
412 | Chem. Soc. Rev., 2016, 45, 412--448 This journal is©The Royal Society of Chemistry 2016

Cite this: Chem. Soc. Rev., 2016,

45, 412

Simulations of inorganic–bioorganic interfaces to
discover new materials: insights, comparisons to
experiment, challenges, and opportunities

Hendrik Heinz*ab and Hadi Ramezani-Dakhelbc

Natural and man-made materials often rely on functional interfaces between inorganic and organic

compounds. Examples include skeletal tissues and biominerals, drug delivery systems, catalysts, sensors,

separation media, energy conversion devices, and polymer nanocomposites. Current laboratory techniques are

limited to monitor and manipulate assembly on the 1 to 100 nm scale, time-consuming, and costly.

Computational methods have become increasingly reliable to understand materials assembly and

performance. This review explores the merit of simulations in comparison to experiment at the 1 to

100 nm scale, including connections to smaller length scales of quantum mechanics and larger length

scales of coarse-grain models. First, current simulation methods, advances in the understanding of

chemical bonding, in the development of force fields, and in the development of chemically realistic

models are described. Then, the recognition mechanisms of biomolecules on nanostructured metals,

semimetals, oxides, phosphates, carbonates, sulfides, and other inorganic materials are explained,

including extensive comparisons between modeling and laboratory measurements. Depending on the

substrate, the role of soft epitaxial binding mechanisms, ion pairing, hydrogen bonds, hydrophobic

interactions, and conformation effects is described. Applications of the knowledge from simulation to

predict binding of ligands and drug molecules to the inorganic surfaces, crystal growth and shape

development, catalyst performance, as well as electrical properties at interfaces are examined. The

quality of estimates from molecular dynamics and Monte Carlo simulations is validated in comparison to

measurements and design rules described where available. The review further describes applications of

simulation methods to polymer composite materials, surface modification of nanofillers, and interfacial

interactions in building materials. The complexity of functional multiphase materials creates opportunities

to further develop accurate force fields, including reactive force fields, and chemically realistic surface

models, to enable materials discovery at a million times lower computational cost compared to quantum

mechanical methods. The impact of modeling and simulation could further be increased by the

advancement of a uniform simulation platform for organic and inorganic compounds across the periodic

table and new simulation methods to evaluate system performance in silico.

1. Introduction

Materials containing functional biological, organic, and inorganic
compounds are ubiquitous in nature and manmade materials.
Examples of naturally occurring, hierarchically ordered inorganic–
organic composite materials are the skeletons of diatoms,
seashells, bone, and teeth. Opportunities in abiotic–biotic
assembly have inspired drug delivery systems, catalysts, devices

for energy conversion, polymer nanocomposites for automotive
and aerospace applications, consumer electronics, building
materials, and commodities.1–9 A common challenge consists
in controlling the architecture from the nanometer scale to the
macroscopic scale, i.e., from nanometers to millimeters and
beyond. Current computational methods to examine structural,
chemical, and physical properties typically perform well for
subsections of these length scales and can be combined or
correlated with each other in multi-scale approaches (Fig. 1).10–15

Access to a certain length scale in computational methods is
accompanied with characteristic time scales. Common simulation
approaches include quantum mechanical calculations, classical
molecular dynamics and Monte Carlo methods, field-based
and finite element simulations. The benefit of modeling and
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simulations is greatest when applied to interesting problems
where experiments provide incomplete information, i.e., in case
that experiment is blind, costly, dangerous, or impossible.16

These scenarios apply, for example, for difficulties in imaging
at the 1 to 100 nm scale, in drug development, testing of
explosives’ chemistry, or in astrophysics. In chemical science
of hard and soft matter, therefore, many simulations are concerned
with properties on very small length scales of nanometers and
on very short time scales of femtoseconds to microseconds
to enable visualizations and estimates of thermodynamic and
kinetic properties.

This review covers simulation approaches at the 1 to 100 nm
scale, current understanding of selective recognition of biomolecules
on metal and oxide nanostructures, as well as applications to surface
modification, crystal growth, catalysis, polymer composites,

and building materials. In Section 2 it is described how simulation
approaches are exploited to understand electronic structure and to
implement of chemical knowledge into force fields to achieve
predictive simulations at a scale far beyond molecules. Sections
3–5 review fundamental understanding of molecular recognition,
growth, and performance of inorganic nanostructures using
classical atomistic simulations, ab initio simulations, and laboratory
measurements. First, molecular recognition of biomolecules on
metallic and semimetallic substrates is described along with
applications in catalysts and sensors (Section 3). Then, inter-
faces of biomolecules and organic ligands with oxide, phos-
phate, carbonate, sulfide, and other inorganic substrates are
discussed, including applications to the formation of biominerals,
drug delivery, and understanding solar devices (Section 4). The
critical role of surface chemistry, pH, and ionic strength along with
realistic implementation in molecular models is emphasized. In
Section 5, the features of inorganic–organic interfaces in polymer
composites and building materials will be discussed, including
the role of surface modification, thermodynamic and kinetic
processes. Challenges and opportunities are summarized in
Section 6, and conclusions described at the end (Section 7).
The focus is on computational insights in comparison to
experimental measurements to illustrate common predictions,
feasible accuracy, and applications in materials design.

2. Simulation approaches and
performance

This section provides an overview of simulation methods, force
fields, chemical concepts, and performance assessments for
systems at the 1 to 100 nm scale with a focus on classical
simulation methods far beyond the reach of quantum mechanical
methods. Recent force field developments for inorganic compounds
and inorganic–organic interfaces enable access to many inorganic

Fig. 1 Different time and length scales of common simulation methods.
Reproduced with permission from ref. 11.
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materials and trillions of potential inorganic–organic interfaces that
were previously difficult to study using molecular simulations.11,17–23

It is discussed how the accuracy of computational predictions
has improved by orders of magnitude over the last decade.

2.1. Overview of simulation methods

Quantum mechanical calculations enable the analysis of the
geometry of molecules, conformers, and clusters of molecules
with a focus on electron density, orbital geometry, chemical
reactions, and transition states (Fig. 1).24–26 Many-electron
systems require simplifications of the Schrodinger equation
to become computationally feasible.27–31 Common coupled
cluster and density functional theory (DFT) methods rely on
approximate basis functions and basis sets. Density functionals
reduce the compute expense from O(N7) with full configuration
interaction (CI) to O(N3) to enable the simulation of systems up
to thousands of atoms (N) for picoseconds. The completion of
one picosecond ab initio molecular dynamics of a peptide in
500 molecules of water using the GGA-PBE functional currently
requires approximately 128 processor cores for one week.32

Crystal structures of inorganic solids are typically predicted
in very good agreement with experiment (o1% deviation)
while surface energies often deviate B30% from experimental
measurements.27,29,33 Cohesive energies of small organic molecules
and electronic excitation energies show similar deviations from
experiment.34,35 The Hamiltonian in DFT performs generally well
for isolated single molecules and reproduces structures but not
energies for non-covalent assemblies of several atoms and
molecules. Quantum mechanics is a key tool to investigate
chemical reactivity and electronic properties at the scale of
chemical bonds, including electron densities, energy levels,
conductive properties, and magnetism.

Access to larger systems is possible on the basis of a classical
Hamiltonian using molecular dynamics (MD) and Monte Carlo
(MC) simulations (Fig. 1). The energy expression of classical
force fields is computationally less costly and computing time
scales as O(N ln N) or O(N2) with the number of atoms N,
depending on the algorithm of the summation of pairwise
interactions. Classical atomistic simulations tend to be a million
times faster in comparison to DFT calculations for the same
system size. Folding and self-organization of chain molecules in
solution and at surfaces in all-atom resolution can be studied at
realistic concentrations, pH, and ionic strength.36–41 Longest
recorded simulation times in all-atom resolution are in the
range of milliseconds.42 For example, the completion of
100 nanoseconds classical MD of a protein in 1000 molecules
of water with high accuracy of Coulomb interactions currently
requires approximately four processor cores for one week. Access
to significant time scales and parallel simulations enable the
exploration of complex configuration spaces at length scales
of 1 to 100 nm. Interfacial assembly, thermal transitions,
diffusion, optical switching, and time-dependent mechanical
properties can be investigated.18,42–49 A major limitation is the
difficulty to simulate the dissociation and formation of chemical
bonds during chemical reactions unless reactive potentials50–52 or
modifications of chemical bonding are applied.53

Simulations of the structure at length scales of 10 nm to
100 mm and the dynamics at time scales of nanoseconds to
seconds become accessible using molecular dynamics and
Monte Carlo simulations with coarse-grain models (Fig. 1).
Coarse-grain models involve fewer degrees of freedom compared
to atomistic models as every bead represents multiple, tens, or
hundreds of atoms according to the desired level of coarse-
graining.54–56 The energy expression is simplified and, for example,
may only contain terms for bond stretching and van-der-Waals
interactions.57,58 The similarity of the energy expression to all-atoms
models enables simulations in dual atomistic/coarse grain
resolution.59 Access to longer length and times scales allows
the study of macromolecular assembly, polymer blends and
composites, creep behavior, and viscosity of polymer solutions.60–65

Dissipative Particle Dynamics with soft, interpenetrating particles66

as well as field-based continuum approaches67 similarly reach
length scales of micrometers and beyond.

