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Q Suppose every human vanished

Wait 10,000 years, what would be left?

Plastics -- some
Buildings — crumbled
Metals — almost all gone

Except 4th Century Iron Pillar in Delhi
protected by a thin iron hydrogen
phosphate hydrate' due to a high level of
phosphorus in the cast iron.

The 4th Century Iron Pillar in Delhi
Source: bertatih.wordpress.com

'Balasubramaniam R. On the

Estimated corrosion of the pillar is 50-500 e e Delh
um over 1600 years iron pillar. Corrosion Science.
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Q Corrosion versus Nanoparticles Publications
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@ Corrosion effects many materials
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Arthritis and Hip Replacement
[

Cause of Disability (U.S. 2005)

~

8.5 M (19%)

@ Arthristis or rheumatism @ Back or spine problems
OHeart trouble OLung or respiratory
@ Mental or emotional problem ODiabetes

@ Deafness or hearing problem O Stiffness

B Blindness or vision problem @ Stroke

OCancer Oothers




Hip Joint
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cartilage
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Rauber/Kopsch: Anatomie des Menschen (1998)
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Intergranular Corrosion of

CoCrMo implants
M -

Images curtesy of J. Jacobs, Rush



@ Corrosion: A Multiscale Problem
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Multiple processes occurring over wide spatial and temporal scales control the
nucleation, stability, and utility of oxide scales. An integrated multiscale modeling
combined with real and reciprocal space experimental characterization tools is
required to fully understand and predict corrosion processes.

Understanding Atomic Scale Structure in Four MULTIDISCIPLINARY
. . . : UNIVERSITY
Dtm'ensmns to Design & Control Corrosion RESEARCH
Resistant Alloys INITIATIVE

L )
oy g N
Tence g TechnO'0S




Q Some of the gaps

l\é\any surface scien;e studies Many corrosion studies
<&
Atoms Atom Nanometer Micrometer Mesoscale
Clusters scale defects scale defects
defects

o.inm 1nm 10nm  100NM {um  10um 100 pm

& Al-Cu-Mn-Fe

¥2,268@ 1@em WD38
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Q The Opportunity

There has been an explosion of tools to
image materials at the atomic scale and
accurately calculate their behavior.

_0 .5“ S I NI NI NS NI T N T N UN NS N ]
-0.100010203040.50.60.70809101.1
Si Mo/(Mo+Si) Mo
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Q Overview: Three Topics

® What is Corrosion?

" Theoretical Results for a New Early Stage
Mechanism

" Corrosion at the Multiscale: Grain Boundary
Sensitization of CoCrMo Hip Implants
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Q What is Corrosion?

A process in which a solid, especially a metal, is eaten away
and changed by a chemical action, as in the oxidation of
iron in the presence of water by an electrolytic process

Collins English Dictionary

Example:
Iron going to Iron Oxide (Rust)

Rusted Deck and Ventilation
Equipment
Source: www.corrdefense.org
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@ Basic Chemical Components

" Oxidation of a metal by the environment - typically O, either at
high temperatures or in aqueous environment

M +1/20, =2 M?* + 0% = MO thin film

" Growth of the metal oxide thin film limits the use of the metal
iNn service

Typical protective Cr,0O, layer
on NiCrAl superalloys
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Q Oxide growth

0°
Hegligible space Significant space charge
charge o
leati :
Nucleation (~1nm) 07\ Caprera ana

Moti

Surface Chemistry and

£
Structure matter e _ o
X;=Limit of high fieid
-4 10 approxi mation
: /' e —
3 T~
E e
o

Electrical neutrality i most -
of film -

w Lo = Debye tengh
Wagner
Thin scales (~10nm) Atkinson, A. Rey/ Mod. Phys. \
Strong electric field drives  »L 198557 437'._3 . .
the oxide growth. ° / ’ O thcknese X o
Intermediate

Complex region, not as yet
well understood in detail

'Wagner. Phys. Chem. B 1933, 21, 25

2Cheng, Wen, & Hawk. J. Phys. Chem. C. 2014, 118, 1269
3Xu., Rosso, & Bruemmer. PCCP. 2012, 14(42), 14534-9.
4Cabrera and Mott, Rep. Prog. Phys. 12, 163

