Si calculated with DFT. Values are given in eV.
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8.3.6. Finite Element Contact Simulations

In Section 7.2 we used Hertz theory [312] to investigate flexoelectric effects during sphere-

on-flat contact. In this section, we again focus on sphere-on-flat contact but use FEA

calculations to determine deformation fields. FEA simulations are not only a more general

approach than Hertz theory (which only provides strain fields for specific geometries), but

also allow one to move past the Hertz theory approximations. For example, one of the

fundamental assumptions of Hertz theory is that both contacting bodies can be treated

as elastic half-spaces. From this assumption it follows that normal contact between two

chemically identical bodies with different curvatures (e.g. a sphere contacting a flat made

of the same material) will have identical strain fields, which is incorrect [327]. A detailed

discussion of the parameters used in the finite element analysis of sphere-on-flat contact

can be found in Appendix A. For our purposes, it is sufficient to understand that the

strains and strain gradients entering Eq. 8.20 and 8.31 are readily computed from FEA

simulations.

8.3.7. Summary

Quantitatively determining contact-induced band bending amounts to evaluating Eq. 8.20

for the specific contacting bodies. This involves computing three contributions:

(1) The change in the average Coulomb potential from bulk flexoelectric effect given

by Eq. 8.31. Evaluating this expression requires materials parameters (i.e. flex-

oelectric coefficient and dielectric properties, which can be calculated from first

principles [58], see Chapter 4) and strain fields (calculated with FEA, see Ap-

pendix A).
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(2) The MIP contribution expressed as Eq. 8.33. This expression requires knowing

fMIP (estimated from electron scattering factors [164], see Chapter 5) and strain

fields (calculated with FEA, see Appendix A).

(3) The deformation potential contribution shown in Eq. 8.34. This is approximated

as the hydrostatic deformation potential of the VB and CB edge (calculated

from first principles, see Section 8.3.5) and strain fields (calculated with FEA,

see Appendix A).

8.4. Contact-Induced Band Bending: General Findings

8.4.1. Relative Strengths of the Flexoelectric, Mean-Inner Potential, and De-

formation Potential Terms

To get a sense of the relative strengths of the three terms in Eq. 8.20, we explicitly consider

them for the CB minimum in a flat STO sample deformed by a sphere with a contact

pressure of 8 GPa. Figure 8.7 shows the flexoelectric term is largest near the contact

radius and rapidly decays with distance. The MIP and deformation potential terms

decay less rapidly with distance and are largest near the contact point; these properties

follow from their dependence on strain and not strain gradient. For the pressures and

geometry considered here, the MIP and deformation potential terms also largely cancel,

although the extent of this cancellation is system dependent. The net effect of Eq. 8.20

is inhomogeneous band bending ∼ ±1 V in the contact region, even for soft contact

involving materials with modest flexoelectric properties such as STO.
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Figure 8.7. (a) Sphere-on-flat contact with coordinate system definition.
(b) Change in the average Coulomb potential owing to flexoelectricity
∆V FxE), the MIP (ϕ∆Ω

Ω
), and the CB minimum relative to the average

Coulomb potential (DCB
∆Ω
Ω

) in flat STO contacted by a sphere with a con-
tact pressure of 8 GPa. Distances are normalized by the indenter radius
R.

8.4.2. Pressure Dependence

In Section 8.2.4 it was shown that the electrostatic potential difference induced by Hertzian

contact scaled as

(8.36) V ∼ f

(
F

R2Y

)1/3

where V is the electrostatic potential, f is the effective flexocoupling voltage, F is the

applied force, R is the effective indenter radius, and Y is the effective modulus [40]. While

Eq. 8.36 is useful for a specific experiment (e.g. applying a force using an indenter with

a known radius), it is useful to generalize this expression in terms of contact pressure.
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Substituting Eq. 8.10 and 8.11 into Eq. 8.36 yields

(8.37) V ∼ f
a

R
∼ f

P

Y

This analysis maps the effects of different combinations of forces and indenter radii for a

particular material onto a single curve.

Figure 8.8 depicts the change in the average Coulomb potential from bulk flexoelec-

tricity at the surface of a STO flat contacted by a sphere as functions of a/R and P . While

Eq. 8.37 is not exactly followed throughout the contact region (it strictly only applies for

Hertzian contact), this data shows large, inhomogeneous band bending (∼ ± V) can be

expected near the contact area and that the magnitude of band bending monotonically

increases with contact pressure. The direction of band bending depends on the flexoelec-

tric properties, but the bands tend to bend in opposite directions inside and outside the

contact radius. Importantly, the band bending implied by Figure 8.8 is not limited to

nanoscale features; it is possible in macroscopic features provided proportionately larger

forces are applied.