2.2. Atomistic force fields for the simulation of
inorganic–organic interfaces

All-atom simulations at the 1 to 100 nm scale usually rely on an
energy expression (classical Hamiltonian) that needs to reproduce
structures and energetics of the chosen systems in agreement with
experiment or high-level ab initio data. Classical energy expressions
are available for different types of compounds, however, existing
mathematical terms that constitute the expressions can be quite
different and lead to low compatibility (Fig. 2). Simulations of
interfaces between inorganic, organic, and biomolecular compounds
had hence been a massive challenge. To enable the simulation
of such inorganic–organic systems, and eventually of all compounds

Fig. 2 Available energy expressions for atomistic simulations and the
advantages of polynomial potentials. (a) Many energy expressions are
mathematically incompatible with each other and serve specialized materials
classes, for example, many body potentials for metals and alloys, Buckingham
potentials for minerals, reactive potentials for hydrocarbons and covalent
solids (Si, C). Polynomial potentials can be used for a general force field since
the functional form is similar to a quantum mechanical Hamiltonian and can
be applied to all types of materials, including metals, minerals, and soft matter.
(b) Polynomial energy expressions consist of additive terms for bonded,
Coulomb, and van-der-Waals interactions. Compatibility barriers among
different polynomial force fields are comparatively low.
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across the periodic table using a single common platform, it is thus
beneficial to choose one and the same energy expression.17,18,23,68

Polynomial energy expressions have been emerging as a
common denominator. Polynomial energy expressions use
pairwise interactions for all key intermolecular forces (except
angle and torsion constraints) with a sound quantum-mechanical
justification. Reactive, bond order, and EAM potentials include
many-body terms of a more empirical nature and have no
thorough quantum-mechanical foundation. The performance of
polynomial force fields is good for metals, minerals, polymers18,68,69

and virtual sites for electrons can be added as needed.70,71

Parameters for proteins and organic compounds such as in
CVFF, CHARMM, OPLS-AA, AMBER, CFF, and COMPASS are
well established72–77 and accurate parameters for inorganic
compounds have been introduced in the INTERFACE force
field.11,68,69,78–80 These additions allow to study trillions of
new bioorganic interfaces with metals and minerals. It was
shown that combination rules for nonbond parameters between
the inorganic and organic compounds perform well so that no
additional parameters are necessary to simulate interfacial
interactions.43,68,78,80–86 The use of such combination rules is
possible when bond polarity and dispersion forces for inorganic
compounds are treated just the same as for solvents, organic
multipolar molecules, and biomacromolecules, which may
contain similar ionic groups. Examples of such representations
of inorganic–organic interactions in simulations include the
hydration energy of metal and silica surfaces,58,78,87 the binding
energies of peptides to Au, Pt, and silica surfaces in water,37,43,82

the assembly of surfactants and cleavage energies of organically
modified clay minerals.84,88 The agreement of simulations with
experiment is better than 5%, given initial reproduction of bond
polarity (atomic charges) and of the surface or cleavage energy
of the inorganic solid in comparison to experimental reference
data.11 Combination rules can also be overwritten if necessary,
although this is not needed in most cases.

The approach towards a uniform energy expression for
inorganic and organic compounds is motivated by a series of
computational studies by Sauer, Teppen, Kalinichev, Heinz,
Cygan, and Parker, among others.17,18,20,23,68,89–91 Heinz also
recognized that not only the validation of structures but also of
energies of solids was critical,68 after Parker and de With tested
the surface energy of spinel using Buckingham potentials and
found significant deviations.92 Since then, the first contributions
to the INTERFACE force field were developed and subsequently
expanded for further compounds, including clay minerals,
silicates, metals, aluminates, phosphates, and sulfates (Fig. 3).
The INTERFACE approach demands that the energy expression,
i.e., the classical ‘‘Hamiltonian’’, reproduces the structure of a
given compound as well as its energy in agreement with experi-
ment. From there, all other properties such as interfacial,
thermal, and mechanical (i.e. first and second derivatives of
energy) follow in best possible agreement. This goal is achieved
for a given compound by understanding the different atom
types, chemical bonding and its quantitative representation via
atomic charges as defined by Heinz,19 validation of the struc-
ture, as well as of at least one surface property (surface tension,

cleavage energy, hydration energy, or contact angle).11 It is also
helpful to associate all parameters with a chemical rationale,
allowing comparisons among chemically similar compounds
across the periodic table. Details of the INTERFACE procedure
to parameterize new compounds are described in ref. 11.

Alternative methods to parameterize interfacial interactions
include the use of ab initio data to parameterize interactions
between small molecules and then apply these parameters to
extended surfaces such as silicates or aluminates.23,89 A large
scatter in possible atomic charges and a missing rationale for
Lennard-Jones parameters, however, made the assignment of
consistent nonbond parameters very difficult. These difficulties
are similar to the challenge in parameterization of exchange and
correlation terms in density functionals themselves.27 As a
result, typically fixed atoms were required to avoid structural
collapse of silicates and aluminates during the simulation and
errors in computed surface properties relative to experiment
reached up to 500%.78,93,94 This approach, without chemical
rationale and comparison to experimental data as in the INTERFACE
force field, does not lead to accurate force fields or quantitative
insight into inorganic–organic interfaces. Recent approaches
towards force fields for inorganic compounds along with similar
ab initio concepts rely on DFT calculations for the adsorption of
small molecules in the gas phase to a given solid surface,
comparison with experimental adsorption data, and fitting of
dedicated parameters for pairwise nonbonded interaction across
the inorganic–organic interface (Fig. 4).95,96 The procedure
introduces a significant number of adjustable parameters as
standard combination rules are not employed. The GolP-CHARMM
force field for metal–protein interactions, for example, adopts this
procedure. The metal–organic interaction parameters from the
training set of adsorbed molecules in the gas phase are then applied
to simulate adsorption in the liquid (condensed) state at 100
to 1000 times higher density. The performance of GolP para-
meters is similar to INTERFACE parameters in metal–organic
simulations.38,97 However, the experimentally supported concept
of soft epitaxy has not been verified (see Section 3.1) and the
accuracy tends to be lower. The DFT-derived Hamiltonian still
cannot reproduce the structure and the energy of the inorganic
component, i.e., the metal or inorganic structure collapses when
atom mobility is allowed and surface energies are not reproduced.
Also, the assumption is made that, after fitting empirical para-
meters to reproduce gas phase adsorption properties (a two-
component system), the same parameters will function in the
liquid state (a three-component system at much higher density).
This assumption is often not true as chemisorption is more
likely in the gas phase and physisorption is more likely in
the condensed phase due to higher coordination numbers.
Experimental evidence indicates that binding sites of molecules
often differ between gas phase and liquid phase.37,98–100

Nevertheless, DFT-derived force fields for inorganic compounds97,101

have also adopted integration into polynomial force fields such as
CHARMM similar to the INTERFACE approach.

Studies of inorganic–organic binding have also been reported
using the Rosetta program.102–104 Rosetta was originally developed
for docking studies of drug molecules onto proteins and
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protein–protein interactions.105,106 The Rosetta program also
depends on accurate force fields and surface models for the
inorganic components to be able to function for inorganic–
organic interfaces in high accuracy. The necessary parameters
can be provided by external force fields such as CHARMM-
INTERFACE11 or individual parameterizations.20,68,69,78,101

In summary, understanding of the chemistry of the new
compounds to be parameterized and a fully functional Hamiltonian
for both inorganic and biomolecular components are essential to
carry out reliable simulations of inorganic–bioorganic materials. For
best results, force fields need to accurately represent chemical
bonding via atomic charges (and possibly further details of electronic
structure) and reproduce the structure as well as the surface energy
of a given compound in comparison to experiment. The derivation
of a classical Hamiltonian is possible following the INTERFACE
approach and ab initio data are helpful in the validation of specific
inorganic–organic interactions.

2.3. Why is it important to validate surface energies?

Experimental, computational, and theoretical evidence shows
that nucleation and growth, assembly and disassembly of

inorganic–organic hybrid materials strongly correlates with
the nature of the substrates and their surface chemistry. Certain
metal nanoparticles (Pd, Pt, Rh) form well-defined nanocrystals
at dimensions below 2 nm,107–111 while oxide nanocrystals such
as silica and titania grow into tens and hundreds of nanometer
in size including porosity and other defects.82,112–115 Polymers
and proteins assemble into nanoparticles with even less structural
order due to reversible self-assembly or cross-linking, respectively.

Structural definition and stability of nanostructures notably
decreases from metals via minerals to soft macromolecules and
correlates with the surface energy, or cleavage energy, of the
material (Table 1).68,80,116–123 The surface energy of a solid is
defined most conveniently as the cleavage energy of the lowest
energetic (h k l) plane to create two equal surfaces, or as a
weighted average of the cleavage energy of all bounding (h k l)
facets, respectively.69,84 At 298 K, the surface energy is a suitable
measure of the internal energy for most metals and minerals.69

Alternatively, the cohesive energy (vaporization energy) has
often been used,124 however, vaporization may require temperatures
of several thousands of Kelvin at which materials properties
change and also force field parameters require adjustments

Fig. 3 Flow chart for the development of chemically and thermodynamically consistent force field parameters for new compounds in the INTERFACE
force field. The procedure is valid for any compounds across the periodic table. Reproduced with permission from ref. 11.
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relative to standard conditions. This problem is circumvented
using surface energies at 298 K. For liquids, the free surface
energy equals the surface tension and values are well known.125

Distinctions between surface energy and surface free energy
are not critical here because the quantities are very similar
for solids (surface free energies are between 0 and 30 mJ m�2

lower than surface energies due to small entropy gain upon
cleavage).69

The surface energy, as a measure of internal cohesion at
298 K, is roughly proportional to the cohesive energy, melting
point, and boiling point. It represents the cost to create bare
surface area. Therefore, a higher surface energy corresponds
to smaller critical size and better definition of nanoscale
crystallites during nucleation and growth. A lower surface
energy is equivalent to decreased definition and decreased
regularity of nanostructures. In principle, it is thus feasible to
produce a better-defined nanostructure when the corresponding
surface energy is higher – within the existing range over more
than two orders of magnitude (Table 1). These correlations
suggest that it is critical for models to capture surface energies
and associated interfacial properties in quantitative agreement
with experiment.

