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a b s t r a c t

A first-principles approach called the self-consistent quasiharmonic approximation (SC-QHA) method is for-
mulated to calculate the thermal expansion, thermomechanics, and thermodynamic functions of solids at
finite temperatures with both high efficiency and accuracy. The SC-QHA method requires fewer phonon
calculations than the conventional QHA method, and also facilitates the convenient analysis of the
microscopic origins of macroscopic thermal phenomena. The superior performance of the SC-QHA
method is systematically examined by comparing it with the conventional QHA method and experimen-
tal measurements on silicon, diamond, and alumina. It is then used to study the effects of pressure on the
anharmonic lattice properties of diamond and alumina. The thermal expansion and thermomechanics of
Ca3Ti2O7, which is a recently discovered important ferroelectric ceramic with a complex crystal structure
that is computationally challenging for the conventional QHA method, are also calculated using the
formulated SC-QHA method. The SC-QHA method can significantly reduce the computational expense
for various quasiharmonic thermal properties especially when there are a large number of structures
to consider or when the solid is structurally complex. It is anticipated that the algorithm will be useful
for a variety of fields, including oxidation, corrosion, high-pressure physics, ferroelectrics, and high-
throughput structure screening when temperature effects are required to accurately describe realistic
properties.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Accurately simulating various anharmonic properties, i.e., ther-
mal expansion and thermomechanics, of solids is important for
obtaining a deep understanding of their plentiful thermal behav-
iors and for their realistic applications. The anharmonic properties
can be derived from the volume and temperature dependences of
the phonon spectra calculated using density-functional theory
(DFT) [1]. The most popular approach is the quasiharmonic
approximation method (QHA) [2–4], where only the volume
dependence is considered for the phonon anharmonicity, and
temperature is assumed to indirectly affect phonon vibrational
frequencies through thermal expansion. Here, the phonon spectra
of about ten or more volumes are usually required for a
typical QHA simulation, and the thermal expansion and thermo-
mechanics are derived by fitting the free energy-volume relation-
ship. In some cases, e.g., at high temperatures, high-order
anharmonicity caused by multi-phonon coupling cannot be
omitted as in the QHA method, and some more complicated and
time-consuming methods, e.g., molecular dynamics [5–12],
self-consistent ab initio lattice dynamics [13,14], perturbative/
nonperturbative renormalized harmonic approximations [15–18],
and vibrational self-consistent field calculations [19], can be used
to obtain the temperature-dependent phonons. Nonetheless,
approximately ten or more volumes of such phonon spectra are
also required to accurately calculate the thermal expansion and
thermomechanics with the high-order anharmonicities.

Phonon calculations based on DFT forces are always time
consuming, and prior to the actual calculation, various computa-
tional parameters [1,20] also need to be carefully tested to ensure
convergence of the vibrational frequencies and anharmonicity,
including the pseudopotentials, cutoff energy, k-mesh density,
energy and force convergence thresholds, and supercell size in
the small-displacement method [21,22] or the q-mesh density in
the density-functional perturbation theory approach [23,24]. The
general rule-of-thumb requiring ten or more volumes will make
the anharmonic simulation, even when utilizing the simplest
QHAmethod, rather computationally expensive, especially in some
condensed matter fields where a large number of structures must
be considered or the compound under study has a large unit cell,
low symmetry, and numerous inequivalent atoms:
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(i) In the fields of solid oxidation and corrosion, there are
always many compounds (elements, oxides, hydroxides,
oxyhydroxides, etc.) to consider [25–30] and each composi-
tion may have many polymorphs [31–33].

(ii) In the high-pressure physics field, not only a wide range of
volumes but also a large number of complex phases should
be examined [34–36].

(iii) For the metallic alloys field, the thermodynamics and
mechanics of many phases at variable composition and
temperature are always of concern [37–39].

(iv) In the perovskite oxides [40–42], ternary ceramics exhibit
complex structures and large unit cells. The phonon
calculations for an individual structure is already quite time
consuming, not to mention the calculation of anharmonic
properties in low-symmetry polymorphs.

(v) In high-throughput screening and materials design [43–46]
when including temperature effects, a huge number of
compositions and structures should be calculated with a
high efficiency-to-accuracy ratio.

To this end, these diverse fields require an efficient method to
accelerate the investigation of the anharmonic properties of
related solids at finite temperatures.

In this work, we formulate an ab initio method, called the
self-consistent quasiharmonic approximation (SC-QHA) method, for
achieving fast anharmonic calculations with high accuracy within
the quasiharmonic approximation. Only the phonon spectra of
two or three volumes are required in a SC-QHA calculation, which
usually is much faster than the conventional QHA method. We
carefully test the SC-QHA method using prototypical silicon,
diamond, and alumina, and then also study the pressure effect on
the anharmonic properties of diamond and alumina. Finally, we
apply the SC-QHA method to accurately calculate the thermal
expansion and thermomechanics of the structurally complex
hybrid-improper ferroelectric Ca3Ti2O7. Apart from the high effi-
ciency, we show that the SC-QHA method is also very convenient
for deciphering the microscopic physical origins of lattice dynam-
ical and thermodynamic phenomena. Moreover, it can be readily
transferred beyond the quasiharmonic realm to speed up the
accurate first-principles simulation of thermal effects for the
benefit of multiple fields in condensed-matter physics.