8.4.3. Variations with Flexoelectric Coefficient

Now we isolate the effects of the relative size of the flexoelectric coefficients by calculating

the bulk flexoelectric term in Eq. 8.31 for three fictitious materials which have two out of

three flexoelectric coefficients set to zero and the remaining coefficient set to -10 nC/m.

Figure 8.9 shows the results of this analysis for a flat contacted by a sphere with a

contact pressure of 8 GPa. This analysis suggests that shear and transverse contributions

dominate if the flexoelectric coefficients are of comparable magnitude.



274

Figure 8.8. Change in the average Coulomb potential from flexoelectricity
at the surface of a STO flat contacted by a sphere as a function of the ratio
of the contact radius to indenter radius (a/R) and contact pressure (P ).
Colors/symbols correspond to different radial distances from the contact
point.

Figure 8.9. (a)-(e) Change in the average Coulomb potential owing to the
bulk flexoelectric effect of a STO flat contacted by a sphere with a contact
pressure of 6 GPa as a function of depth (normalized by the indenter radius
R) at different radial distances (in units of the contact radius a) from the
contact point. The three cases have µL=-10 nC/m,µT=µS=0 (blue, solid),
µT=-10 nC/m,µL=µS=0 (orange, dotted), and µS=-10 nC/m,µL=µT=0
(green, dashed).
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8.5. Contact-Induced Band Bending: Specific Examples

8.5.1. Dissimilar Materials: Contact Between a Si sphere and a SrTiO3 Flat

We now utilize the framework developed above to explore contact-induced band bending

for specific cases. First, we analyze contact between dissimilar materials using a Si sphere

and STO flat as an example. Figure 8.10 shows the band bending at different radial

distances from the contact point at a constant pressure of 6 GPa. Figure 8.11 shows the

band bending at different contact pressures and a fixed radial distance. In both cases,

spatially inhomogeneous band bending occurs in both the sphere and the flat. The band

bending has the largest magnitude within the vicinity of the contact radius. Note, there

are qualitative differences in the band bending profiles for the two materials because Si

has larger shear contributions than STO (Section 8.4.3). This highlights how sensitive

the spatial evolution of contact-induced band bending is to the flexoelectric coefficients.

Figure 8.10. Contact band diagram for a Si sphere (orange) and STO flat
(blue) with a contact pressure of 6 GPa. (a)-(c) show the CB minimum and
VB maximum as a function of depth (normalized by the indenter radius R)
at different radial distances (in units of the contact radius a) from the
contact point as defined in Figure 8.7(a). The unstrained Fermi level of
each material is assumed to be at its band gap center and zero energy is
taken to be the unstrained STO Fermi level.
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Figure 8.11. Contact band diagram for a Si sphere (orange) and STO flat
(blue) at a fixed radial distance of 0.6a from the contact point as defined
in Figure 8.7(a). (a)-(c) show the CB minimum and VB maximum as a
function of depth (normalized by the indenter radius R) at different contact
pressures for a fixed radial distance of 0.6a from the contact point as defined
n Figure 8.7(a). The unstrained Fermi level of each material is assumed to
be at its band gap center and zero energy is taken to be the unstrained
STO Fermi level.

8.5.2. Similar Materials: Contact Between a SrTiO3 sphere and a SrTiO3 Flat

Next we consider the sphere-on-flat contact between two STO bodies. Although in the

Hertzian limit there is no driving force for contact-deformation-driven charge transfer be-

cause contact between two chemically identical bodies is symmetric for all combinations

of curvature [312], beyond Hertz theory there are differences between two bodies with

different curvatures [327]. Contact between two chemically identical materials with differ-

ent geometries is fundamentally important because it represents the minimal asymmetry

between two bodies in which tribocharging should be possible [283, 328].

Figure 8.12 indicates the presence of asymmetric band bending across the contact

interface between the two STO bodies. As was the case for contact between dissimilar
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materials (e.g. Figure 8.10), the largest differences in band bending occur along the edge

of the contact region. Under these simulation conditions, there would be some transfer of

electrons from the sphere to the flat, assuming states were available.

Figure 8.12. Contact band diagram for a STO sphere (orange) and STO
flat (blue) with a contact pressure of 8 GPa. (a)-(c) show the CB minimum
and VB maximum as a function of depth (normalized by the indenter radius
R) at different radial distances (in units of the contact radius a) from the
contact point as defined in Figure 8.7(a). The unstrained Fermi level of
each material is assumed to be at its band gap center and taken to be zero
energy.

