
Precession Diffraction: The 
Philospher’s Stone of Electron 

Crystallography?



Focus

 Many methods exist for obtaining 
diffraction information
Selected Area
Nanodiffraction and variants
CBED

 All are complicated to interpret
 Reciprocal space is right, but intensities 

depend upon thickness, tilt etc



What PED can do

 We would like a method where not just the 
positions of the spots, but also the intensities 
could be used.

 Not rigorously equivalent to simple kinematical 
diffraction, but has many similarities
 If the structure factor is large  Intensity is large
 Useful for fingerprinting structures
 Often does not need calculations to interpret



History – Electron Precession (1993)

e-e-µµ

Advantages:
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Precession
System

US patent application:
“A hollow-cone electron diffraction system”.  

Application serial number 60/531,641, Dec 2004.



 Can be easily retrofitable to any 
TEM 100- 300 KV

 precession is possible for any beam 
size  300 - 50 nm 

 Precession is possible for a parallel        
or convergent beam 

 precession eliminates false spots to 
ED pattern that belong to dynamical 
contributions

 precession angle can vary 
continuously (0°-3°) to observe true 
crystallographic  symmetry variation

 Software ELD for easy quantification 
of ED intensities and automatic 
symmetry ( point, space group ) 
research

SPINNING STAR :    UNIVERSAL INTERFASE FOR PRECESSION 
ELECTRON DIFFRACTION  FOR  ANY  TEM ( 120 -200 -300 KV )

 Easily   interfaced    to   electron 
diffractometer for  automatic 3D  
structure determination



Examples:

 Complicated Structures
Hard to interpret SAED
Simple to interpret PED

 EDS
Elemental ratio’s depend upon orientation in 

standard mode
Weak to no dependence with PED



APPLICATION  :   FIND  TRUE   CRYSTAL  SYMMETRY

PRECESSION  OFF

IDEAL  KINEMATICAL  (111)

UVAROVITE (111)

PRECESSION  ON

Courtesy M.Gemmi  
Univ of Milano



APPLICATION :   PERFECT  CRYSTAL ORIENTATION 

PRECESSION  OFF

PRECESSION  ON

Crystals –specially minerals -usually grow in platelet 
or fiber shape  and results dificult to orient perfectly in 
a particular zone axis; in this example olivine crystals 
are perfectly oriented after precession is on.

OLIVINE

Courtesy X.Zou, S.Hovmoller Univ Stockholm



Carbide



EDS, on zone (SrTiO3)

Repeat
Measurements



Practical Use

 Two commercial systems (one hardware, 
another software) are available

 Not complicated, and could probably be 
written in scripting language

 Alignment can be tricky – it always is
 Not rocket science to use



Bi-polar push-pull circuit 
(H9000)

Projector Spiral 
Distortions (60 mRad tilt)

Some Practical Issues



Block 
Diagram

‘Aberrations’
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One Consequence

 Prefield/Postfield displacements of beam
dPre = 1/(2π) ∇χPre(s-tPre);             s = Scan
dPost=1/(2π) ∇χPost(s-tPost) -sDθ sD = DeScan
∇χ(u)/(2π) = ∆zθ+Csθ3

Total apparent displacement is the sum
dNett = dPre+dPost  

= ∆zPre(θ-θPre)+∆zPost(θ−θPost)
+ Cs

Pre(θ-θPre)3+Cs
Post(θ−θPost)3

-sDθ



Probe and Displacements (nm)
Prefield misalignment 1 mRad; Postfield -1.0 mRad
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Alignment can be tricky



Why?

 Although PED has been around since 1992, 
and very actively used for ~10 years 
(mainly in Europe), there is no simple 
explanation (many have tried and failed)

 Explanation is a bit rocket science



Why?

 What, if any generalizations can be made?
 Role of Precession Angle
Systematic Row Limit

 Importance of integration 
Phase insensitivity
 Important for which reflections are used
Fast Integration Options
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Levels of theory

 Precession integrates each beam over sz
 Full dynamical theory

 All reciprocal lattice vectors are coupled and not 
seperable

 Partial dynamical theory (2-beam)
 Consider each reciprocal lattice vector dynamically 

coupled to transmitted beam only
 Kinematical theory

 Consider only role of sz assuming weak scattering
 Bragg’s Law

 I = |F(g)|2



Early Models

Iobs depends upon |F(g)|, g, φ (precession 
angle) which we “correct” to the true result

Options:
0) No correction at all, I=|F(g)|2
1) Geometry only (Lorentz, by analogy to x-

ray diffraction) corresponds to angular 
integration

2) Geometry plus multiplicative term for |F(g)|



GITO [010] Precession intensities, 3.2 A
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GITO [010] Precession intensities, 800 A
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GITO [010] Precession intensities, 200 A
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GITO [010] Precession intensities, 400 A
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Bragg’s Law fails badly (Ga,In)2SnO5



Kinematical Lorentz Correction

I(g) =∫ |F(g) sin(πtsz)/(πsz) |2 dsz

sz taken appropriately over the Precession Circuit
t is crystal thickness (column approximation)
φ is total precession angle
I(g) = |F(g)|2L(g,t,φ) ( )
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K. Gjønnes, Ultramicroscopy, 1997.