2. Thermodynamics and computation

2.1. Theoretical basis

The total Gibbs free energy (Gtot ¼ Ftot þ PV) of a crystal unit cell
is expressed as

GtotðP; TÞ ¼ FeðV ; TÞ þ FphðV ; TÞ þ PV ; ð1Þ
where P;V ¼ VðP; TÞ, and T are the external pressure, unit-cell vol-
ume, and temperature, respectively; Fe and Fph are the electronic
and phononic Helmholtz free energies, respectively. To conve-
niently present the basic algorithm and efficiency of the SC-QHA
method, only nonmagnetic insulators are considered here, where
the electronic excitation and magnetic excitations are neglected.
The transferability of the SC-QHA algorithm for solids with more
complex degrees of freedom are discussed below. Therefore,
FeðV ; TÞ here equals the electronic energy EeðVÞ calculated from
density functional theory (DFT) and FphðV ; TÞ is expressed as

Fph ¼ 1
Nq

X
q;r

�hxq;r

2
þ kBT log 1� exp � �hxq;r

kBT

� �� �� �
; ð2Þ

where kB is the Boltzmann constant, Nq is the number of considered
reciprocal q points ( 1

Nq
is the weight of each q point), and xq;r is the
vibrational frequency of the r-th phonon branch at the reciprocal
coordinate q.

The equilibrium state under a specified external pressure P
fulfills the relationship

dGtot

dV

����
P;T

¼ 0: ð3Þ

Combining Eqs. (1)–(3), we obtain an expression for the unit-cell
volume

VðP; TÞ ¼ dEeðVÞ
dV

þ P
� ��1

� 1
Nq

X
q;r

Uq;rcq;r; ð4Þ

where Uq;r and cq;r ¼ � V
xq;r

dxq;r
dV are the internal energy and

Grüneisen parameter of the phonon mode (q;r). (To guarantee that
c is calculated from the phonon modes with the same symmetry,
k � p theory is used to identify and match the phonon branches
obtained from different volumes according to the similarity of each
mode’s eigenvector [47].) The physics underlying Eq. (4) is due to
the balance between the external pressure P and internal pressure,
i.e., electronic pressure (Pe ¼ � dEe

dV ) plus the anharmonic phonon

pressure (Pc ¼ � dFph
dV ¼ 1

VNq

P
q;rUq;rcq;r), such that

P ¼ PeðVÞ þ PcðV ; TÞ: ð5Þ
In the quasiharmonic approximation [2–4], x only depends on

V such that the x–V relationship can be described by a Taylor
expansion (up to second order) as

xðVÞ ¼ xðV0Þ þ dx
dV

� �
0
DV þ 1

2
d2x
dV2

 !
0

DV2; ð6Þ

where V0 is the reference volume and DV ¼ V � V0. Then, we can
derive the volume dependence of c as

cðVÞ ¼ � V
x

dx
dV

� �
0
þ d2x

dV2

 !
0

DV

" #
: ð7Þ

The calculation of the nth order derivative of x (i.e., dnx=dVn)
requires the phonon spectra of nþ 1 volumes. With Eqs. (4), (6),
and (7), the temperature-dependent unit-cell volume can be
obtained in a self-consistent manner and it is this formalism which
we call herein the self-consistent quasiharmonic approximation
(SC-QHA) method. The complete derivation steps for the SC-QHA
method, as well as the formula in the next section, can be found
in the online Supplemental Material.

The SC-QHA method can also be viewed as an improved nonlin-
ear Grüneisen model that is implemented in a self-consistent way.
In a conventional Grüneisen model [48–51], the linear x–V
relationship usually is considered, and during the calculation of
the thermal-expansion coefficient a ¼ 1

V
dV
dT , the parameters V ;x,

and c are treated as constant. In addition, the zero-point vibration
contribution to V is also absent in the Grüneisen model for aðTÞ.
Although a similar nonlinear x–V relationship as that given in
Eq. (6) has been used by Debernardi et al. for aðTÞ before [52],
the contribution of zero-point vibrations to V were omitted.
Herein, both the zero-point vibrational contribution and nonlinear
x–V relationship are treated in the SC-QHA method (by Eqs. (4)
and (6)).

In principle, when we have an analytical expression for xðVÞ
(Eq. (6)), VðP; TÞ could be directly derived by minimizing the
analytical Gtot (Eq. (1)) with respect to V prior to using Eq. (4). This
approach should have a comparable numerical efficiency as the
self-consistent method. However, the SC-QHA method is a
very convenient analytics tool for which considerable physical
information (as present in Eq. (4)) can be obtained through the
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accompanying iteration process or from the converged results; the
SC-QHA allows us to understand related properties and to further
design materials. Indeed, the lowest-order SC-QHA method with
c kept constant, has been successfully used to reveal various anhar-
monic mechanisms in two-dimensional materials [47,53–56],
while we will show in this work that the higher-order SC-QHA
method is necessary for three-dimensional solids at high tempera-
tures (e.g., J1000 K).