Newer force fields such as the INTERFACE force field achieve
such agreement with less than 5% error, essentially in the same
accuracy as experiment.11 Alternative force fields, however,
deviate up to 500% due to erroneous assignments of atomic
charges and missing validation of surface properties.23,90,126,127

DFT methods also have notable limitations in the reliable
computation of surface energies, for example, underestimates
by 20% to 50% are common using GGA density functionals for
metals.33,128 This deviation is large enough, for example, to lose
the distinction between surface properties of Au, Pd, and Al
(Table 1).116 Force fields with validated surface properties

therefore offer high accuracy at low computational cost, and satisfy
the condition that a model Hamiltonian should reproduce both
structures and energies in agreement with experiment.

2.4. Impact of the surface energy on stability, order, and
growth of nanostructures

The surface energy is thus directly related to the stability, order,
and growth of nanostructures. The following examples illustrate
this relation and aid in understanding the discussion of molecular
recognition and crystal growth in Sections 3 to 5.

At the top of the scale, the cleavage energy of 11300 mJ m�2

of diamond correlates with the dissociation energy of covalent
C–C bonds which need to be broken to create surface area.118

Fig. 4 Development of parameters for metal–protein interfaces in the GolP force field. (a) Steps to parameterize the Au(111) and Au(100) surfaces using
DFT in vacuum. (b) Correlation between experimental interaction energies for small molecules adsorbed onto the Au(111) surface and those calculated
with vdW-DF in vacuum. The force field is then typically applied in the condensed phase and positions of metal atoms must be fixed to avoid structural
collapse. Reproduced with permission from ref. 101.

Table 1 Surface free energy (cleavage free energy) of various materials
classes in decreasing order (data from ref. 68, 80, 116–123, 134 and 135).
Higher values correlate with smaller accessible size of nanocrystals and
better controllable order

Compound
Cleavage energy of least
energetic facet (mJ m�2)

Corresponding
facet

Diamond 11 300 (111)
W 2990 (110)
Pt 2460 (111)
Pd 1980 (111)
Au 1540 (111)
Ag 1320 (111)
Tricalcium silicate 1300 (001), (040)
Muscovite mica 375 (001)
Sodium chloride 330 (100)
Graphite 190 (001)
Hydrated silica 70–250 NA
Nylon-4 49 NA
Polypeptides 35–50 NA
Polyethylene 30–37 NA
Polydimethylsiloxane 20–23 NA
Gases (H2, He, O2, N2) o0.1 NA
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The extraordinary bond strength lets expect the feasibility of
very small, stable diamond nanostructures in a size range of
1 to 3 nm.129,130 The practical size limit of nanodiamonds by
detonation synthesis is currently 4 to 5 nm due to poorly controllable
conditions with this method and graphitic overlayers.130

High surface energies over 2000 mJ m�2 are also found
among transition metals such as W, Pt, and Pd,71,88,99 which
can be synthesized via reduction of soluble precursors in
solution. The metal nanostructures achieve a high degree of
crystallinity related to the high surface energy. Platinum, for
example, can form small octahedra, cuboctahedra, and tetra-
hedra of 2 to 5 nm size using short peptide ligands to arrest
crystal growth.85,109,110,131 Gold with a lower surface energy of
1540 mJ m�2 forms larger nanoparticles of 11 to 14 nm size under
comparable conditions and peptide ligands of similar size.132

Minerals show yet lower surface energies in the range of
1300 to 200 mJ m�2, for example, 375 mJ m�2 for muscovite
mica, owed to a combination of ionic and covalent bonding
(Table 1). Weaker surface forces, including higher surface
reactivity and pH-dependent surface chemistry, make it difficult
to synthesize specimens with nanometer-scale control.82,112–115

The propensity towards irregular surface structures, porosity,
and defects is much increased.

Polymers, proteins, DNA, and other soft molecules exhibit
surface energies on the order of 20 to 70 mJ m�2,121,133 owed to
yet weaker self-assembly forces. At a surface energy nearly two
orders lower than that for metals and oxides, crystallization is
typically difficult to achieve. Defects, and polymorphism are
well known. The range of surface and interfacial interactions is
widely tunable depending on pH, ionic strength, solvent,
temperature, and residue-specific recognition. The contribution
of entropy to structural assembly often becomes significant due
to low enthalpic driving forces. Perfect order and nanometer-
scale control can be extraordinarily difficult to achieve.

Gases reach the limit of zero surface energy and highest
disorder at the bottom of the scale of surface energies, and are
thus often described as ideal gases without intermolecular
interactions in statistical thermodynamics.25 These considerations
show that the scale of surface energies and associated interfacial
energies over more than four orders of magnitude (104 to o100)
offers a pathway to rationalize material behavior on the nanoscale
such as molecular assembly and crystal growth for different types
of compounds. When such understanding or prediction shall be
derived from molecular simulations, the necessity for truthful
implementation of surface energies and surface chemistry in
molecular models becomes clear.

2.5. Relative strength of interatomic interactions

Observed cohesive and surface energies thus correlate with
mechanisms of molecular recognition, interfacial assembly,
and crystallization. Down to the atomic scale, cohesive, surface,
and interfacial interactions are determined by interatomic
interactions. The force field parameters in a given energy
expression encode these interactions and determine the out-
come of simulations. Understanding interatomic interactions
and translating the knowledge into the Hamiltonian is therefore

at the root of modeling and simulation. The types of bonding
and their connection to surface and interfacial properties is
briefly described in the following.

Common types of bonds include covalent bonds, metallic
bonds, ionic bonds, and ‘‘nonbond’’ intermolecular inter-
actions (dipolar, hydrogen bond, van-der-Waals interactions).
The present types of bonding in a given system determine
thermodynamic as well as kinetic properties. Covalent bonds
such as C–C and H–H bonds are typically associated with bond
energies on the order of 100 kcal mol�1 and explain, for
example, the high surface energy of diamond (Table 1).125

Weaker covalent bonds with somewhat longer bond lengths
than usual or multi-site coordination are also found, such as
Au–S bonds in thiol-modified gold nanostructures.136,137 The
energy of weak covalent bonding is in a similar range as the cohesive
energy in noble metals, on the order of 30 to 50 kcal mol�1.125

In contrast, however, metal bonding in elemental metals
involves high coordination numbers (8 to 12) and is delocalized
across the atoms in the lattice. The strong cohesion can be
represented by a combination of intense van-der-Waals and
local Coulomb interactions, taking into account the density
of valence electrons.69,71 The implementation of these inter-
actions in force fields reproduces densely packed structures
with long range order, high surface energies, and high elastic
moduli in simulations. Surface reconstruction,138,139 reversible
removal of single metal atoms in catalytic reactions,81,140 and
etching mechanisms are known.141,142 The simulation of such
processes by computer models on the 1 to 100 nm scale is
possible and partly still a challenge.

The strength of partially ionic and partially covalent bonds
found in minerals ranges from 30 to 150 kcal mol�1 per
pairwise bond. Contrary to earlier beliefs, it has been shown
that a majority of minerals is predominantly covalent, many are
predominantly ionic, and only few are more than 95% ionic.19

Aluminates, silicates, and many transition metal oxides are
examples of primarily covalent compounds while, at the other
end of the spectrum, several alkali halides and CaF2 are fully
ionic.143–146 The actual balance between covalent versus ionic
contributions determines the physical and chemical properties.
An accurate representation of chemical bonding by atomic charges,
or a more detailed depiction of the electronic structure,70,71 is
essential to ensure the quality of force fields and molecular
models. For example, NaCl is well described with a Na charge of
+1.0e, but RbI rather features a Rb charge of +0.8 � 0.1e, BeF2 a
Be charge of +1.0 � 0.1e, and SiO2 a Si charge of +1.1 �
0.1e.19,68,78,80,145,147 Charges in complex anions are much lower
than formal charges, too, for example, SO4

2� is described by a S
charge of +0.4 � 0.2e and O charges of �0.5 to �0.6, depending
on the present cation.11,19 The representation of bond polarity
along with van-der-Waals interactions is essential to reproduce
multipolar interactions and surface energies of minerals in
molecular simulations. Chemically realistic, convergent charges
for classical simulations can be derived from experimentally
reported electron deformation densities, dipole moments, an
extended Born model, chemical reactivity in heterolytic reactions,
trends in melting points and solubility in common solvents,
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as well as ab initio methods.19,125 Predictive simulations also
depend on the consideration of appropriate surface chemistry
that can be altered by hydration or protonation reactions.82,148

Nonbonded-only interactions are significantly weaker than
covalent or ionic interactions and account for surface energies
at the lower end of the spectrum. Examples are the interactions
between entire organic macromolecules and solvents (assuming
unbreakable covalent bonds within). Ion–ion and ion–dipole
nonbonded interactions still contribute significantly up to tens
of kcal mol�1, similar to weak covalent bonds. Hydrogen bonds
have a strength of 1 to 5 kcal mol�1.149 Van-der-Waals inter-
actions are the weakest nonbond forces and result from pairwise
interactions that individually contribute 0.02–0.2 kcal mol�1 per
pair of atoms (H� � �H, C� � �H, O� � �O, etc.).68,150

The foregoing discussion shows that, ultimately, the different
types of interactions determine different mechanisms of molecular
recognition, assembly, nanostructure growth, and material
performance in multiphase systems. These processes can be
observed in experiment and in simulations, given reliable force
field parameters, and will be reviewed in the following sections.