Thick scales (>1um)
When the scale thickness
greatly exceeds the Debye
length, growth is well
described by the Wagner
theory.'
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Q Typical Failure Mechanisms

Occur via a runaway of corrosion
locally

Pitting corrosion

Often around defects, precipitates
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Crevice Corrosion

Trapped solution, pH can go small (very
acid)

M+*(aq) + H,O = MOH + H*
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Q Typical Failure Mechanisms

Intergranular Corrosion
Often called “sensitization”

Literature says it is due to reduction of
protective elements (e.g. Cr) in ~100 nm
around grain boundaries

Stress Corrosion Cracking

Combination of normal corrosion +
stress, sometimes due to hydrogen
incorporation but can be more complex
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@ Overview: Three Topics

® What is Corrosion?

" Theoretical Results for a New Early Stage
Mechanism

" Corrosion at the Multiscale: Grain Boundary
Sensitization of CoCrMo Hip Implants
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Q Oxide growth
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'Wagner. Phys. Chem. B 1933, 21, 25

2Cheng, Wen, & Hawk. J. Phys. Chem. C. 2014, 118, 1269
3Xu., Rosso, & Bruemmer. PCCP. 2012, 14(42), 14534-9.
4Cabrera and Mott, Rep. Prog. Phys. 12, 163
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Thick scales (>1um)
When the scale thickness
greatly exceeds the Debye
length, growth is well
described by the Wagner
theory.'
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Q The Cabrera-Mott Model

" Electrons pass freely from the metal to the oxide surface to ionize oxygen
" (Creates a uniform field within the oxide, which leads to a shift in the Fermi level

of the oxide
: o0 o0 layer of adsorbed ions provides
the surface charge and the
% O, % |
voltage across the oxide
|deal surface ® o o
D
£
S D = (coverage) (charge)
3 surface
0000000 0000000
ACPIPIPIPION APPIPIPIPION
Grounded electrode Grounded electrode
O, pressure | >
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Band structure evolution

BEFORE Absorption AFTER electron transfer + absorption
1/20,(Gas) + 2e(Metal) — O,
EvaC /
4 TM 3d4s -
A Ecg _ AV=13V
"~ Mott
P.>5 c Potential
% G _ |-
O, 2p level - O, 2p level
EVB i
metal oxide surface metal oxide O* (surface)

= _ 5
Cabrera &. Mott, Rep. Prog. Phys. 12 163 (1948) Electric fIEId V/X (MV/cm or )
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Q Microscopic mechanisms

" Energy gain due to work function difference between metal and oxygen,
plus attractive Coulomb potential of negative O™ and metal

" Energy gain drops as oxide thickness increases
" Potential difference drives ionic transport across the oxide film

Gas i
b0, + 2e—=0°
Oxygen interstitials (into oxide)
Oxygen vacancies (out) »
o
Oxide | !
Metal interstitials (into oxide) 1 !
Metal vacancies (out) 0" n
T
Metal M—=M*" +2e

Electron (hole) transport
across the film

., Understanding Atomic Scale Structure in Four MULTIDISCIPLINARY 557
.M Dimensions to Design & Control Corrosion UNIVERSITY Als
9 LS

. RESEARCH
Resistant Alloys INITIATIVE




@ Cabrera-Mott model
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Baran et al., Phys. Rev. Lett. 112
146103 (2014)
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Q Issues AT

10"§
" |s this general? 5
= Other oxides?

=0
Charge density (e/A)

= Other structures, surfaces?
" Does is matter which oxide is used?
= Al203 has Al3*-- which has no available electrons

= Most relevant oxides involve transition metals, with
partially filled d-bands
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Consider a more complex model

= KISS (Keep it Simple Stupid) model
" Base metal, Al, fcc

" NiO - simple cubic, albeit slightly complex
electronic structure
4.178 A

" Assume simple cube-cube epitaxy, bulk Al
lattice parameter (strain the NiO)