2.2. Computational algorithm

The computational protocol for the SC-QHA method is depicted
in Fig. 1, and described below:

(1) First, only the electronic energies (Ee) for approximately ten
or more volumes are calculated using DFT. This step is
required for both the SC-QHA and the conventional QHA
methods.

(2) Next, the calculated Ee’s are fit by an equation of state (EOS).
There are various forms available, i.e., Birch–Murnaghan
equation, modified Birch–Murnaghan equation, Birch
equation, logarithmic equation, Murnaghan equation, Vinet
equation, and Morse equation [57]. The fourth-order
Birch–Murnaghan (BM4) EOS has an excellent fitting perfor-
mance [57], and the DFT energies here can be accurately
fit by the BM4 EOS; thus, it is also used here to produce an
analytical EeðVÞ and dEe

dV expression.
(3) Phonon spectra of two and three volumes are calculated to

obtain dx
dV

	 

0 and d2x

dV2

� �
0
, respectively. The 1st-SC-QHA

method only requires dx
dV

	 

0, whereas the 2nd-SC-QHA

requires both dx
dV

	 

0 and d2x

dV2

� �
0
.

(4) Prior to the self-consistent cycle, reasonable initial values for
the unit-cell volume, phonon frequencies, and Grüneisen
parameters are specified. To have a nonzero dEe

dV in the
denominator of Eq. (4), the initial V is set to be the
YES
END

DFT Ee of ~10 volumes

Calculate Ftot(T)
at each V

EOS fitting of
Ftot(V) at each T

EOS fitting of Ee(V)

V(T), (T), B(T), C(T), ...

START

SC-QHA QHA
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V(T)=[Nq(P-Pe)]
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Calculate 's of
~10 volumes

Initialize V, ,

New V, (V), (V)

V&
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2 or 3 volumes

min[Ftot(V)+PV]
{V}

Fig. 1. The workflow for the SC-QHA method (left) compared to the conventional
QHA method (right). Details of their algorithms are given in the main text.
0.2%-expanded DFT equilibrium V, which is used to calculate
the initial vibrational frequencies (x, Eq. (6)) and Grüneisen
parameters (c, Eq. (7)).

(5) The initialx and c values are used to calculate a new V using
Eq. (4), and the new V is taken to recalculate phonon
frequencies and Grüneisen parameters using Eqs. (6) and
(7), respectively. Then, the new x’s and c’s are used to fur-
ther update the volume V, and this kind of self-consistent
iteration continues until V and the x’s are converged to
within an acceptable threshold (e.g., 10�6).

(6) The VðTÞ relationship is then obtained when the specified
temperature window is scanned during the self-consistent
calculation, where the calculated V ;x’s, and c’s at one
temperature are used as the initial values for the next
temperature.

After obtaining converged V ;x’s, and c’s, then other thermody-
namic properties may be calculated, e.g., the thermal-expansion
coefficient, bulk modulus, heat capacity, free energy, entropy, etc.
From Eq. (4), the volume thermal-expansion coefficient (a ¼ 1

V
dV
dT)

is derived to be

a ¼ 1
NqVBT

X
q;r

Cq;rcq;r; ð8Þ

where BT is the isothermal bulk modulus, and Cq;r is the isovolume
heat capacity of the ðq;rÞ phonon mode. BT can be expressed as the
summation of four components

BT ¼ Be þ Bc þ BDc þ Pc; ð9Þ
where Be ¼ V d2Ee

dV2 is the electronic bulk modulus; Pc ¼ P � Pe, as

described above, is the anharmonic-phonon pressure, a first-order
component; Bc and BDc are the second-order components, and BDc

results from the change of c. Bc and BDc are expressed as

Bc ¼ � 1
Nq

X
q;r

dUq;r

dV
cq;r ð10Þ

¼ 1
NqV

X
q;r

Uq;r � Cq;rT
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Nq

X
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¼ � 1
NqV

X
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dV2

" #
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where d2xq;r

dV2 equals zero in the 1st-SC-QHA method. In addition, by

obtaining the thermal expansion and isothermal thermomechanics,
the isentropic thermomechanics can also be readily derived
[51,58,59]. Note that the mechanical properties can be derived from
both the stress–strain relationship and the supersonic velocity in
experiment, whereby the heat transfer in the sample can be ideally
assumed to be instantaneous in the slow stressing process (i.e.,
isothermal limit) but frozen in the fast dynamical process (i.e.,
isentropic limit). In reality, the heat transfer may not be fully com-
plete or fully frozen and therefore the mechanical properties
obtained from experimental measurements always reside between
these isothermal and isentropic limits. This work mainly focuses on
the introduction of the SC-QHA method rather than focusing on the
detailed mechanical relationships.