3. Recognition of biomolecules on
metal and semimetal surfaces and
nanostructures

Metal nanoparticles of different size and shape find applications
in therapeutics,151–153 sensors,154,155 nanoelectronic devices,141,156

and catalysts.140,157 The mechanisms of molecular recognition by
organic ligands, especially non-thiols, have recently been explained
with the help of molecular simulations.32,37,38,43,58,81,83,85,87 Knowl-
edge of driving forces for molecular recognition, crystal growth,
and shape development can guide in materials design and
performance predictions.

3.1. Molecular mechanisms

Molecular simulations of different peptides on extended gold,
palladium, and platinum surfaces in aqueous solution using
the CVFF-INTERFACE and CHARMM-INTERFACE force field
have shown differences in the attraction to (111) and (100) facets.58

The differences in binding energy are relatively independent of
the actual peptide sequence, whether chosen as a random
control sequence such as Gly10 and Pro10 (Fig. 5) or identified
as a strong binder by phage display (A3, S7-2) (Fig. 6). All
peptides are strongly attracted to (111) surfaces, up to �50 kcal
mol�1 for a 12-mer peptide on Au(111), and much less attracted
to (100) surfaces, typically with small negative or near-zero
adsorption energies of 0 � 5 kcal mol�1. While the trend is
universal, the precise affinity to each surface and the binding
differential between (111) and (100) surfaces somewhat varies
depending on the peptide. The trend of strong attraction to
(111) facets versus weak interaction with (100) facets is also
observed on several different fcc metals such as Ag, Au, Pd, and
Pt. The magnitude of attraction of the same peptide to (111)
facets of different metals is roughly proportional to their surface
energy, e.g., the strength of binding decreases in the order

Pt 4 Pd 4 Au 4 Ag (Table 1). It has also been observed
that residues such as F, R, Y, W, H, as well as D spend more
time in close contact with (111) surfaces than others while
generally most residues are in direct contact with the (111)
surface.37,38,43,58,81,85,157–160 In contrast, a water interlayer is
maintained between most residues and the (100) surface, thus
resulting in lower adsorption energy (Fig. 5).

The observations in atomic resolution and the trends in
computed binding energies are consistent with a number of
experimental observations. Peptides were repeatedly reported
to bind to extended (111) facets in various studies by phage
display while no significant binding was reported to extended
(100) facets.11,37,38,58,83,85,87,140,157,161–165 Apparently stronger
binding of ‘‘gold binding peptides’’ (i.e. peptides combinatorially
selected as binding to gold) to palladium and platinum as well as
considerable binding of the same peptides to silver were found
experimentally as well.85,108,132,162,166 The mechanism of
adsorption based on these simulation results and experimental
data was thus concluded to involve soft epitaxial adsorption,
which is characterized by the coordination of polarizable atoms
(C, N, O) in the peptides with epitaxial (fcc, hcp) sites on the

Fig. 5 Snapshots of glycine and proline decapeptides in contact with
(100) and (111) surfaces of gold and palladium in aqueous solution. Direct
contact with the (111) surface is seen, resulting in stronger adsorption
and adaptation of the proline helix. A water interlayer remains on the
(100) surface where adsorption is about an order of magnitude weaker.
Reproduced with permission from ref. 58.
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metal surface (Fig. 6 and 7). This concept offers a unique
explanation as common sp2 and sp3 hybridized groups in
peptides exhibit a very good geometric fit to (111) metal surfaces
(Fig. 7a), independent of the type of metal present (Fig. 7b). In
particular, the phenyl ring of hexagonal symmetry can best
coordinate (111) surfaces in contrast to (100) and (110) surfaces.
On (110) surfaces, linear molecules have better probability
to coordinate epitaxial sites.83,164 The strength of adsorption is
finally a result of competition between the solute molecules and
water molecules, which tend to be more mobile and adjust to
any type of (h k l) surface. Therefore, sp2 and sp3 groups cannot
effectively compete with water molecules for epitaxial sites on
(100) surfaces, leading to a water interlayer and smaller adsorption
energies (i.e. closer to zero). The phenyl ring, for example, typically
assumes tilted conformations relative to the (100) surface plane
whereas a flat-on parallel conformation is observed on (111)
surfaces.58,85 Of particular interest is also the characteristic
lattice spacing L1, L2, L3 of individual metal surfaces, which
provides a measure of the ‘‘degree-of-fit’’ to adsorbing molecules
and a tool to rationally design new molecules for binding to a
given metal surface (Fig. 7). It is also notable that the area
density of epitaxial metal interaction centers on the (111) facet is
higher than that on (100) facets, which contributes to stronger
attraction of the adsorbates.

The optimum coordination of epitaxial sites on (111) surfaces
can be nicely seen in detail for arginine (Fig. 8). Polarizable atoms
avoid proximity to metal atoms in the top layer, and molecular

dynamics computations have quantified the affinity of all 20
amino acids as well as some surfactants (single molecules) to
the Au(111) surface in aqueous solution (Fig. 9).83,160 Using the
same thermodynamically consistent Lennard-Jones parameters
for the fcc metals,69 the trend depends somewhat on the force
field parameters for the amino acids. Results with CHARMM-
INTERFACE are somewhat preferred over CVFF-INTERFACE,
since CVFF is somewhat less validated for biopolymers and
overestimates the attraction of aromatic molecules. In experiment,

Fig. 6 Representative snapshots of the adsorption of peptides on even
metal surfaces in aqueous solution show preferential coordination of
epitaxial sites, illustrated for (111) surfaces of gold–palladium and platinum
metal. The peptides A3 and S7-2 were identified by phage display and
tested in experiment for specific binding. The average number of close
contacts of polarizable atoms (C, N, O, S) in each peptide with epitaxial
sites, top sites, and of surface detachments (44 Å distance from the top
layer atoms) is given. (a) A 4 : 1 preference for epitaxial sites over top sites is
seen on an Au–Pd surface using the CVFF-INTERFACE force field (from
ref. 58). (b) An approximate 5 : 1 preference for epitaxial sites versus top
sites was found on a Pt surface using the CHARMM-INTERFACE force field,
related to higher surface energy of Pt and stronger adsorption (from
ref. 85). Metal atoms are shown as large spheres, small spheres, and
crosses to distinguish top layer atoms from atoms in subjacent layers that
constitute epitaxial sites. Adapted with permission from ref. 58 and 85.

Fig. 7 Concept of soft molecular epitaxy. (a) The hexagonal symmetry of
the (111) surface provides epitaxial sites (fcc and hcp) that match the
common geometry of sp2 and sp3 hybridized molecules such as benzene
and guanidinium groups. (100) surfaces exhibit a square geometry of
2.88 Å spacing that is incommensurate with typical chain molecules (yet
suitable for allenes and polyynes). The competition between solvent
(water) and solutes is then in favor of water and no significant attraction
of the organic molecule is achieved. (110) surfaces possess small and wide
grooves that can be further enlarged by surface reconstruction. Due to the
larger L3 spacing, adsorption on (110) surfaces is less molecule-specific.
(b) The similarity in characteristic spacing of epitaxial sites (L1, L2, L3) leads
to similar attraction of molecules and polymers to different noble metals.
Differences in attraction, however, arise from unique surface energies and
non-identical characteristic spacing. Matching molecules can be designed
according to the surface pattern of epitaxial sites, aided by simulation to
quantify binding strengths. Reproduced with permission from ref. 83.

Fig. 8 Illustration of soft epitaxial adsorption of arginine in aqueous solution
on a gold(111) surface according to molecular dynamics simulation. Several
epitaxial contacts are highlighted by pink circles. The molecule moves laterally
on the surface by a hopping mechanism to other surface sites with similarly
good epitaxial coordination in intervals on the order of 100 ps at room
temperature. Reproduced with permission from ref. 83.
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the approximate relative strength of adsorption inferred from
the abundance of amino acids in gold-binding peptides identi-
fied by phage display and from other metal-binding peptides
is:108,132,162,163,167,168

Arg 4 Trp 4� � �Tyr� � �4� � �Phe� � �His� � �Ser� � � 4 Ala (1)

The simulation results show the same order of attraction to
gold(111) surfaces as computed with the CHARMM-INTERFACE
force field (Fig. 9). Further supporting evidence includes the
attraction of metal binding peptides such as A3 and GBPs in
experiment to Ag(111), Au(111), and Pd(111) surfaces, which is
explicable by the similar L1 spacing (Fig. 7b). Studies by several
research teams have also shown that only peptides containing
strongly binding amino acids, or such amino acids alone, could
stabilize and control the shape of nanoparticles synthesized
reductively from solutions of metal salts.169,170 An interesting
discovery of amino acid sub-lattices on copper surfaces was
made over 30 years ago by Low Energy Electron Diffraction (LEED)
measurements (Fig. 10).98 The likely arrangement of polarizable
atoms due to the orientation of the sub-lattice indicates a
preference for epitaxial contacts and the avoidance of top layer
atoms. Further adsorption data of alkane monolayers on Pt(111)
surfaces also strongly support soft epitaxial order.99

A secondary contribution to peptide binding also arises from
attractive polarization of the metal surface by induced charges.
This contribution gains relevance in the presence of ionic
groups and can become dominant for the adsorption of ionic
liquids.38,87,164,171 Induced charges typically play a subordinate
role in the first molecular layer of contact when epitaxial
binding is strong, such as for peptides on (111) surfaces.87

Induced charges can become primary contributions to adsorption
of charged molecules and ions on epitaxially less attractive
surfaces, however, such as highly ionic peptides on (100) surfaces.