8.6. Contact-Induced Band Bending: Implications for Charge Transfer

8.6.1. The Role of Trap States in Electron and Hole Transfer

Tribocharging between two metals is well understood by contact potential theory: the

difference in work functions drives charge transfer until the Fermi level is the same ev-

erywhere [287]. It is generally accepted that contact potential theory cannot explain

tribocharging in insulators because band gaps present too large an energy barrier for

charge transfer [285, 303, 329]. The framework described above also indicates that work

function differences alone are insufficient to explain charge transfer in insulators, but
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shows how, through flexoelectricity, contact deformations sufficiently lower the energy

barrier to enable charge transfer. In this sense, the flexoelectric model described above is

a generalization of contact potential theory.

In the limit of no in-gap states our model predicts zero charge transfer below a contract

pressure threshold (e.g. Figure 8.11(a)). Then as the pressure is increased some transfer

will occur assuming states are available (e.g. hole transfer from the STO VB to the

Si CB in Figure 8.11(b)). Once the contact pressure is sufficiently large, there will be

direct transfer between bulk states on different bodies via Zener-tunneling (e.g. electrons

will tunnel from the VB of STO into the CB of Si around the edge of the contact in

Figure 8.11(c)). This indicates the sign of the charge transfer will change with contact

pressure, which has been a well-known but unexplained experimental observation [305,

293]. Our model indicates this is a natural consequence of Zener-tunneling [280].

This type of band bending-driven charge transfer is reversible in an adiabatic limit, but

in practice there will always be in-gap states which trap charge. Charge within trap states

remains once the contacting bodies have returned to their original configurations, leaving

the materials charged. Triboluminescence experiments directly confirm the relationship

between trapped charges and triboelectricity [330, 331], and charge in trap states is

known to have a long decay time [332]. Previous triboelectric models have also invoked

the idea of non-equilibrium charge distributions in localized trap states during contact

[296, 297], but the origin of the non-equilibrium distributions in these models has not

been addressed. Our model indicates non-equilibrium charge distributions are a natural

consequence of contact. Interestingly, the contact deformations may significantly increase

the trapped charge densities beyond intrinsic amounts [333]: this can be thought of
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as a mechanical analogue to the increase in trapped charge densities at semiconductor

interfaces driven by applied electric potentials [334].

8.6.2. Band Bending Effects on Ion Transfer

There is also a large amount of experimental evidence that triboelectricity in insulators

is linked to ion transfer [283, 284], often OH− or H+ [335, 336, 292]. These observa-

tions are readily incorporated into our framework since it is known that band bending

at surfaces can drive adsorption [337, 338], although the relevant band banding for this

charge transfer mechanism would be outside the contact radius. Figure 8.13 shows the

band bending profiles associated with a Si sphere contacting a STO flat for radii larger

than the contact radius. Figure 8.14 contains the analogous band bending profiles for

contact between a STO sphere and STO flat. As with the band bending occurring within

the contact radius, there are more significant band bending differences between dissimilar

materials than similar materials. However, in both cases the band bending is substantial

enough to drive ion transfer. Unlike the electron/hole charge transfer mechanisms de-

scribed in Section 8.6.1, this charge transfer mechanisms would be largely irreversible on

the time scale of contact because ionic motion is slow [303].

8.7. Contact-Induced Band Bending: Connections to Experiment

In Sections 8.2.5 we discussed a few qualitative connections to experiment, and in

Section 8.6 we connected our model to some experimental observations such as the im-

portance of trap states, the work function difference, and ion transfer. In this section we
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Figure 8.13. Contact band diagram for a Si sphere (orange) and STO flat
(blue) with a contact pressure of 6 GPa. (a)-(e) show the CB minimum and
VB maximum as a function of depth (normalized by the indenter radius R)
at different radial distances (in units of the contact radius a) from the
contact point as defined in Figure 8.7(a). The unstrained Fermi level of
each material is assumed to be at its band gap center and zero energy is
taken to be the unstrained STO Fermi level.

Figure 8.14. Contact band diagram for a STO sphere (orange) and STO
flat (blue) with a contact pressure of 8 GPa. (a)-(e) show the CB minimum
and VB maximum as a function of depth (normalized by the indenter radius
R) at different radial distances (in units of the contact radius a) from the
contact point as defined in Figure 8.7(a). The unstrained Fermi level of
each material is assumed to be at its band gap center and taken to be zero
energy.

explain how a wider set of experimental observations are consistent with the flexoelectric

model for triboelectricity.
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Charging between similar materials. One of the most mysterious aspects of triboelec-

tricity has been charging between identical materials: chemically identical particles of

different sizes tend to charge one another, with the relative size of the particles dictating

the sign of the accumulated charge [339, 340, 341, 333]. This is explained by our model

owing to the curvature-dependence of contact strain fields. Our model predicts the sign

of charge accumulation on two chemically identical materials of different sizes is dictated

by their relative size [333] and their flexoelectric properties.