To realize a faster SC-QHA calculation, we self-consistently
solve Eq. (4) for V at very low temperature (e.g., 0.1 K), and then
use aðTÞ to obtain V at higher temperatures, i.e.,

VðT þ DTÞ ¼ ð1þ a � DTÞVðTÞ; ð12Þ
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Fig. 2. The structures for silicon (diamond), alumina, and Ca3Ti2O7, where the unit
cells are indicated by the black empty parallelepipeds.
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which help us avoid the self-consistent calculation for each temper-
ature. A temperature increment (DT) of K2:0 K can yield converged
results.

The numerical implementation of the code is written in
FORTRAN and can be accessed via a GitHub Repository at http://
github.com/MTD-group under GPLv3.

2.2.1. Comparison to the conventional QHA approach
In the conventional QHA method (see Fig. 1, right column)

[2–4], the phonon spectra for approximately ten or more volumes,
especially for accurate thermomechanics, are required to be calcu-
lated, from which the Ftot of each volume within a specified
temperature window is calculated. Then, an EOS is used to fit the
calculated FtotðVÞ at each considered temperature. Finally,
Gtot ¼ Ftot þ PV is minimized with respect to V at each considered
temperature, which yields various thermodynamic properties,
e.g., VðTÞ;aðTÞ, and BðTÞ. Such process is needed in both testing
convergence parameters and in performing meaningful QHA calcu-
lations. However, the 1st-SC-QHA method using phonon spectra of
only two volumes can be efficiently used in such test calculations.
After the optimal numerical and computational parameters are
determined, the 2nd-SC-QHA method using phonon spectra of
three volumes may then be used to simulate accurate thermody-
namic quantities.

2.2.2. Extension to metallic and magnetic crystals
Herein nonmagnetic insulators are considered, however, in

metals [60,61] and magnetic solids [62–73], electronic and mag-
netic excitations, as well as spin-phonon coupling, at finite temper-
atures should be considered in computing the thermodynamic
properties. The electronic free energy for a metal is expressed as
[60,61]

FeðV ; TÞ ¼ EeðV ; TÞ � TSeðV ; TÞ; ð13Þ
where, Ee and Se are the electronic internal energy and entropy,
respectively. Fe can be calculated using the finite-temperature
DFT formalism proposed by Mermin [74], where the temperature
effect is introduced by using the Fermi–Dirac smearing (the width
is kBT) in the self-consistent electronic calculation [61]. Alterna-
tively, it is more efficient to calculate Fe from the electronic
eigenenergies, and Ee and Se are expressed as [60]

EeðV ; TÞ ¼
Z

d�neð�;VÞf ð�Þ��
Z �F

d�neð�;VÞ�; ð14Þ

and

SeðV ; TÞ ¼ �kB

Z
d�ne f lnðf Þ þ ð1� f Þ lnð1� f Þ½ �; ð15Þ

where, ne; f , and �F are the electronic density of states, Fermi–Dirac
distribution function, and Fermi energy, respectively. Note that
neð�Þ ¼ 1

Nk

P
k;rdð�� �k;rÞ, where k and r are the wavevector and

branch indices, respectively. For the SC-QHA simulation of a metal,
we need to additionally treat the derivatives of FeðV ; TÞ in a similar
way as FphðV ; TÞ; the electronic Grüneisen parameters [51] also need
to be calculated. The main difference is that the Fermi–Dirac
distribution should be used for the electrons in Fe, while the
Bose–Einstein distribution is used for the phonons in Fph.

For magnetic solids, the ensemble of magnetic configurations
and the spin-phonon coupling should be correctly considered at
finite temperatures, while the volume dependence of the phonon
spectra is similarly calculated as that for nonmagnetic solids.

2.2.3. Extension to high-order anharmonic cases
In the quasiharmonic approximation, wherex ¼ xðVÞ, only the

low-order anharmonicity of phonons is considered [75]. When
multi-phonon interactions are considerable, especially at very high
temperatures, the phonon frequency has an additional explicit
temperature dependence, i.e., x ¼ xðV ; TÞ, and some expensive
methods beyond the quasiharmonic approximation, as described
in the Introduction, should be used to capture such high-order
anharmonicity. In the calculation of high-order anharmonic
thermal expansion and thermomechanics, if the free-energy EOS
fitting algorithm in the conventional QHA method is adopted, the
anharmonic phonon spectra of ten or more volumes are required
for an accurate fit. Alternatively, the Taylor-expansion and self
consistency algorithms in the SC-QHA method can be used to
efficiently describe the volume dependence of the anharmonic
phonons, and the computational expense for high-order anhar-
monic cases will be significantly reduced.
2.3. Density-functional calculations

The Vienna Ab Initio Software Package (VASP) [20,76,77] is used
to calculate the energies, forces, and stresses at the DFT level. The
projector augmented-wave (PAW) method [78,79] is used to treat
the interaction among the core and valence electrons and a plane-
wave cutoff energy of 800 eV is also used. The electronic
exchange–correlation potential is described by the PBEsol [80,81]
parameterization, which we find generally gives more accurate
thermodynamic quantities [82]. We use a reciprocal-grid density
of � 30

a � 30
b � 30

c , where a; b, and c are the lattice constants of the
periodic cell scaled by the unit of angstrom. The convergence
thresholds for the electronic energy and force are 5� 10�8 eV
and 5� 10�4 eV Å�1, respectively. The atomic positions, cell
volume, and cell shape are globally optimized for the equilibrium
states, and only the atomic positions and cell shape are optimized
for a solid at a compressed/expanded volume.