The overall attraction due to induced charges increases with the
magnitude of charges and the distance between corresponding
positive and negative charges in a surface-adsorbed molecule, e.g.,
between charges on the backbone and the position of counter
ions in solution. Contributions by induced charges diminish facet
selectivity. Additional contributions to adsorption of organic
molecules to metal surfaces in solution may also arise from weak
covalent bonding.21,101,172

The understanding of molecular adsorption on various
metal surfaces has also been aided by simulations using density
functional theory and tight binding methods.32,96,173–176 However,
such studies have mostly been carried out in vacuum and cover
very short time scales due to limitations in system size. Conclusions
about the properties of aqueous interfaces therefore remain unclear.
An added complication with DFT and tight binding methods is also
the large deviation of computed surface and interfacial energies of
metals from experimental measurements of up to 50%.33,128 The
CHARMM-INTERFACE force field, in comparison, reproduces
surface energies with less than o5% deviation from experiment.
In addition, computed cell parameters of the metals, interfacial
tensions with water, and binding constants are clearly in better
agreement with experiment.11,43,69 Alternative force fields also
include the GolP and GolP-CHARMM force fields which require
fixed metal atoms and incorporate rod-like dipoles to account for
polarizability.21,101 The models collapse when metal atoms are
allowed flexibility and are mainly applicable to idealized surfaces.

Specific binding of peptides selected by phage display has
also been computationally studied on semimetals such as
silicon177 and graphene.178–181 On the n+ silicon (100) surface,
three peptides identified by phage display were found to be attracted
with binding energies of �12, �15, and �7 kcal mol�1 (Fig. 11).

Fig. 9 Computed adsorption energies of the natural amino acids and
selected surfactants on gold(111) surfaces in solution. Results of the
CHARMM-INTERFACE and the CVFF-INTERFACE force field are shown.
The data refer to single molecules in the limit of high dilution. Note
that binding of cysteine is the strongest of all due to the formation of
covalent bonds (+50 kcal mol�1), which is unique for this amino acid
and was excluded in this tabulation. Reproduced with permission from
ref. 83.

Fig. 10 Packing of amino acid and alkane monolayers on metal surfaces
according to data from Low Energy Electron Diffraction (LEED). The
observations provide evidence for preferential binding of polarizable
atoms to epitaxial sites rather than top sites in the condensed phase,
consistent with close packing. Experimental and computational data
explain and support this view (ref. 37, 58, 83, 85, 87, 157 and 164 and
references cited therein). Adapted with permission from ref. 98 and 99.
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Within the sequences, methionine and tryptophane were found
to increase attraction, as well as D, T, H, S, and R. The diamond
cubic (100) silicon surface exhibits long range corrugation
without a highly specific epitaxial pattern to match specific
amino acid residues. The overall attraction of peptides was then
found to be dependent on both sequence and molecular
architecture.177

In contrast to silicon, graphite and graphene are lower
energy surfaces. The cleavage energy is only 190 mJ m�2 for
graphite and lower for graphene, whereby graphite can be
considered a 5+ layer graphene.134,135,182–184 Therefore, strong
epitaxial interactions are not expected and rather the possibility
of pi-stacking interactions contributes to moderate adsorption
of aromatic molecules (Fig. 12).178–181,185 Graphite and graphene
mainly behave as hydrophobic surfaces and binding energies of
amino acids, peptides, and surfactants are somewhat negative in
aqueous solution. Common residues with higher affinity include H,
Y, W, and F, as well as amide groups in Q and N (Fig. 12). Some of
the adsorption is related to depletion interactions, i.e., the hydrogen
bonded network in water is less disrupted by adsorption of the
molecules onto the graphitic surface, unless many ionic groups are
present and favor dissolution in the aqueous phase.

3.2. Application of simulation tools to understand crystal
growth

An interesting application of the soft epitaxial concept on metal
surfaces is the selective stabilization of crystal facets during
nanoparticle growth from seed crystals. The stabilizing effect of
phenyl rings towards (111) facets predicted from simulation
could be applied in the laboratory synthesis of platinum
nanocrystals from seed crystals upon reduction of hexachloro-
platinic acid in the presence of ascorbic acid as a mild reducing
agent (Fig. 13).85 Different phenylalanine containing peptides
were employed as shape-directing templates. About twenty

neutral, end-protected peptide sequences with and without F
showed that the presence of the phenyl ring anywhere in the
peptide sequence is sufficient as a molecular switch to convert
cuboctahedral or cubic nanocrystals into tetrahedra during growth
from seed crystals. Resulting tetrahedra are bounded exclusively by
(111) facets, stabilized and slowed down from further growth by
the phenylalanine-containing ligands. This synthesis approach

Fig. 11 Molecular dynamics snapshots (side views) of peptides P1, P2, and P3 adsorbed on the n+ Si(100) surface in explicit solvent with buffering ions
(137 mM PBS, pH 7). SVSVGMKPSPRP (P1) was computed to bind with an energy of �11.5 kcal mol�1, LLADTTHHRPWT (P2) with �14.5 kcal mol�1, and
SPGLSLVSHMQT (P3) with �7.0 kcal mol�1. All three peptides were experimentally identified by phage display and binding residues are highlighted.
Reproduced with permission from ref. 177.

Fig. 12 Adsorption of a graphene-binding peptide EPLQLKM (GBP) and a
carbon nanotube binding peptide HSSYWYAFNNKT (CBP) to graphene.
(A and B) Lowest-energy conformations of GBP and CBP obtained from
MD simulations started from various positions on the surface and on the
edge on a 5 nm by 5 nm model surface of graphene. (C) Changes in
position of GBP from the center of mass of the graphene layer in
deprotonated (GBP) and protonated state at pH B 3 (P-GBP). Protonation
shifts the position away from the edge toward the center. (D) AFM
topography for P-GBP assembled on graphene/graphite at pH 3 shows
extensive surface coverage. Reproduced with permission from ref. 179.
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also functions with other ligands such as 2-phenyl-3-hydroxybutyric
acid, and with other metals of high surface energy such as Rh
nanocrystals.85

The main driving force for shape control according to
simulation is the binding differential of the peptide to (111)
versus (100) surfaces rather than the absolute binding strength
to a specific facet (Fig. 14). The binding energy of all peptides,
with or without F, is about equal on (111) facets and shows
no correlation with tetrahedra yield.85 However, the binding
energy of the peptides to (100) facets correlates with the yield
of tetrahedra, whereby F-containing peptides show positive
adsorption energy (S7 etc.) and F-free peptides negative,
attractive adsorption energy (S7-G, PQPN, S7-Y, SSY). Thus,
the F-containing peptides leave the (100) facets more accessible
to atom deposition and completion of (111) facets. On the
contrary, the F-free peptides are slightly attracted to (100)
surfaces (Fig. 14) and then protect these facets leading to
growth of both (100) and (111) facets.

The elucidation of mechanisms of shape control is also
possible for other nanocrystal shapes such as cubes and twins.43,110

Nanoparticle shape has a significant influence on adsorption of
solvents and solutes (Fig. 15).37 Overall geometric factors as
well as factors related to the pattern of epitaxial sites can be
distinguished. Extended surfaces provide many metal atoms in
the vicinity of a molecule or polymer to interact with and
support strong epitaxial adsorption. Stepped surfaces contain
inner edges and outer edges. Inner edges exhibit the highest
number of metal atoms to interact with and lead to strongest
adsorption, which is reflected in a strongly negative surface
potential. These sites are easily accessible by small solvent
molecules, however, they may not be sterically accessible by
larger molecules. Outer edges are least attractive sites for both
peptides and solvent molecules. These differences in local
dynamics determine the outcome of the competition between
solvent and solute molecules for adsorption, for example, faster
solvent motion near the corners of nanocubes can enhance
adsorption of less mobile peptides (Fig. 16). Therefore, adsorption
is not only a facet-specific process but also depends on the local
position of the solute on a finite-size facet. Finally, small
nanoparticles with near-spherical geometry exhibit diminished

Fig. 13 Application of epitaxial recognition of the phenyl ring by (111) facets in the shape-selective synthesis of Pt tetrahedra. (a–d) A cuboctahedron
forming peptide sequence produces Pt tetrahedra upon substitution of one amino acid by phenylalanine. (e–h) A cube forming peptide sequence yields
tetrahedra upon substitution of L by F. (i–l) A synthetic ligand is analogously transformed from cube-directing to tetrahedron-directing. High resolution
TEM micrographs (c, d, g, h, k, l) indicate shape changes. Adapted and reproduced with permission from ref. 85.
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adsorption of solvent and peptides, including less binding
contrast among different peptides, as well as a reduced surface

potential (Fig. 15). Specific data have been reported by simulation37

and experiment161,165 in support of these observations.

Fig. 14 The origin of Pt(111) specificity. (a and b) Correlation of tetrahedra yields with computed peptide adsorption energies to Pt(111) and (100) surfaces in
solution (Ea(111) and Ea(100)), respectively. TH represents tetrahedra and uncertainties are o5% for all data points. (c–e, f–h) Binding configurations of S7 on
Pt(111) and (100) surfaces (top view and side view). Configurations of the phenyl ring are highlighted in dashed yellow circles and also schematically illustrated in
(e) and (h). (i–k) Binding configurations of S7-Y on Pt(100) surface (top view and side view). Configurations of the phenol ring are highlighted in dashed red circles
and schematically illustrated in (k). Black circles in (f) and (i) indicate the differences in epitaxial contacts between phenyl and phenol rings on Pt(100) surfaces,
which account for the difference in their binding energy Ea(100). Most water molecules are omitted for visual clarity. Reproduced with permission from ref. 85.