Pressure dependence. The sign and magnitude of charge transfer is known to change

with contact pressure [305, 293]. This is explained by our model through the pressure-

dependent onset of Zener-tunneling, e.g. Figure 8.11, and our results suggest the pressure

threshold for a sign change will depend on numerous properties of the two materials in

contact (e.g. flexoelectric coefficients, band gap, surface treatments, etc.).

Temperature dependence. It has been observed that as temperature increases, tri-

boelectric charging decreases and exhibits an exponential decay at high temperatures

[342, 343]. The statistical occupation of states (i.e. the Fermi-Dirac distribution)

accounts for these temperature dependences. It also possible to expand our model to

include other temperature-related band structure effects, like Thomson/Seebeck effects

[283, 342], which may contribute during rubbing.

Dielectric constant. Some experiments indicate the amount of charge transferred dur-

ing triboelectric processes is proportional to the dielectric constant, whereas others suggest

the dielectric constant has no influence [344, 345, 290]. This discrepancy in the litera-

ture can be attributed to the surface sensitivity of the flexoelectric coefficient (Chapter 5):

there is a dielectric constant dependence in Eq. 8.31, but the detailed band bending will
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depend on the flexoelectric coefficient which is surface-sensitive. Related to the role of

dielectric constants in triboelectricity, it has been observed that dielectric breakdown

strength is reduced by contact pressure [346]. This is explained with our model through

pressure-dependent band bending.

Velocity dependence. Measurements of triboelectricity in particles typically focus on

the velocity-dependence of impact charge (the amount of charge transferred from impact

for an initially uncharged sample). This velocity dependence is attributed to changes in

contact area [300], which is included in our model through its description of how band

bending, the charge transfer driver, varies with contact area.

Triboluminescence, fractoluminescence, and fractoelectrification. It has been observed

that light can be emitted when two materials are rubbed together and that fracture can

be accompanied by light emission or charging [330, 331, 347]. Large flexoelectric fields

are known to be associated with fracture [47, 31]. These fields can induce charge transfer

and/or light emission associated with recombination of charge trapped in in-gap states

through the band bending mechanisms described in this chapter.
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CHAPTER 9

Summary and Future Directions

9.1. Summary

This dissertation has explored the flexoelectric effect and its implications using a com-

bined experimental and theoretical approach. After introducing flexoelectricity and the

basic features of flexoelectric characterization in Chapters 1 and 2, I provide a method

to generate expressions for the effective flexoelectric coefficient measured in TPB for

crystals of arbitrary symmetry and orientation in terms of independent flexoelectric ten-

sor components, elastic constants, and geometric factors. In doing so, I also treat the

partial suppression of anticlastic bending in TPB and quantify the accuracy of utilizing

Euler-Bernoulli beam theory in these contexts. Using this flexoelectric characterization

framework, I measure and interpret the flexoelectric response of a range of commercially

available single crystal oxides in Chapter 3. These measurements not only significantly

increase the number of materials in which the flexoelectric effect has been experimentally

studied, but also raise new questions for the community related to the observation that

low dielectric constant materials tend to have large flexocoupling voltages which exceed

nominal expectations.
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First principles calculations offer a means to elucidate the structural origins of flexo-

electric coefficients, including those I measured in Chapter 3, and progress towards flex-

oelectric design rules. In Chapter 4 I summarize the first principles theory of bulk flexo-

electricity and describe how I utilize this theory to perform ab initio calculations of bulk

flexoelectric coefficients using WIEN2k. As an example, I calculate the bulk flexoelectric

coefficients of STO and examine the impact of the exchange and correlation functional

on these coefficients. These are the first complete calculations of bulk flexoelectric coeffi-

cients using an all-electron code and the first investigation of the impact of the exchange

and correlation functional on bulk flexoelectric coefficients, making these calculations a

benchmark for future work. I also calculate the flexoelectric coefficients in the (pseudo)

cubic oxides measured in Chapter 3 to explore the importance of materials chemistry

and compare the flexoelectric coefficients predicted by first principles theory with mea-

surements. These calculations reproduce the well-known disparity between predicted and

measured flexoelectric coefficients.

To address this disparity, I investigate the role of surfaces in flexoelectricity. Among

the many subtleties associated with the flexoelectric effect, the seemingly disproportionate

impact of surfaces is perhaps the most counter-intuitive. I demonstrate in Chapter 5

that the surface sensitivity of flexoelectricity follows naturally from considering the strain

derivative of the MIP. Reframing the problem in the language of the MIP also leads to

a method to estimate this contribution to the total flexoelectric response using electron

scattering factors. The efficacy of using electron scattering factors in this context is

assessed through DFT calculations I perform on a range of low energy surfaces from

archetypal ionic, covalent, and mixed ionic-covalent systems. This also demonstrates the
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total flexoelectric response of a finite sample is surface sensitive owing to the impact of

surface chemistry, structure, and adsorbates on the strain derivative of the MIP. I show

there are sizable differences in the total flexoelectric response of samples with nominally

similar surfaces. Including this contribution to the total flexoelectric response with the

bulk flexoelectric coefficients calculated in Chapter 4 leads to good agreement with STO

and KTO measurements I presented in Chapter 3.