The PHONOPY code [3,4] is used to calculate phonon spectra,
where the small-displacement method [21,22] is implemented,
and the atomic displacement amount is set to be 0.03 Å. The super-
cells for the phonon calculation of Si, C, Al2O3, and Ca3Ti2O7 are
5� 5� 5 (250 atoms), 3� 3� 3 (54 atoms), 2� 2� 2 (80 atoms),
and 2� 2� 1 (192 atoms) times their respective unit cells (Fig. 2,
see also Supplemental Material). For the conventional QHA
calculation, 14, 11, and 18 volumes are considered for Si, C, and
Al2O3 (see Supplemental Material).

The unexpected large supercell of Si is required for its accurate
anharmonic properties according to our fast 1st-SC-QHA
benchmark calculations; the underlying physical origin is due to
the existence of variable negative Grüneisen parameters in its
Brillouin zone (see Supplemental Material). The LO–TO splitting
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has negligible effect on the anharmonic properties according to our
SC-QHA test calculations on Al2O3 (Supplemental Material),
because only the LO phonons in a very small reciprocal space close
to the C point are affected [83,84].

For the 2nd-SC-QHA calculation, the phonon spectra of the
equilibrium, 3.0%-compressed, and 3.0%-expanded volumes are
used for Si, C, and Al2O3, where the later two volumes are used
for the 1st-SC-QHA calculation. When Ca3Ti2O7 is under expansion,
portions of the acoustic phonon branches will spuriously soften
and become dynamically unstable in the DFT calculation (Supple-
mental Material). However, in experimental measurement [85],
Ca3Ti2O7 has no phase instability during its thermal expansion
up to temperatures as high as its decomposition temperature
(1150 K). Thus, it should be the increased phonon–phonon
coupling upon heating that stabilizes those acoustic phonons and
makes them behave normally, which is quite similar to what
occurs in TiO2 [86–88]. To avoid this kind of phonon anomaly in
expanded Ca3Ti2O7, the phonon spectra of the equilibrium,
1.5%-compressed, and 3.0%-compressed volumes are used in the
SC-QHA calculation of Ca3Ti2O7. In addition, the conventional
QHA method cannot be used when there is any instability in the
quasiharmonic DFT phonons. This is also a numerical advantage
of the SC-QHAmethod compared to the conventional QHA method.

3. Results and discussion

3.1. Algorithm benchmarks

The calculated volume thermal-expansion coefficient (a),
isobaric heat capacity (Cp ¼ Cv þ TVTBTa2) [59], and isothermal
bulk modulus (BT) obtained from the 1st-SC-QHA, 2nd-SC-QHA,
and QHA methods for silicon (Si), diamond (C), and alumina
(Al2O3) under zero pressure and at temperatures from 0 K to the
melting point, Tm, are shown in Fig. 3. The low-temperature varia-
tions in a(T) and detailed analysis of BT are given in Fig. 4. The
available experimental results for Si, C, and Al2O3 [89–109] are also
collected to compare with the calculated values in Figs. 3 and 4.
The raw data is available in digital format in the Supplemental
Material.

3.1.1. Thermal expansion coefficients
All three methods generally perform well for a when compared

with experimental measurements [Fig. 3(a), (d), and (g)]. If we use
the QHA results as the theoretical reference for our proposed
method, then we find that the 2nd-SC-QHA approach has a higher
accuracy than the 1st-SC-QHA method.

At temperatures of 6300 K, the a(V) curves from these three
methods are in excellent agreement with each other and the exper-
imental results, allowing for a scattering of K2� 10�6 K�1 in
experimental data [Fig. 4(a)–(c)]. At temperatures of 6 1

4 Tm, the
2nd-SC-QHA (1st-SC-QHA) thermal expansion coefficients deviate
from the QHA ones only by 0.4% (�3.6%), 2.7% (4.9%), and 2.6%
(4.3%) for Si, C, and Al2O3, respectively [Fig. 3(a), (d), and (g)]. Thus,
both the 1st-SC-QHA and 2nd-SC-QHA methods have high
accuracy for the thermal expansion at relatively low temperatures.
At higher temperatures, e.g., 2

3 Tm, the thermal expansion coeffi-
cients obtained from the 2nd-SC-QHA (1st-SC-QHA) deviate
from the QHA ones by 1.5% (�6.5%), 6.3% (13.0%), and 4.2%
(10.1%) for Si, C, and Al2O3, respectively [Fig. 3(a), (d), and (g)],
which indicates that the 2nd-SC-QHA method should be preferred
to the 1st-SC-QHA method when seeking to achieve an accurate
simulation of the thermal expansion at relatively high
temperatures.