Fig. 15 Dependence of the adsorption of atoms and molecules on the shape of a metal nanostructure. The strength of adsorption of both solvents and
solutes depends significantly on the local surface topology. (a) An atom (pink sphere) or a molecule as a collection of atoms is more attracted to even
surfaces and inner edges, and less attracted to small near-spherical surfaces. (b) The surface potential (=attraction of a carbon atom at 3 Å distance)
quantifies these preferences and adds in details according to the pattern of epitaxial sites. Strength of adsorption and ligand selectivity are weakest for
small nanoparticles. Reproduced with permission from ref. 37.
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A well-studied example is the adsorption of peptide T7 (acyl-
TLTTLTN-amide) on platinum nanocubes. This peptide was
initially selected as a strong binder to cubic nanocrystals by
phage display (Fig. 16).109 Simulations show that peptide T7
significantly adsorbs to the cubic nanocrystals near the edges
even though it is not attracted to extended (100) surfaces.43 The
reason for such specific, spatially localized binding preferences
is the spatially differential attraction of both water molecules
and peptide that compete with each other (Fig. 16a and b).
Water molecules are tighter bound at the center of the crystal
facets than at the edges, resulting in preferential peptide
binding near the edges, supported by conformational matching
of polarizable atoms in the peptide to (100) epitaxial sites
(Fig. 16e and f). It is not possible, however, for the peptide to
displace flexible water molecules at the center of the facets or
on extended facets (Fig. 16c and d).

Changes in peptide concentration also have profound impact
on attraction versus repulsion on the surface. Typically, several
peptides cover the metal surfaces in experiment and reported
adsorption energies are on the order of �5 to �10 kcal mol�1

near monolayer coverage.81,157,186 Computed adsorption energies
in simulations are found in the same range at comparable surface
coverage.43 The selective synthesis of Pt cubes in the presence of
peptide T7 and analysis by high-resolution transmission electron
microscopy (HRTEM) further demonstrated that only intermediate
T7 concentration at about 50% surface coverage lead to a high
yield of nanocubes. Large-scale MD simulations have monitored

associated changes in facet coverage and adsorption energies of T7
peptides on cuboctahedral seed crystals, which are consistent with
concentration-dependent changes in shape, yield, and size of the
nanocrystals (Fig. 17). The growth mechanism is thus consistent
with adatom deposition, whereby preferential coverage of (100)
facets over (111) facets at intermediate concentration promotes the
formation of cubes through faster growth and disappearance
of (111) facets.

MD simulations have also provided insight into the growth
mechanism of metal nanorods in the presence of surfactants
such as cetyltrimethylammonium bromide (CTAB) (Fig. 18).86

CTAB was found to be attracted to (111), (100), and (110) facets
of gold and to form ion channels on all surfaces. Thereby, the
ion channels on the (111) facets are wider and enable transport
of more precursor AuCl2

� ions to the gold surface. These differences
correlate with the preferred growth of nanorods in the (111)
direction by adatom deposition as observed in experiment.187

When the solvent is changed to imidazolium based ionic
liquids without any added surfactants, the binding strength of
the solvent to different facets was found to be nearly the
same.164 Facet preferences of gold precursors during growth
are then lost and lead to isotropic growth by adatom deposition,
supported by experiment.188 Facet-specific gradients in adsorption
can be introduced by the addition of shape directing agents such
as Ag+ ions during synthesis that were shown to deposit as
Ag metal preferentially to (110) and (100) facets according to
simulation and underpotential deposition.164 This process explains

Fig. 16 Local differences in the adsorption strength and mobility of water molecules on a cubic platinum nanocrystal of 2.35 nm side length and
implications for the adsorption of peptide T7. (a) Chemically distinct surface sites are identified by numerical labels. The average residence time describes
how strongly a water molecule is adsorbed and how frequently it moves to a neighbor site or away into solution. Average residence times are more than
two orders of magnitude higher at the center sites than at the corner sites. Adsorption to extended (100) surfaces is comparable to center portions of
(100) facets. (b) Schematic diagram of the spatially resolved binding energy and binding free energy for a fully extended peptide T7 and for 17 water
molecules that compete for adsorption. The peptide is weaker bound compared to water in the center, resulting in desorption, and stronger bound than
water near the edges and corners, resulting in adsorption at high dilution (energies are approximate). (c–h) Differences in average binding conformation
of a single peptide T7 on extended Pt(100) surfaces, cubes, and cuboctahedra according to molecular dynamics simulation. (c and d) The peptide is not
attracted to extended surfaces. (e and f) The peptide adsorbs near the edges of a cube where water molecules are more mobile and shows an exceptional
fit to epitaxial sites. (g and h) Attraction increases on a cuboctahedron due to the presence of both (111) and (100) facets. The facet boundary is indicated
by a dashed black line. (Reproduced with permission from ref. 43).
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anisotropic growth in the (111) direction by adatom deposition
as observed in experiment.189

Growth mechanisms can also involve cluster attachment to
form twin crystals rather than single crystals (Fig. 19).110,190

This pathway may be kinetically favored when the supply of
adatoms is short. The preferred pathway depends on the

reaction kinetics that is influenced by the chosen concentration
of ligands, precursors, as well as their interactions. Simulation
of the kinetics in full chemical detail remains a challenge due
to the long time scales involved in experiments. However, it is
feasible to probe precursor–ligand interactions and nanocluster–
ligand interactions at any stage along the growth process to
estimate activation energies, facet coverage, growth directions,
and approximate yield.110

3.3. Applications to catalysis and sensors

Metallic and alloy nanostructures have great promise as catalysts
in electrode materials, biomass conversion, and other chemical
reactions.157,191–195 Noble metal nanoparticles can thereby take
on different sizes and shapes. Simulations have shown that near-
spherical nanoparticles are characterized by the presence of different
facets, including (111), (100), and (110) (Fig. 20).81,111,140,157

Thermodynamically stable nanoparticles in the size range of
1.5 to 4 nm display these facets in a ratio of about 60 : 20 : 20
whereby the amount of (100) versus (110) facets varies some-
what as a function of particle size.140

Obtaining insight into the exact atomic structure of nano-
particles is experimentally challenging. Equally sloped electron
tomography71,196–198 or high energy X-ray diffraction81,199 can
provide detailed information to build realistic molecular models.
Electron tomography directly supplies most atomic positions
while data from high energy X-ray diffraction and corresponding
pair distribution functions (PDFs) require further processing.
Knowing the PDF and total number of atoms in the particle,

Fig. 17 Correlation of the yield of cubic nanocrystals as a function of T7 concentration in experiment with the binding preference toward (100) facets as
a function of surface coverage in simulation. (a) The preference in (100) facet coverage correlates with the observed laboratory yield of nanocubes. (b and
c) Representative snapshots show the binding configuration and relative coverage of (100) and (111) facets on cuboctahedral seed crystals for
intermediate and high concentration of peptide T7. Adapted from ref. 43 with permission.

Fig. 18 Snapshot from an MD simulation of an Au(111) surface with CTAB
in water periodic in the horizontal x direction. A water-ion channel
between the micelles allows access of AuCl2

� ions to the surface. The
inter-micelle channels are smaller on the (100) and (110) surfaces and
explain the preferred growth of gold nanorods in the (111) direction.
Reproduced with permission from ref. 86.

Fig. 19 Growth pathways for metal nanocrystals mediated by peptides: cluster attachment (Path 1) or adatom growth (Path 2). Cluster attachment is
more likely when the precursor–ligand complex is specifically stabilized, such as by interactions between histidine and Pt2+ ions, that lead to an increase
in activation barrier, smaller clusters, and twin crystal formation (Path 1). Adatom deposition is faster in the absence of significant precursor stabilization,
which leads to larger clusters, and single crystal formation (Path 2). Reproduced with permission from ref. 110.
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it is then possible to propose hypothetical nanoparticle structures
and test the degree of fit of the computed PDF with the PDF from
experiment. Reverse Monte Carlo simulations can identify atomistic
models with the best fit, followed by relaxation of the structure
by MD simulation.81 The atomic configurations can serve as a
basis to compute reaction rates in comparison to experimental
measurements of the turnover frequency (TOF), which is briefly
illustrated for a series of peptide-covered Pd nanoparticles in
Stille carbon–carbon coupling reactions (Fig. 21).200–202

In this reaction, experiment and quantum mechanical data
uncover that the rate determining step is the abstraction of Pd
surface atoms by an aryl halide (Ar–X) from the peptide-
modified surface (Fig. 21a and b).140,202–204 Reactive molecular
dynamics simulations with CHARMM-INTERFACE then allow
the quantitative analysis of the activation energies of all available
surface atoms, which are proportional to the abstraction energy
(Fig. 21c and d). The relative reaction rate of peptide-modified
nanoparticles in solution was thus calculated as a Boltzmann-
weighted average over the computed abstraction energies of all
surface atoms for each nanoparticle (Fig. 21d). The computed
reaction rates are in good agreement with TOF measurements

for the individual nanoparticles and enable rate predictions for
other hypothetical particle shapes to guide experiment.81 While
catalysts for Stille coupling reactions are used in the synthesis
of conjugated polymers for displays, similar computational-
experimental approaches can be developed to understand the
activity of nanometal and nanoalloy catalysts for other reactions.
The combination of experiment, ab initio methods, and reactive
MD allows to reach the necessary length scale of 1 to 100 nm
under realistic solution conditions.