Although experiments and calculations on single crystals are important for furthering

the fundamental science of flexoelectricity, flexoelectric applications will likely utilize en-

gineering materials which are often defective. Therefore, it is important to move beyond

flexoelectricity in single crystals and ascertain extrinsic contributions to flexoelectricity

originating from defects. I present three case studies in Chapter 6 which indicate the

total flexoelectric response is substantially modified by defects. First, I demonstrate flex-

oelectricity in LAO is mediated by TBs which have flexoelectric coefficients ∼10 C/m

and are likely polar. Then, I show that doping STO with Nb leads to a 103 times en-

hancement in the flexoelectric response over undoped STO. Lastly, I find the flexoelectric

response of MgO greatly surpasses ab initio flexoelectric coefficients even with the MIP

contribution. Together, these experiments demonstrate that extrinsic contributions can

overshadow intrinsic contributions to flexoelectric responses and emphasize the need to

combine flexoelectric characterization with other materials characterization techniques to

interpret measured flexoelectric coefficients.

Chapter 7 includes my work on the bulk electronic structure, atomic and electronic

surface structure, charging, and flexoelectric bending in the lanthanide scandates, and

demonstrates these materials are a rich playground owing to their complex atomic and
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electronic structure. First, I address the role of the 4f states in the bulk VB of GSO,

DSO, and TSO through a combination of experimental XPS and UPS VB characteriza-

tion with ab initio calculations. Then, I discuss solving the (110) surface of DSO and

provide experimental evidence for the atomic and electronic structure of the lowest en-

ergy surface predicted by DFT calculations. Lastly, I explain how large charging occurs

in the lanthanide scandates, why it is unavoidable, and how it leads to large flexoelectric

bending.

Chapeter 8 includes my work investigating the connection between flexoelectricity and

triboelectricity. I put forward the argument that triboelectric charge transfer is thermo-

dynamically driven by electric fields induced through the flexoelectric effect by the large

strain gradients present at asperities during contact. First, I develop a simplified flexo-

electric model for triboelectricity based upon Hertzian contact which captures much of

the underlying physics and I demonstrate predictions from this model are in qualitative

agreement with many experimental observations. After I generalize the model to incor-

porate band structure and treat contact-induced band bending effects for two arbitrary

materials in contact, I explore the implications of this framework for some specific con-

tact cases and explain how contact-induced band bending relates to well-known charge

transfer mechanisms and experimental triboelectric observations which have historically

escaped explanation.

9.2. Future Directions

Now I discuss some possible future directions based upon the work described in this

dissertation.
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9.2.1. Experimental Flexoelectric Characterization

A TPB approach was used for flexoelectric characterization throughout this dissertation,

but to characterize flexoelectricity in smaller samples and improve the accuracy and pre-

cision of flexoelectric coefficient measurements, it will be useful to modify this approach.

Characterizing flexoelectricity in smaller samples requires moving past bending geome-

tries. One possibility is to use conducting AFM to extract flexoelectric coefficients from

the changes in transport properties caused by AFM tip-sample contact (see Section 9.2.5

below), but it is also possible to perform DMA-based flexoelectric measurements on

smaller samples using alternative sample geometries like truncated pyramid compression.

Although truncated pyramid compression measurements has been used to characterize

flexoelectricity in some polymers and ferroelectric ceramic systems [10, 11, 43], it will

be important to demonstrate that the flexoelectric coefficients measured with different

methods on the same material (e.g. the flexoelectric response of STO single crystals from

TPB and truncated pyramid compression) are consistent before the truncated pyramid

compression method can be adopted to investigate new materials.

To improve the accuracy and precision of flexoelectric characterization, it would be

advantageous to implement a four-point bending approach to flexoelectric characteriza-

tion. Although a four-point bending geometry is more technically challenging than TPB,

it has the benefit of providing a constant strain gradient between the two knife edges

at the sample center [56]. This means it would not be necessary to average the linear

strain gradient profile in TPB to compute the effective flexoelectric coefficient, which will

improve the accuracy of flexoelectric measurements. Additionally, combining four-point

bending with patterned electrodes over the region which has a nominally constant strain
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gradient would provide a way to easily check for variations in the flexoelectric coefficient,

investigate the importance of surface treatments on different portions of the sample, and

assess the importance of the electrode-sample contact on a single sample. It would also

be an interesting experiment to use patterned electrodes with TPB to measure local vari-

ations in the flexoelectric polarization which are suggested by the TPB strains shown, for

example, in Figure 3.7. Experiments with patterned electrodes should first be attempted

on materials with large flexoelectric coefficients (e.g. ferroelectric single crystals like BTO

which have µ ∼1-10 µC/m [53]) since the reduction in electrode area will decrease the

magnitude of the short-circuit current.