" GGA+U (standard)
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Models

Slab models (150+ atoms) with varying interfacial O compositions
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Q Monomolecular O, adsorption on the surface

o o—0—0
Initial Model

) @ © ©
,// \S O

NiO 1~12 layers . o0l o @ 0
O

*
.0.
*
DoDa®,

sa0l  AFM Ni hollow

10 layers,
Qo0 _
Al 40 atoms Lend (1)

[001] ® o o o Spin-down Ni
c

The spin-parallel Ni atoms underneath

Clop, IS 0%
LC0ce & TechnO'S
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Q Monomolecular 02 absorEtion energies
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Q 0O-0 bond distance of the adsorbed molecule

The O-0O distance of adsorbed O, molecule decreases as the thickness of NiO

-9

increases

1.36 -

.‘._—

Large charge
transfer, “0,>”

| | |
—a#— OO Distance

< 1.34¢ — i
E uoz1-n
= L 4
S
o)
S 1.32+ -
i Limited ch;r\gé 1
transfer, “0,”
130 ] ] ] ] ] ] ] ] ] ]
1 2 3 4 5 6 7 8 9 10

Number of layers

Increasing Energy

Bond length for
molecular oxygen 1.24 A

0O atom
orbitals

0, molecule
orbitals

0O atom
orbitals
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Q Transfer of charge from Al to surface Ni
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Q Interfacial Dipole Leads to Band Bending

10 .
$ 5 N
£ '
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reduces the Mott Potential
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Band structure evolution

Conventional Model
Revised Model

Evac
y TM 3d4s /
N Ece
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> Er :
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metal oxide surface metal oxide surface
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Interfacial Dipole
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Q Interfacial Dipole and Surface Charge

I T T T T T T T
|}
6 \. —=— with four interfical O
—e— with two interfical O
— T \. —A— without interfical O
<5t 1
>
3 \. .\.\.
5}
S 4r . 1
2 \. _
E ® - ® .\.
—_ S— ]
S 3 T
O
=
Q -0.70
+— 2 L _ . T T T T T T T T
C -
- ! \\ ] -0.75 | -
1 1 1 4 4 A A A A | _ -_ _
2 3 4 5 6 17 8 9 080
Number of layers @ -0.85F .
= i _
€ -0.90
E L
S 095} -
9 -
s -1.00 - 7
N L
O .1.05} —s— Four interfical O| 7]
I —e— Two interfical O | |
-1.10 - —a—No interfical O | ]
_115 1 1 1 1 1 1 1 1
2 3 4 ) 6 7 8 9
Number of layers
wm, Understanding Atomic Scale Structure in Four MULTIDISCIPLINARY
iy Dimensions to Design & Control Corrosion PN
> Resistant Alloys INITIATIVE




@ Take Home message

Passive metal is very different from an active metal with d-electrons,
where behavior can be tuned by changing buried interface
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@ Overview: Three Topics

® What is Corrosion?

" Theoretical Results for a New Early Stage
Mechanism

" Corrosion at the Multiscale: Grain Boundary
Sensitization of CoCrMo Hip Implants
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Q Oxide growth

0°
Hegligible space Significant space charge
charge
—— -
leati g
Nucleation (~1nm) 07\ Caprera ana

Moti

Surface Chemistry and

£
Structure matter e _ o
X;=Limit of high fieid
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Electrical neutrality i most -
of film -

0L L = Debye length
‘Wagrer
Thin scales (~10nm) Atkinson, A. Rey! Mod. Phys. ,
. . 0 1 8 ) ) °
Strong electric field drives  »L 257 437._3 . .
the OXide gI‘OWth. ° /I:I TEIHTI thickness X 11?11] °
Intermediate

Complex region, not as yet
well understood in detail

'Wagner. Phys. Chem. B 1933, 21, 25

2Cheng, Wen, & Hawk. J. Phys. Chem. C. 2014, 118, 1269
3Xu., Rosso, & Bruemmer. PCCP. 2012, 14(42), 14534-9.
4Cabrera and Mott, Rep. Prog. Phys. 12, 163

Thick scales (>1um)
When the scale thickness
greatly exceeds the Debye
length, growth is well
described by the Wagner
theory.'
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m THR: wrought alloy (C<0.1%)
m HSR: cast alloy (C: 0.15% -0.4%)