The possibility to modulate electrical conductivity of metal
nanostructures and graphene upon specific binding of biological
molecules and analytes allows interesting applications in bio-
sensors, which operate in the form of small transistors.205–207 A
combination of molecular dynamics and DFT methods can be
employed to estimate analyte-induced changes in band structure
and electrical conductivity.207 The reliability is currently still low,
however, the prospects of valuable predictions could advance
methods development to reach higher accuracy. Sensors have also
been developed on the basis of surface plasmon resonance (SPR)
and surface enhanced Raman spectroscopy (SERS) of metal
nanostructures for high throughput detection of a wide range
of biological molecules and human performance analytes.208

Specifically decorated metal nanoparticles have also been
developed and tested for cell targeting, imaging, and therapeutic
purposes.209–211 A range of challenges remain to be overcome in
the assembly of metal and semimetal electronic circuits in
nanometer precision.167,212 The examples illustrate a range of
applications where understanding and prediction of interfacial
recognition on metal and semimetal nanostructures aided by
molecular simulation could improve materials performance.

Table 2 summarizes current simulation capabilities to
design ligands and nanoparticle shape at the 1 to 100 nm scale

Fig. 20 Models of stable, near-spherical Pd nanoparticles as a function of
particle size. Numerical labels and increasingly darker color on the atoms indicate
higher atom abstraction energies that play a role in surface reconstruction and
surface reactivity. Reproduced with permission from ref. 140.

Fig. 21 Catalytic performance of peptide-derived Pd nanoparticles in C–C Stille coupling reactions in experiment and in reactive MD simulation.
(a) Reaction mechanism. (b) For nanoparticles derived using the peptides Pd4, A6, A11, etc., the turnover frequency in experiment (TOF) correlates with
the computed atom abstraction rate. (c) Illustration of the abstraction energies of individual atoms of the Pd4 nanoparticle (peptide only shown on the
outside for clarity). Pd atoms of lowest abstraction energy and high activity are shown in lighter color. (d) Calculation of the relative reaction rate from
computed atom abstraction energies. Adapted with permission from ref. 81 and 202.
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for various applications. Atomistic molecular simulations can
accomplish (1) the analysis of ligand selectivity to various (h k l)
facets and full-size nanoparticles, (2) the analysis of preferences
in coverage of facets and of the spatial location of ligands, (3)
the computation of binding free energies, (4) the analysis of the
concentration dependence of the above properties, (5) dynamic
monitoring of ligand assembly on nanoparticle surfaces, (6)
predictions of catalytic reactivity with appropriate reactive
extensions, and (7) the analysis of changes in conductivity
using QM/MD approaches. The accuracy is often quantitative
and comparisons to a range of laboratory observations can be
made, including phage display, nanocrystal shape and yield in
HRTEM, nanocrystal size and ligand binding constants, EXAFS
data on coordination numbers, monitoring of molecular
assembly using quartz crystal microbalances (QCM), in situ
techniques, HE-XRD, measurements of turnover frequencies,
and electrical conductivity.

4. Recognition of biomolecules and
ligands on oxide, phosphate, carbonate,
sulfide, and other inorganic surfaces

The following section focuses on insight into biological inter-
faces of silica, phosphates (apatites), carbonates, sulfides, and
other heteroatomic inorganic nanostructures. Among these
materials are abundant biominerals such as silica, apatite,
and calcite that are produced in marine organisms and
humans.10,112,213–218 Silica is one of the most abundant oxides
on earth and finds wide application as a drug carrier,7,219–221

catalyst support,222–226 filler, and rheology modifier in polymer
composites and hydrogels.227–229 Apatite-collagen matrices

constitute bone and teeth,215,230–235 and carbonate nanocrystals
form the ‘‘bricks’’ in nacre.236–240 Many other oxides such as
ZnO, TiO2, and quantum dots have been employed in functional
materials, and organic–inorganic recognition is an important
factor in the performance.241–245

4.1. Molecular mechanisms

Adsorption on oxide surfaces such as silica or apatites is
governed by a different mechanism in comparison to metals.36

The surface energy is almost an order of magnitude lower
(Table 1) and the surface structure, for the example of silica,
is dominated by a locally uneven pattern of silanol groups
(RSi–OH) and ionized siloxide groups (RSi–O� Na+). As a
consequence, soft epitaxy is an unlikely recognition mechanism.
Silica and many other oxide minerals are furthermore insulators
rather than conductors and possess no polarizable electron gas of
valence electrons as found in metals. Therefore, induced charges
do not occur and make no contribution to adsorption.

The reduced surface energy in comparison to metallic substrates
leads to much weaker adsorption of the first molecular layer. For
example, individual 12-mer peptides binding specifically to silica
surfaces in solution possess binding energies of 0 to�10 kcal mol�1

while 12-mer peptides binding specifically to noble metal surfaces
possess binding energies of 0 to �100 kcal mol�1 according
to adsorption isotherms and calculations.36,37,58,217,246 Oxide
surfaces are also more polar, reactive, and pH sensitive. As a
result, attraction of peptides and synthetic polymers is strongly
dependent on conditions such as surface chemistry, pH, ionic
strength, and particle surface features including porosity.

Silica surfaces are a representative example for the variety in
surface chemistry and the broad range of oxide chemistry in
general (Fig. 22).247 Phage display techniques from one laboratory
to another have shown less than 20% in sequence similarity
among peptides identified as strong binders under comparable
pH conditions, owed to the differences in Q2, Q3, and Q4

environments as well as in porosity of the silica surfaces as a
function of particle size and synthesis method.36,248 Thereby, Q2

surfaces correspond to surface termination with two silanol groups
per Si atom [(Si–O–)2Si(–OH)2], Q3 surfaces correspond to surface
termination with one silanol group per Si atom [(Si–O–)3Si(–OH)],
and Q4 surfaces correspond to surface termination with zero
silanol groups per Si atom [(Si–O–)4Si] (Fig. 23).120 The total density
of SiO(H,M) groups per nm2 (M = Na, K,. . .) varies between 0 and
9.4 per nm2, depending on cleavage plane, synthesis method, and
thermal treatment.120,249–252 Q3 silica surfaces with 4.7 SiO(H,M)
groups per nm2 are most common in glasses and nanoparticles
at room temperature. At the same time, the amount of ionized
sodium siloxide groups at pH 7.5 may still vary between 0.2 and
1.0 per nm2. The variation of the density of ionic groups across
all conditions of surface chemistry and pH is as much as
between 0.0 and 2.0 per nm2 (Fig. 22).78 The variability by
multiples causes different types of interactions to govern
specific adhesion of surfactants and biomolecules, as can be
seen also from a top view onto representative silica surfaces
(Fig. 23). Simulations have only recently begun to take surface
ionization into account while prior models typically assumed

Table 2 Emerging capabilities of atomistic simulations to predict ligand
binding to metal nanocrystals, rationalize growth preferences in aqueous
solution, reactivity, and conductivity at the 1 nm to 100 nm scale (ref. 11, 37,
58, 69, 81, 83, 87, 111, 140, 157, 164 and 207). Adapted with permission
from ref. 43

Calculated property Relation to experiment

Selectivity of peptides to extended
and finite-size nanocrystal (h k l)
facets

Identification of facet specific
peptides using phage display

Facet coverage and preferences in
facet coverage on nanocrystals

Shape and yield of nanocrystals
(HRTEM)

Binding free energies of peptides Binding constants and size of
nanocrystals

Spatial location of peptides on
(h k l) facets and average distance
of residues from the surface

Atomic-level information, EXAFS,
IR/Raman spectroscopy

Above properties as a function of
the number of peptides on the
surface

Above properties as a function of
peptide concentration and surface
coverage

Spatially and temporally resolved
trends in peptide assembly on
nanocrystal surfaces

Atomic-level information, QCM,
in situ measurements

Reaction rate in rate-determining
step (coverage of active sites,
atom abstraction, etc.)

Catalyst turnover frequency

Estimates of band structure and
conductivity using combined
QM/MD approaches

Conductivity measurements,
sensor response to analytes
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neutral, or even non-stoichiometric silica surfaces covered by
SiOH groups.22,45,89,93,94,127,253–261 These models have limited
applicability, and the inclusion of realistic surface chemistry
opens up new opportunities for reliable computational predictions.
A substantial amount of experimental literature since the 1950s has
described the amount of ionized groups as a function of surface
type, pH, ionic strength, and type of cation (M) using potentiometric
titration and zeta potential measurements,120,249–252,262–268 providing
valuable resources for quantitative modeling and simulation.36,78

The adsorption of peptides is accordingly determined by ion
pairing, hydrogen bonds, hydrophobic interaction, and changes in
conformation (Fig. 24 and 25). These contributions to binding
were identified by molecular simulation and comparisons to zeta
potential measurements, IR and NMR spectroscopy, as well as
adsorption isotherms for a series of different peptides.36,78,82,148

The strongest adsorbing amino acids on negatively charged
silica surfaces are protonated N termini, lysine (K), and arginine
(R) residues, which neutralize (or even reverse) the zeta potential
(Fig. 24a and 25a). Molecular simulations with the PCFF-
INTERFACE and CHARMM-INTERFACE force field demonstrated
that ammonium groups closely approach the silica surface and
computed adsorption energies reach maximum negative values of
�7 kcal mol�1 for 7-mer peptides and 12-mer peptides containing
K and R.82 Ion pairing is the dominant mechanism when the
surface charge of silica is significant, i.e., at pH ranges near seven
and above.

At the same time, interfacial hydrogen bonds are possible.
These involve oxygen and hydrogen atoms in silanol groups,

Fig. 22 Schematic of the surface structure of silica nanoparticles that includes
silanol groups (SiOH) and a fraction of ionized groups such as sodium siloxide
(SiONa). The presence of cations that can partly dissociate from the surface
accounts for the observation of zeta potentials in the range of 0 to�40 mV. The
typical area density of silanol groups and ionized groups per unit area is
indicated. Adapted and reproduced with permission from ref. 36.