9.2.2. First Principles Calculations of Flexoelectric Coefficients

The calculations presented in Chapters 4 and 5 indicated good agreement between the

predicted and measured flexoelectric responses of cubic perovskites once the mean-inner

potential term was accounted for, but there was still poor agreement for non-cubic per-

ovskites. This discrepancy was attributed to neglecting lattice-quadrupole contributions

which may be sizable. It is computationally taxing to calculate lattice-quadrupole terms

using the supercell approach adopted in Chapter 4, but these terms can be readily

calculated with the DFPT approach which has been recently implemented in ABINIT

[140, 139]. After comparing the flexoelectric coefficients predicted by the DFPT ap-

proach in ABINIT and the supercell approach in WIEN2k using a standard material like

STO, it would be interesting to use ABINIT to compute the complete flexoelectric re-

sponse for R3c LAO, Pnma DSO, and Pnma YAO to determine if the lattice-quadrupole
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contributions are responsible for the large flexocoupling voltages. I suspect the lattice-

quadrupole terms will be large, particularly in the Pnma perovskites since they will contain

contributions from the anti-polar A-site displacements [117].

Another future direction regarding the first principles calculations of flexoelectric co-

efficients concerns computing electronic contributions to flexoelectric coefficients from the

ground state charge density. As indicated in Chapter 4, dynamic octupolar moments are

equivalent to static quadrupolar moments [137], which suggests electronic contributions

to flexoelectric coefficients can be obtained from bulk unit cells alone without the need

for the supercell approach. This would be immensely more efficient than the approach

used in Chapter 4 and should be assessed in simple crystals (e.g. MgO and STO). It

is also possible that the other dynamical moments contributing to the lattice-dipole and

lattice-quadrupole terms could be obtained in a similar fashion.

9.2.3. The Role of Surfaces in Piezoelectricity

The treatment of the MIP contribution in Chapter 5 is theoretically sound and has in-

direct experimental support (e.g. comparison with the STO and KTO measurements),

but requires direct experimental confirmation. Kelvin probe microscopy (KPM) would

be an ideal method to experimentally measure the MIP contribution to flexoelectricity.

KPM measures the local work function using a scanning probe tip [348] and, according

to Chapter 5, the surface-specific component of the MIP contribution to the flexoelectric

response is essentially the strain derivative of the work function. Therefore, by construct-

ing (or purchasing) a sample holder capable of subjecting a sample to uniform strain

and measuring the change in work function with KPM, it should be possible to directly
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measure this flexoelectric contribution. This quantity (measured for suitable sample ori-

entations and types of strain) can be combined with the effective flexoelectric coefficient

measured with TPB (for a sample with a sufficiently similar surface) to isolate the bulk

flexoelectric coefficient. The difference between these measurements should be directly

comparable to the sum of the ab initio-calculated bulk flexoelectric coefficient [58] and

f bulkMIP defined in Chapter 5). After establishing the efficacy of this approach for simple

materials and surfaces, it would be ideal to work with thin film growers to perform this

experiment on samples with well-defined surface chemistries and determine the extent to

which the flexoelectric response can be tuned by surface treatments.

9.2.4. Extrinsic Contributions to Flexoelectricity

The experiments reported in Chapter 6 on Nb-doped STO and MgO indicate extrinsic

contributions to flexoelectricity are substantial, but experiments meant to deduce the ori-

gin of these observations were unable to be performed owing to the COVID-19 pandemic.

Regarding MgO, structural characterization with XRD indicated samples possessed large,

high crystallinity grains. Although it is unlikely that the number of grain boundaries alone

is sufficient to account for the enhanced flexoelectric response, it is possible that there is

residual strain in the sample (e.g. from sample processing at the manufacturer) which

could be affecting the flexoelectric response. The existence of strain should be checked

with additional XRD (e.g. reciprocal space maps). Chemical characterization (e.g. with

XPS and inductively coupled plasma spectroscopy) should also be performed to make sure

point defect concentrations are not substantial. Although the large flexoelectric response
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in MgO could stem from the grain boundaries or point defects, I suspect it will be im-

portant to investigate the role of adsorbed water. It is well documented that MgO has a

proclivity for water adsorption (e.g., [349])and if one takes the experimentally measured

MIP [350] and dielectric constant of water and assumes that a water monolayer acts as a

thin film that will strain with the underlying substrate, then according to the framework

in Chapter 5, a water monolayer can yield a substantial effective flexoelectric coefficient

through the MIP term. It would be an interesting experiment to compare the flexoelectric

response across a series of hydrated MgO samples in which the amount of adsorbed water

is known (e.g. with XPS) and sample topography is characterized (e.g. with AFM).