Kinematical Lorentz correction:
Geometry information is insufficient

Need structure factors to apply the correction!

Fkin

F c
or

r



2-Beam (Blackman) form

( ) ( ) )()(  ;2
0

0 ktFkAdxxJtI g

A

Blackman
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∝= ∫
Limits:

Ag small; Idyn(k) ∝ Ikin(k)
Ag large; Idyn(k) ∝ √Ikin(k) = |Fkin(k)|

But…
This assumes integration over all angles, 
which is not correct for precession (correct 
for powder diffraction)



Blackman Form



Blackman+Lorentz
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Two-Beam Form

I(g) = ∫ | F(g) sin(πtseff
z)/(πseff

z) |2 dsz

sz taken appropriately over the Precession Circuit
sz

eff = (sz
2 + 1/ξg

2)1/2

Do the proper integration over sz

g

Bc
g F

V
λ

θπξ cos
=



Two-Beam Integration: Ewald Sphere
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a) 3.2 Å, R=0.023.

Multislice intensities
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f) 800Å, R=0.672 
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b) 50 Å, R=0.186
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2-Beam Integration better
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R-factors for 2-beam model R-factors for kinematical model

See Sinkler, Own and Marks, Ultramic.  107 (2007)

Some numbers



Fully Dynamical: Multislice

 “Conventional” multislice (NUMIS code, on cvs)
 Integrate over different incident directions                      

100-1000 tilts
 φ = cone semi-angle

 0 – 50 mrad typical
 t = thickness

 ~20 – 50 nm typical
 Explore: 4 – 150 nm

 g = reflection vector
 |g| = 0.25 – 1 Å-1 are structure-defining

2φ

t



Multislice Simulation

Multislice simulations carried 
out using 1000 discrete tilts 
(8 shown) incoherently 
summed to produce the 
precession pattern1

How to treat scattering?

1) Doyle-Turner (atomistic)

2) Full charge density string 
potential -- later

1 C.S. Own, W. Sinkler, L.D. Marks Acta Cryst A62 434 (2006)



Multislice Simulation: works (of course)

R1 ~10% without 
refinement of anything



Global error metric: R1
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R-factor, (Ga,In)2SnO4

On Zone

Precession

 Broad clear global minimum – atom positions fixed
 R-factor = 11.8% (experiment matches simulated known structure)

 Compared to >30% from previous precession studies
 Accurate thickness determination:

 Average t ~ 41nm (very thick crystal for studying this material)
(Own, Sinkler, & Marks, in preparation.)



Quantitative Benchmark:
Multislice Simulation

0mrad10mrad24mrad75mrad

Experimental dataset

Error

g

thickness

(Own, Sinkler, & Marks, in preparation.)

Absolute Error = simulation(t) - kinematical

50mrad

Bragg’s Law



Partial Conclusions

 Separable corrections fail; doing nothing is 
normally better

 Two-beam correction is not bad (not 
wonderful)

 Only correct model is full dynamical one 
(alas)

 N.B., Other models, e.g. channelling, so far 
fail badly – the “right” approximation has 
not been found



Overview

 What, if any generalizations can be made?
 Role of Precession Angle
Systematic Row Limit

 Importance of integration 
Phase insensitivity
 Important for which reflections are used



Role of Angle: Andalusite
 Natural Mineral

 Al2SiO5

 Orthorhombic (Pnnm)
 a=7.7942
 b=7.8985
 c=5.559

 32 atoms/unit cell

 Sample Prep
 Crushm Disperse on 

holey carbon film
 Random Orientation

2 C.W.Burnham, Z. Krystall. 115, 269-290, 1961



Measured and Simulated Precession 
patterns

Bragg’s Law Simulation

Precession Off6.5 mrad13 mrad18 mrad24 mrad32 mrad

Experimental
Multislice



Decay of Forbidden Reflections
 Decay with increasing 

precession angle is 
exponential
 The non-forbidden (002) 

reflections decays linearly

D(001) D(003)

Experimental 0.109
R2=0.991

0.145
R2=0.999

Simulated 
(102nm)

0.112
R2=0.986

0.139
R2=0.963

Simulated
28-126 nm

0.112±0.012 0.164±0.015

Rate of decay is relatively 
invariant of the crystal thickness

Slightly different from Jean-Paul’s 
& Paul’s – different case

)exp( φDAI −=



Precession 

Quasi-systematic row

Systematic 
Row

Forbidden, Allowed by Double Diffraction

On-ZonePrecessed



Rows of reflections arrowed should be absent (Fhkl = 0)

Reflections still present along strong systematic rows

Known breakdown of Blackman model

Si [110]

Si [112]

e-e-µµ

Evidence: 2g allowed



For each of the incident condition generate 50 random 
phase sets {f} and calculate patterns:

Single settings at 0, 12, 24 and 36 mrad 
(along arbitrary tilt direction).