Here we note that it is also quite challenging to measure a
accurately in experiment, especially at high temperatures, and
the scatter in the experimental data always significantly increases
with temperature. In fact, the theory–experiment discrepancy is
even smaller than the experimental uncertainty [Fig. 3(a), (d),
and (g)]. Apart from some possible theoretical factors (e.g., the
exchange–correlation potential and the quasiharmonic approxima-
tion itself) causing the inaccuracies in the simulated thermal
expansion coefficients, there are also many experimental factors
that can influence the measurement accuracy. First, thermal
expansion always varies with the crystalline orientation [94,103].
When the crystalline orientation is not well characterized, the
derived thermal expansion may vary among single crystals, pow-
ders, and polycrystals. Second, the measured samples are readily
contaminated by various impurities (e.g., Cu, Fe, Mg, Ca, etc.),
which may also affect the thermal expansion [94,97,102,103,
105,110,111]. Next, the precipitation of some metastable phases
in the sample at relative high temperatures may influence the ther-
mal expansion. For example, there are many polymorphs (e.g.,
a; h; c, and d phases) of Al2O3 [112,113], and the relative stability
among the polymorphs correlates with temperature and impurity
concentration [113,114]. It also has been found that the metastable
h-Al2O3 has a smaller thermal expansion than the stable a-Al2O3

[84], which may be related with the fact that the experimental
thermal expansion is always smaller than the simulated one for
a-Al2O3 [Fig. 3(g)].

Moreover there are many methods to measure the thermal
expansion of solids, e.g., push-rod dilatometer [100], capacitance
dilatometer [94,99,115], interferometric dilatometer [90,94,
100,106], and X-ray diffraction [89,97,98,101,102,105,108,109].
Although an accuracy from 10�6 to 10�8 K�1 may be declared for
each measurement, the discrepancy between different measure-
ments still can be on the order of 10�6 K�1. Last, the thermal-
expansion coefficient is derived from the lattice-constant variation
with temperature, where analytical functions are used for the data
fitting [97,99]. When the data is insufficiently large and exhibits
obvious scatter, the derived a will also depend on the chosen
fitting function. For example, a difference of several percentages
can be readily found when refitting the data reported by Yim [97].

Most of the available experimental thermal expansion coeffi-
cients for these compounds are reported in earlier reports (e.g.,
1950–1980s), and high-temperature data are still scarce, which
makes stringent experiment–experiment and theory–experiment
comparisons difficult. Therefore, accurate experimental measure-
ments (especially for high temperatures) on high-quality samples
are still needed to precisely understand the thermal expansion of
many solids. Nonetheless, according to our current comparison,
we find that relatively high accuracy is achieved by the 2nd-
SC-QHA method (or even by the 1st-SC-QHA method), which only
requires the phonon spectra of three (or two) volumes, rather than
ten or more volumes as in the conventional QHA method.
3.1.2. Isobaric heat capacity
In addition to the good performance of the SC-QHA method for

the thermal expansion coefficients, both the 1st-SC-QHA and 2nd-
SC-QHAmethods also yield highly accurate isobaric heat capacities
for Si, C, and Al2O3, with respect to the QHA results [Fig. 3(b), (e),
and (h)]. The simulated Cp values also consistently agree with the
experimental ones for C and Al2O3 [Fig. 3(e) and (h)], although
the experimental Cp for Si gradually deviates from the simulated
one at temperatures J500 K, e.g., by 8.3% at 2

3 Tm (1124 K).
Usually the experiment–theory discrepancy for Si is ascribed

to the omission of high-order anharmonicity beyond the
quasiharmonic approximation, and an ad-hoc anharmonic correc-
tion of 8% for the heat capacity has been suggested [116,117].
However, such a simple anharmonic correction for heat capacity
will adversely influence the accuracy of the theoretical a: When
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the quasiharmonic heat capacity is corrected by 8%, the quasihar-
monic a also correspondingly needs to be increased by about 8%
(Eq. (8)) [118]. Because the quasiharmonic a for Si is already higher
than the experimental one. e.g., by 8% at 2

3 Tm, Fig. 3(a), such a cor-
rection will further increase the theory–experimental discrepancy
in a by �16% at 2

3 Tm.
These results then motivate for a more systematic and

improved understanding of the anharmonic properties of Si. Apart
from obtaining perhaps more precise experimental measurements
on high-quality samples, state-of-art ab initio simulations of the
high-order anharmonicity are needed; here, our SC-QHA algorithm
may be used to speed up the calculation of the volume dependence
of the anharmonic phonon spectra needed for those higher level
theories.