Regarding the enhanced flexoelectric response in doped STO, a primary goal of future

experiments should be to demonstrate the relationship between µeff and sample thickness

predicted by Eq. 6.33 [172, 114]. This would provide the clearest evidence for the barrier-

layer mechanism, although care should be taken to make sure the samples have comparable

surfaces (chemistry, roughness, etc.) if polishing is used to thin samples. After this has

been established, the surface piezoelectric coefficient from these measurements and the

strain derivative of the work function measured with KPM (Section 9.2.3) should be used

to determine the thickness of the near-surface region responsible for the barrier-layer

enhancement through Eq. 6.42. It would also be interesting to measure the flexoelectric

response as a function of doping concentration to determine the critical doping density at

which there are insufficient carriers to screen the bulk flexoelectric effect and the barrier-

layer mechanism is no longer effective. This would provide operating guidelines for those

wishing to utilize barrier-layer flexoelectrics for applications.
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9.2.5. Flexoelectricity and Triboelectricity

The band bending induced by contact deformations described in Chapter 8 are most

readily probed using conductive AFM experiments. In this type of experiment, IV curves

are measured by a conductive AFM tip as a function of tip force. Changes in the IV

curves at different tip forces provide a direct, local measure of the deformation-induced

band bending established in Chapter 8 and should allow for the extraction of flexoelectric

coefficients. Preliminary results from experiments on Nb-doped STO conducted by Karl

Olson clearly indicate the presence of contact-deformation induced band bending with

F 1/3 scaling, but it has not yet been possible to extract flexoelectric coefficients. Once

established, this method will enable the measurement of flexoelectric coefficients in smaller

samples (e.g. crystals grown by researchers which are not commercially available) and

also unconventional flexoelectric samples such as powders.

9.3. Closing Comments

The flexoelectric effect is a pervasive phenomenon which imbues insulators of any

symmetry with electromechanical functionality. Though it is tempting to treat flexoelec-

tricity as a simple extension of piezoelectricity, it has become increasingly apparent that

this approach glosses over important subtleties which make the flexoelectric effect distinct

from both fundamental science and applications perspectives. Using a combined experi-

mental and theoretical approach in this dissertation, I show how to measure flexoelectric

coefficients and interpret them in terms of first principles quantities. In doing so, I also

demonstrate the total flexoelectric response of a finite sample is particularly sensitive to

surfaces (through the strain derivative of the mean-inner potential) and defects (such as
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twin boundaries). This offers enticing, new opportunities to tune flexoelectric properties

through defect and surface engineering. The latter is particularly intriguing, as it suggests

the applicability of surface science (such as my work on the lanthanide scandates) beyond

traditional research domains like thin film growth and catalysis. Lastly, I establish the

existence of large inhomogeneous band bending during contact owing to flexoelectric cou-

plings, which I argue serves as the thermodynamic driver for triboelectric charge transfer.

By suggesting triboelectricity and flexoelectricity are intimately linked, this work makes

significant strides towards a priori predictions of triboelectric charge transfer between

insulators and a first principles theory of triboelectricity.
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APPENDIX A

Finite Element Contact Simulations

A.1. Simulation Parameters

FEA simulations were performed with Abaqus using CAX4R mesh elements with

reduced integration. Frictionless, hard-contact with surface-to-surface discretization were

used in the simulations with YSYMM mechanical boundary conditions on the bottom-

most surface (i.e. no Z-displacement or rotation about the R or Z axes were allowed)

and Z-displacements on the top surface. ∼106 elements were used in the flat and ∼105

elements in the sphere. A typical mesh is shown in Figure A.1. Tests were performed with

different mesh densities and meshing elements to ensure all quantities were adequately

converged. For calculations on STO and Si, literature values for the Young’s modulus

and Poisson’s ratio were used (270 GPa, 0.24 for STO [161], and 160 GPa, 0.27 for Si

[208]) and materials were assumed to be isotropic.

A.2. Radial Basis Function Interpolation

Once strain fields were obtained from Abaqus, it was necessary to interpolate them to

perform the differentiation and integration needed to evaluate Eq. 8.20. The interpola-

tion method was a radial basis function (RBF) implemented in Python with third-order

polyharmonic splines [351] and a shape parameter of 10−5. Multiple basis functions and

shape parameter combinations were tested and the interpolated mesh density was varied
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Figure A.1. (a) A typical mesh used for Abaqus simulations. (b) A mag-
nified view of the contact point. The contact interface at the maximum
contact deformation consisted of ∼102 mesh elements.

to minimize numerical errors. Figure A.2 compares an Abaqus strain output and a radial

basis function interpolation to demonstrate the quality of the interpolation.