At fixed semi-angle (36 mrad) average over 
range of a as follows:
3 settings at intervals of 0.35º
5 settings at intervals of 0.35º
21 settings at intervals of 1º

For each g and thickness compute avg., stdev:
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Phase and Averaging



Single setting calculations
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Multiple settings calculations at φ=36 mrad
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Why does it work?

 If the experimental Patterson Map is similar 
to the Bragg’s Law Patterson Map, the 
structure is solvable – Doug Dorset

 If the deviations from Bragg’s Law are 
statistical and “small enough” the structure 
is solvable – LDM



Why is works - Intensity mapping

 Iff Iobs(k1)>Iobs(k2) when Fkin(k1) > Fkin(k2)
Structure should be invertible (symbolic logic, 

triplets, flipping…)

I o
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d

F kinematical



ADT Idea - 3D  diffraction  tomography

Most electron diffraction use TEM on-zone 
(oriented) patterns

ADT approach: collection of full 
3D reciprocal space starting from 
not oriented patterns

Can we use the TEM like an 
x-ray diffractometer?

In
tr

od
uc

tio
n

53

Automated Diffraction 
Tomography (ADT)



TEM :zone  axis  tilt  series  
acquisitionZone Axis Tilt

-20°

[110]

-11°

[210]

0° [100]

10°

[2-10]

19°

[1-10]

36°

[1-20]

a*

b*

c*

Courtesy : Prof. U Kolb UMainz

Zone Axis Data



Data analysis by ADT3D
3D reconstrucution of diffraction 
space

Towards automated diffraction tomography. Part II – Cell parameter determination. U. 
Kolb, T. Gorelik and  M.T. Otten, Ultramicroscopy, 108, 763-772 (2008). 55
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ASTAR  (EBSD-TEM like )

Automatic    Crystal  Orientation/Phase mapping  for TEM

www.nanomegas.com



NEW  precession  application
“EBSD” – TEM 



EBSD-TEM :  beam is  scanned  over  the  sample ( eg. 10 µ x 10 µ )  

spot  electron diffraction  patterns are collected ( NOT sensitive to  stress/
strain  or surface sample preparation like in EBSD-SEM )

Beam  scanning   performed   by  “spinning star” unit  / no STEM  need

Thousands  of  experimental spot  ED  patterns  are acquired by a very fast  
optical CCD camera  attached  to TEM  screen ( 180 patterns/sec ) 

Slow scan CCD  can also be used ( but slow :  20-30 patterns/sec )

Thousands  of  theoretical   ED patterns are generated ( templates ) from .cif 
files  or commercial databases   for all  known  phases in a sample 

Template  matching  is used ( by cross-correlation of   all experimental ED 
patterns with all  templates )  to generate  most  probable orientation  of 
every scanned   position  in the sample.



Comparison SEM-(EBSD)  vs  TEM   spatial  resolution

1 µmEBSD map (100 nm stepsize)

TEM orientation map
(25 nm stepsize)

SEM orientation map
deformed Ta6V  alloy

Electron Backscattering Diffraction (EBSD ) orientation maps in SEM  have usually  
poor  resolution  in  comparison  with TEM  maps showing  detailed nanostructure  



ASTAR :  diffraction  pattern  adquisition

Example :Severely 

deformed

7075 Aluminium Alloy 

1 µm

Any  TEM –FEG/LaB6   
may work with  ASTAR



EBSD-TEM : Automated Crystal Orientation Mapping

Severely 
deformed
7075 Al. Alloy 

1 µm Orientation Ω Orientation  Ω + Ω’(= Ω +0.1°)

Kikuchi pattern

Bragg Spot pattern



Summary

 PED is
Approximately Invertable
Pseudo Bragg’s Law
Approximately 2-beam, but not great
Properly Explained by Dynamical Theory

 PED is not
Pseudo-Kinematical (this is different!)
Fully Understood by Dummies, yet

 Important offshoots – ADT and OIM



Speculation…Full Method

 Generate initial structure estimate
 Intial Bragg’s Law Analysis or part of data



Two-Beam Integration: Ewald Sphere
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Preprocess?

Bragg’s Law (reference)

“Good” Region

Precession pattern (experiment)
φ = 24mrad



Speculation…Full Method

 Generate initial structure estimate
 Intial Bragg’s Law Analysis or part of data
Use 2-beam approximation to invert/correct
Partial refinement, using 1/2 kpoint Bloch-

Wave method



Approximation of precession circuit by series 
of g-vector tilts: 

g-vector tilts obtained from 

g-vector tilts obtained from 

First approximation; single eigen-solution

2nd approximation; two eigen-solutions

=> increasingly accurate precession calculation



Bloch, exact precession circuit
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Speculation…Full Method

 Generate initial structure estimate
 Intial Bragg’s Law Analysis or part of data
Use 2-beam approximation to invert/correct
Partial refinement, using 1/2 kpoint Bloch-

Wave method
Final full refinement using 25-100 beam BW 

(+Bethe terms, e.g. Stadleman or NUMIS + 
dmnf, large residual code)



Hypothesis: Thickness ranges

(not so easy)

Bragg’s Law

(pseudo-Bragg’s Law)



Questions ?
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