3.1.3. Isothermal bulk modulus
An anticipated thermal softening of materials is observed in the

temperature dependence of BT [Fig. 3(c), (f), and (i)]. From 0 K to
2
3 Tm, the softening of the isothermal bulk moduli for Si, C, and
Al2O3 are 6.8, 69.6, and 55.3 GPa from the 1st-SC-QHA method,
10.1, 59.9, and 51.3 GPa from the 2nd-SC-QHA method, and 9.7,
51.3, and 49.7 GPa from the QHA method, respectively. Although
each method results in the same qualitative chemical trends for
BT , the 2nd-SC-QHA method gives a higher quantitative accuracy
than the 1st-SC-QHA method with respect to the QHA method.

We understand this improved precision obtained by the 2nd-
SC-QHA method as follows: The BT is calculated from the second
derivative of the free energy; thus, it is sensitive to both the
method type and the number and range of cell volumes chosen
in the QHA method. Nonetheless, the difference between the
2nd-SC-QHA and QHA results is already smaller than the numerical
uncertainty in the QHA method (Supplemental Material).

In addition, the SC-QHA method enables us to decompose BT

into four contributing components (Eq. (9)), i.e., Be; Pc;Bc, and BDc,
where BDc results from the change of the Grüneisen parameter.
The bulk moduli for Si, C, and Al2O3, as well as their corresponding
components, are shown in Fig. 4(d), (e), and (f), where the 1st-SC-
QHA and the 2nd-SC-QHA results are compared. It can be clearly
discerned that the difference between the bulk moduli obtained
from the 1st-SC-QHA and the 2nd-SC-QHA mainly originates
from deviations in the calculated BDc, indicating the importance
of the nonlinear vibrational frequency variation in solid
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thermomechanics. Moreover, Be is consistently larger than BT , indi-
cating that the excitation of anharmonic phonons (i.e.,
Pc þ Bc þ BDc) has a net softening effect on the bulk modulus.
Therefore, beyond achieving a higher computational efficiency,
the SC-QHA method also provides a convenient and complemen-
tary approach to the conventional QHA for uncovering the physical
origins of thermomechanics.
3.2. Algorithm applications

3.2.1. Pressure dependent anharmonicity
In high-pressure physics, the external pressure is controlled by

compressing a diamond anvil cell (DAC), and the optical spectra of
a ruby (Cr-doped Al2O3) particle adjacent to the sample is used to
calculate the actual pressure in the DAC [119–122]. Thus, it is use-
ful to study the pressure dependence of the anharmonic properties
of C and Al2O3. When using the conventional QHA method to study
the pressure effect, a large range of volumes should be considered,
and the phonon spectra of numerous volumes probably need to be
calculated to give confidence to the results. Considering extra vol-
umes far away from the equilibrium volume, however, will intro-
duce some numerical error to the QHA results for zero and low
pressures, because of the decreased weights of the equilibrium
and slightly-compressed volumes in the EOS fitting process
(Supplemental Material). Thus, simulating the pressure-
dependent anharmonic properties using the QHA method is
not only computationally expensive, but also prone to intrinsic
numerical uncertainties from the EOS fitting.

Here we remedy the shortcomings of the conventional QHA and
apply our 2nd-SC-QHA method to examine the pressure effects on
a(T) and BT(T) for C and Al2O3 from 0 to 100 GPa (Fig. 5). We find
that a decreases with increasing pressure [Fig. 5(a) and (c)], which
is mainly due to the increased BT according to Eq. (8) and Fig. 5(b)
and (d). The phonon mode hardening and the corresponding
decrease in phononic anharmonicity also makes a minor contribu-
tion to the pressure-induced decrease of the thermal expansion
coefficient. Interestingly, a(Al2O3) is approximately two times that
of a(C) at 0 GPa, while they become comparable at 100 GPa,
because of the faster stiffening rate of BT(Al2O3) with pressure. BT

increases with increasing pressure, but decreases with increasing
temperature. The thermal-softening rate given by �dBT=dT
decreases with increasing pressure [Fig. 5(b) and (d)], because of
the decreased phonon anharmonicity. When the thermal effects
on a and BT are comparable with or even larger than the pressure
effect, the herein simulated results for C and Al2O3 will be useful
for high-pressure experiments carried out under variable
temperature.
3.2.2. Anharmonicity in complex ceramics
The accuracy of the SC-QHA method for Si, C, and Al2O3, as well

as its application to C and Al2O3 under pressure, motivate us to
study the thermal expansion and thermomechanics of Ca3Ti2O7.
This compound is an important hybrid-improper ferroelectric
(HIF) [123] that has received considerable attention recently
[124]. Its thermal expansion has also been recently measured in
experiment [85].

The calculated VðTÞ;aðTÞ, and BTðTÞ from both the 1st-SC-QHA
and 2nd-SC-QHA methods are shown in Fig. 6. We find that the
1st-SC-QHA results deviate from the 2nd-SC-QHA ones, indicating
the importance of the nonlinear frequency-volume variation in this
ferroelectric material. Thus, it is necessary to use the 2nd-SC-QHA
method for such kind of HIFs where multiple lattice modes interact
to stabilize the ferroelectric phase. Therefore, we focus our discus-
sion on the results obtained from the 2nd-SC-QHA method below.