Figure A.2. Comparison between FEA output (blue points) and RBF in-
terpolation (black line) of εrr strain at the contact point as a function of
depth (z) normalized by the sphere radius (R). The strains are in a STO
flat in contact with a STO sphere with a contact pressure of 8 GPa.

A.3. Deviations from Hertz Theory

First, we demonstrate that the FEA simulations properly capture that two bodies

made of the same material, but with different geometries, have different strain fields in
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contact. Figure A.3 shows the εrr strain component for sphere-on-flat contact between

two STO bodies with a contact pressure of 8 GPa. This data indicates the flat has strain

fields which generally match those predicted by Hertz theory [312], whereas the sphere

has larger strains in the contact area (z < 0.1 R, where R is the indenter radius) which

deviate from Hertz theory. In both cases, strain fields predicted by Hertz theory [312] are

recovered sufficiently far from the contact point. Generally, we find bodies with smaller

radii of curvature, i.e. those which are more poorly approximated as an elastic half-space,

exhibit greater deviations from Hertz theory within the contact area.

Figure A.3. εrr strain component for normal contact between a STO sphere
(orange) and flat (blue) with a contact pressure of 8 GPa calculated with
FEA compared to the Hertz theory solution (black). Radial distances (r)
are given in terms of the contact radius (a) and axial distance from the
point of contact (z) is normalized by the sphere radius (R).
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The differences between the individual strain components for two chemically identical,

geometrically distinct bodies in contact manifest in differences in the volumetric strain

εvol = εrr+εθθ+εzz. This term is necessary to quantify the MIP and deformation potential

effects. Figure A.4 depicts the differences in volumetric strain between a STO sphere and

flat in contact with a contact pressure of 8 GPa.

Figure A.4. Volumetric strain for normal contact between a STO sphere
(orange) and flat (blue) with a contact pressure of 8 GPa calculated with
FEA compared to Hertz theory solution (black). Volumetric strains are
given as a function of depth (normalized by the indenter radius R) at dif-
ferent radial distances (in units of the contact radius a) from the contact
point.
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A.4. Strain Gradients, Flexoelectric Polarization, and ∆V
FxE

Now we use the interpolated strain fields to determine the non-trivial strain gradients

used to calculate the flexoelectric polarization. Examples of the non-trivial strain gra-

dients which can couple to the radial (axial) components of polarization in a STO flat

contacted by a STO sphere are shown in Figure A.5 ( A.6). The polarization components

are shown in Figure A.7, assuming the first principles values of the bulk flexoelectric

coefficients (Chapter 4).

Figure A.5. Strain gradients which couple to radial polarization in a STO
flat contacted by a STO sphere with a contact pressure of 8 GPa. Values
are given in units of 1/mm.

From the polarization components shown in Figure A.7, it is possible to calculate

the change in the average Coulomb potential according to Eq. 8.31. An example of this

process is included in Figure A.8 for contact between a STO flat and STO sphere with a

contact pressure of 8 GPa. This figure demonstrates the difference between the change

in the average Coulomb potential in two bodies which are chemically identical, but have

different curvatures.
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Figure A.6. Strain gradients which couple to axial polarization in a STO
flat contacted by a STO sphere with a contact pressure of 8 GPa. Values
are given in units of 1/mm.

Figure A.7. (a) Axial and (b) radial polarization in a STO flat contacted
by a STO sphere with a contact pressure of 8 GPa. Values are given in
units of C/m2.

Additionally, the framework described above allows us to confirm the reference po-

tential defined in Eq. 8.31 is appropriate. Figure A.9 demonstrates the variation in the

average Coulomb potential owing to the bulk flexoelectric effect quickly returns to zero as

a function of depth from the point of contact, validating the choice of reference potential.

This example uses contact between a Si sphere and STO flat with a contact pressure of 6

GPa.
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Figure A.8. (a) Change in the average Coulomb potential for a STO sphere
contacting a STO flat with a contact pressure of 8GPa. (b) Change in
the average Coulomb potential as a function of depth (normalized by the
indenter radius R) at different radial distances (in units of the contact radius
a) from the contact point as defined in (a).

Figure A.9. Change in the average Coulomb potential from the bulk flex-
oelectric effect (Eq. 8.31) at the point of contact (r = 0) as a function of
depth (z) normalized by the sphere radius (R) in a STO flat (blue) con-
tacted by a Si sphere (orange) with a contact pressure of 6 GPa. Both
potentials rapidly drop to zero. The differences in the shape of the two po-
tential profiles originates from the relative size of the different flexoelectric
coefficients in STO and Si (Section 8.4.3).
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