CoCrMo Alloys

I N I I

chemical composition

ASTM ISO 5832/ HC
F1547/HC
Co Balance Balance
Cr 26-30 % 26-30 %
Mo 5-7 % 5-7%
Mn 0-1% 0-1%
Si 0-1% 0-1%
N 0-1% 0-1%
C 0.15-0.35 % 0.15-0.35 %
Fe 0-0.75 % 0-0.75 %
N 0-0.25 % 0-0.25 %

Clayton JBJS 2008;90:1988




Corrosion of Implants

| |1 ¢ I I I [~
m CoCrMo implants corrode approximately

0.017 mm per year

m >350K/year total hip replacements
performed in the US




Multiscale Analysis In Practice
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Methods

As-received, wrought
3-5 um FCC matrix grains

High number density of second phases
Heavily twinned

Solution annealed, same crystal structure
FCC matrix grains up to 100-300 um
Fewer second phase regions / unit area

(some carbide/intermetallic dissolution)
Heavily twinned

Accelerated electrochemical corrosion tests (in vitro)

Reference electrode
Thermometer _
PC and data collection

Auxiliary electrode
(graphite)

Potentiostat

Corrosion/-"’

§ /GLJ

Electrolyte/solution .
vte/ Waorling ciectrode

(sample)




Low Carbon CoCrMo

Very few localized pits
Faster overall rate of corrosion
Low-carbon alloy subject to

general corrosion which attacks
the entire surface



Wrought Alloy (not annealed)
I I N .

Pitting corrosion everywhere




Pits have corroded around second
phases (phase boundaries) but not
the second phases themselves
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Longer Anneal (1150 C/24 hr)

Pits localized at phase boundaries and at
some grain boundaries
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EBSD to determine orientation
N N A N N E )

uncorroded corroded uncorroded corroded



Corrosion Is at high-energy

boundaries
N I E
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Add 3D profilometry
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Depth (um)
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Depth vs. Grain Boundary Interfacial Energy
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Conventional view of

Intergranular corrosion
N N N

grain boundary
100 nm l oxide layer

Low Cr



What controls corrosion at a

grain boundary?
_----IIIIIDI]
| B  Hypotheses

m Grain boundary energy
— Coincidence site lattice

m Grain boundary
composition
— Sensitization

Sensitization Is when the chromium of the
matrix gets tied up in a carbide so the Cr,O,
protective layer can no longer form.



FIB TEM sample
I I . . )

grain boundary

Pt FIB coating
sensitized region

carbide




Large Precipitates: 0.68 of Cr

| | J § | || |5}

. M_olybd'én:_um

Co Cr Mo
(at%) (at%) (at%)
Matrix 64.48 30.62 4.9
Carbide 19.28 67.16 13.56
==l | Sensitization 70.44 20.99 8.57

UIC ARM



Medium Precipitates: 0.96 Cr
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Cobalt
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Small Precipitates: 1.0 Cr
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Sensitization In Implants
[ [ I | | | [l

100 nm oxide layer

I

10 nm

AE;p = —15to —5.4 x 107 jpm™1
AEsey; = —1.8t0 — 8.4 x 10719 jnm™"

Both grain boundaries and segregation matter



Simple Qualitative Model
| [ P | [ [ [Ishli

m Maps to a kinetic-Wulff shape

Depth vs. Width » High-angle
2 Boundaries
+ CSL Boundaries
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What does this mean?
N N B E R

m Depletion of Cr is small — not conventional
sensitization

m Grain boundary energy and chemical terms
from segregation are comparable

m Cannot explain via conventional models

m Grain boundaries are only initiators of
corrosion, then crevice corrosion



Q Summary
There is plenty of room at the bottom of Rust

" Atomic scale processes are not fully
understood

" Many details are different from simpler
models

" Electronic mechanisms go beyond the
simple approaches such as Cabrera-
Mott

" Even phenomena as “well understood”
as grain boundary sensitization are not

M. Understanding Atomic Scale Structure in Four MULTIDISCIPLINARY
i3 Dimensions to Design & Control Corrosion UNIVERSITY

. RESEARCH
Resistant Alloys INITIATIVE




Questions?
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