In Fig. 6(a), our theoretical VðTÞ variation is compared with the
measured temperature-dependent volume data collected from two
experiments (labeled as ‘‘Senn Expt 1” and ‘‘Senn Expt 2”) by Senn
et al. [85], one of which (Senn Expt 2) was provided by Senn and
co-workers through private communications after publication of
Ref. [85]. These two sets of experimental data have no observable
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deviation, though according to Senn’s comments, the X-ray wave-
lengths used for these two sets of measurements are slightly differ-
ent, which may introduce a normalization error in the X-ray
diffraction analysis. The 2nd-SC-QHA unit-cell volume is about
0.4% higher than Senn’s measurements, indicating the high accu-
racy of our simulation.

To facilitate a direct theory–experiment comparison for VðTÞ,
the experimental data sets are uniformly shifted upwards by
2.3 Å3, such that the lowest temperature experimental data coin-
cides with our 2nd-SC-QHA VðTÞ curve as shown in Fig. 6(b). We
find that our 2nd-SC-QHA VðTÞ curve perfectly overlaps with the
experimental temperature variation, except for a narrow tempera-
ture range, where a very small kink centered at 360 K appears
[Fig. 6(b), inset].

To have a direct theory–experiment comparison for a, we
extract the a from the experimental data in two ways. First, we cal-
culate a from the differential between two neighboring data, i.e.,

a
T1 þ T2

2

� �
¼ 2

V1 þ V2

V1 � V2

T1 � T2
: ð16Þ

Second, we analytically derive a ¼ 1
V

dV
dT from a fitted VðTÞ curve

using a polynomial function of the form
P3

i¼0siT
i. All the experimen-

tal thermal expansion data agree well with our 2nd-SC-QHA aðTÞ
curve [Fig. 6(c)], except for some scattering in experimental data
above 300 K caused by the presence of the kink in VðTÞ [Fig. 6(b)].
This experimental kink may indicate some unknown processes,
e.g., impurities and domain dynamics, becoming thermally acti-
vated in the sample above 300 K, or certain small uncontrollable
uncertainty in the experimental characterization. Upon decreasing
temperature, a decreases down to zero at 0K [Fig. 6(c)], thus, the
VðTÞ variation becomes less dispersive [Fig. 6(b)]. This is an inevita-
ble quantum-mechanical effect, where fewer quantized phonons
are thermally excited upon cooling.

Last, from both experimental measurements and our SC-QHA
simulation, no negative thermal expansion is observed in Ca3Ti2O7.
This has been ascribed by Senn [85] to the octahedra tilting (X�

3

symmetry) being frozen out in the Cmc21 (or equivalently A21am
symmetry) phase in the Ruddlesden–Popper (RP) A3B2O7 (A = Ca
and B = Ti or Mn) compounds. For a more complete understanding
of the thermal expansion and other anharmonic properties of Ca3-
Ti2O7, further experimental measurements and more detailed anal-
ysis are required.
4. Conclusions

A fast and accurate ab initio method called the self-consistent
quasiharmonic approximation (SC-QHA) method has been formu-
lated to calculate various anharmonic properties of solids at finite
temperatures. The SC-QHA method not only is about five times per
dimension faster than the conventional QHA method, but also aids
in the physical analysis of underlying anharmonic mechanisms.
Although we showed the superior performance of the SC-QHA
method compared to the conventional QHA using nonmagnetic
insulators, the methodology can be readily extended to metallic
and magnetic solids, where electronic and magnetic excitations
are also important. Moreover, the basic SC-QHA algorithm can be
transferred to the realm beyond the quasiharmonic approximation,
i.e., to compute high-order anharmonicities, and reduce the
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computational overhead for the simulation of high-order
anharmonic properties.

The efficiency and accuracy calibrations of the SC-QHA method
based on silicon, diamond, and alumina show that the 2nd-order
SC-QHA method is systematically more accurate than the 1st-
order SC-QHA implementation, but the 1st-SC-QHA method is use-
ful for testing the computational parameters required in a density
functional theory calculation. After evaluating the SC-QHAmethod,
we examined the pressure-dependent thermal expansion and ther-
momechanics of diamond and alumina, which are two important
materials in high-pressure physics. Finally, the SC-QHA method
was also used to study the thermal expansion and thermomechan-
ics of Ca3Ti2O7, which is structurally complex and computationally
challenging for the conventional QHA method. No negative ther-
mal expansion was found in Ca3Ti2O7, which is consistent with a
recent experimental measurement. The simulated VðTÞ variation
also precisely agrees with available experimental data. These
results demonstrate that the SC-QHA method is both an efficient
computational and useful theoretical tool to understand experi-
mentally determined anharmonic properties of materials.
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