Fig. 23 Silica model surfaces for common surface chemistry as a function of pH and particle size in top view. Accordingly, water, organic, and biological
molecules encounter different cation densities and surface environments leading to highly tunable adsorption. (a–d) Q3 silica surfaces with 4.7 SiO(H,Na) groups
per nm2 represent typical silica glasses and particles of 50–100 nm size from Stober synthesis. Different amounts of SiO�Na+ groups represent pH values of 3, 5,
7, and 9. (e) A Q2/Q3 silica surface with 6.5SiO(H,Na) groups per nm2 and 20% ionization represents larger silica nanoparticles 4100 nm size at pH 7. High area
density of both SiOH and of SiO�Na+ groups results in stronger adsorption of most peptides by ion pairing and hydrogen bonds. (f) Approximate correspondence
of the models to pH and particle size near physiological ionic strength according to details in ref. 78 and in ref. 82. Reproduced with permission from ref. 82.
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siloxide ions, and lattice oxygen atoms on the silica surface in
contact with alcohol groups (T,S), backbone amide groups, and
aromatic heterocycles (H,W) in peptides (Fig. 24b). Hydrogen
bonds play a dominant role near the point of zero charge of
silica (BpH 3) for all peptides. Peptides that contain suitable
groups and possess no cationic groups can be primarily
attracted to the silica surface though hydrogen bonds at any
pH. In addition, it has been observed in simulations and in
adsorption isotherms that peptides containing hydrophobic
groups are also attracted to silica. Residues such as F, W, L, I,
V can be effectively attracted to silica surfaces at lower pH, as
well as to silica surfaces of lower area density of silanol groups
(Q3/Q4). These hydrophobic interactions are the result of depletion
forces, i.e., adsorption on the surface prevents the disruption of
hydrogen bonds in the aqueous phase that would occur when the
hydrophobic residues remain immersed.82,248 Thus, there is no
intrinsic attraction of these groups to silica, and the driving force is
rather the exclusion from water on less ionized silica surfaces.82

On increasingly ionized silica substrates, hydrophobic groups do
not approach the surface because they would disrupt the hydration
shells of siloxide ions and of cations close to the surface.

Another contribution to adsorption arises from conformation
preferences of the peptides (Fig. 24c and 25a).36 Conformation
effects are particularly important for longer chain molecules and
play a role on all surfaces, metals or oxides alike. Yet, conformation
effects play a proportionally bigger role on oxide surfaces
compared to metals as binding energies tend to be of smaller
negative values (less attractive), giving more importance to
entropic contributions. Simulation results have indicated the

dynamic nature of the interfaces in which the peptides move on
and off the silica surface, effectively spending a certain fraction
of time in close contact with the surface (o3 Å). In case of ion
pair formation, the time in close contact can be over 90%
although it may only involve the N terminus or the lysine side
chain. Other parts of the peptide are often quite detached from
the surface for most of the time. A dynamic average that
represents the superposition of many thousand equilibrium
structures is shown in Fig. 25b for the peptide Pep1, which binds
to particles of 82 nm size from Stober synthesis in experiment.36 In
the absence of ion pairing, the time in close contact with the
surface by hydrogen bonds is only in the range 30–70% and may
often involve hydrophobic interactions as well. Residue-specific
metrics can be derived from molecular simulation and the
difference to isotropic orientation of the peptides in solution
can be clearly seen (Fig. 25b).36,82

Specific mutations in a peptide can also cause significant
changes in conformation and binding. Such effects were investigated
in detail for the mutation of H to A in the 6 and 11 positions in
Pep1 (KSLSRHDHIHHH).36 The native peptide exhibits a bent
conformation related to a certain stiffness in the middle of the
backbone. In the mutation Pep1_6, in which H6 is replaced by
A6, the stiffness is reduced and the binding strength increases
in simulation and in adsorption isotherms due to more hydrogen
bonds with the surface throughout the backbone (Fig. 24c). In the
mutation Pep1_11, by replacement of H11 by A11, the higher
stiffness of Pep1 is retained and the possibility of hydrogen

Fig. 24 Main contributions to adsorption of peptides on silica surfaces.
(a) Ion pairing and ion exchange, (b) hydrogen bonds, (c) conformation
effects. Conformation analysis for three mutant 12-peptides of the native
peptide Pep1 on silica surfaces in molecular simulation shows that individual
residues such as H6 may cause conformation strain that is relieved upon
mutation to A6 in Pep1_6. Other residues such as H11 can be essential for
binding through protonation and hydrogen bonds, which is diminished upon
mutation to A11 in Pep1_11. Attraction of hydrophobic groups to the surface also
contributes to adsorption at low surface ionization by fostering a continuous
water structure. Adapted and reproduced with permission from ref. 36.

Fig. 25 Representative snapshots and superposition of peptides adsorbed
on silica surfaces and in solution. (a) Peptides pep1 and pep4 adsorbed on
Q3 silica surfaces (4.7 SiO, Na groups per nm2) as well as on a Q2 silica
surface [9.4 Si(O,Na) groups per nm2] with high ionization. The position
of N and C termini is indicated. (b) Superposition of over 10 000 peptide
conformations during 20 ns simulation time in equilibrium on the
Q3 silica surface. The color code indicates the spatial distribution of
amino acid residues, translated laterally to the same coordinate of K1.
(c) Superposition of peptide structures in solution showing the isotropic
orientation. Adapted from ref. 36.
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bonding of H11 to the silica surface is eliminated, as well as the
opportunity of H11 to accept protons and to form ion pairs with
siloxide groups. Binding of Pep1_11 is then weaker according to
both measurement and molecular dynamics simulation.

Using pH resolved surface models for silica on the basis of
available experimental data (Fig. 23),78 it has become possible
to predict peptide adsorption very specifically as a function of
surface structure, peptide sequence, and pH value (Fig. 26).82

Quantitative predictions of binding constants for silica–organic
interfaces hold tremendous promise for the rational design of
new catalyst supports, drug delivery vehicles, porous glasses for
gas separations, biomarkers, mineralization studies, organic
coatings, and nanocomposites with tailored properties.

Ab initio studies have also been employed to study the binding
of drug molecules to silica surfaces, although yet without solvent
(Fig. 27).253,269 Density functional theory (DFT) methods are often
limited to studies in vacuum and mostly suited to explore reactive
processes on a local scale (see Section 2). The inclusion of
realistic surface geometries and solution conditions for routine
computational screening of binding and release of surface
bound molecules is difficult and computationally very expensive.
Problems to reproduce London dispersion forces have also been
noted.253 The INTERFACE force field overcomes such limitations
through reproduction of surface and interfacial energies in o5%
deviation from experiment, down from common errors exceeding
50% in DFT methods and in incompletely validated force fields.78

Titania surfaces exhibit ionization of superficial Ti–OH groups
similar to silica and have shown closely related mechanisms
of molecular recognition and binding.45,270–273 Steered MD
simulations indicated binding free energies of the peptide
RKLPDA on a negatively charged titania surface (pH B 7) to
be on the order of �40 kJ mol�1 (�9.5 kcal mol�1) (Fig. 28).45

The titania surface model assumes effectively 0.76 negatively
charged TiO� groups per nm2 (�0.123 C m�2) and the dominant
binding mechanism is then ion pairing of the TiO� groups with
the positively charged R and K residues in the peptide (Fig. 24a).
The importance of the cationic R and K residues in the RKLPDA

peptide for strong binding was also shown via AFM measure-
ments in comparison to weaker binding of RKLPDA peptide
mutants where these residues were replaced by other amino
acids.274,275 The binding free energy of peptide RKLPDA to
titania is similar to that of comparable silica-binding cationic
peptides at pH B 7, for example, a binding free energy of
�6 kcal mol�1 was reported for KPLGWSG on silica (Fig. 26).82

The point of zero charge is pH B 5.5 for titania compared to
pH B 3 for silica, rendering the titania surface somewhat less
acidic than typical Q3 silica surfaces. Comprehensive pH resolved
surface models for titania surfaces have not yet become available.

Fig. 26 Peptide adsorption on silica nanoparticles of average diameter
82 nm with 4.7 silanol groups per nm2 as a function of pH by measurement
and simulation. (a) Adsorbed amount of three peptides of different charge
as a function of pH at 1 mM initial concentration (from ref. 248).
(b) Percentage of time the same peptides spend in close contact with
Q3 silica surfaces of different ionization according to simulation (o3 Å).
Different pH states of the surface are embodied in the model by differences in
silanol ionization. Reproduced with permission from ref. 82.

Fig. 27 3D top views of space filling models of the adsorption geometries
of aspirin and ibuprofen on the 4.5 OH per nm2 silica surface (Q3 surface
without ionization) using DFT calculations with PBE and PBE-D functionals
in vacuum. Borders of the unit cell are shown in light blue. Reproduced
with permission from ref. 253.

Fig. 28 Interactions of the peptide RKLPDA with a titania surface terminated
by Ti–OH groups and Ti–O� groups near pH 7 in molecular dynamics
simulations. (a) Free energy profile of the RKLPDA peptide on an oxidized
titanium surface obtained by metadynamics and replica exchange with
solution tempering (REST). (b and c) Typical adsorbed peptide structures
include flat as well as upright conformation with R and K residues bound to
the surface. Reproduced with permission from ref. 45.
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Apatite minerals, common in bone and teeth, have similarly
adaptive surface properties.6,218,276 The surface is pH sensitive
and superficial phosphate ions are protonated between mono-
hydrogen phosphate and dihydrogen phosphate under physio-
logical conditions (Fig. 29).277 These important aspects have
only been recently taken into account in molecular simulations
so that reliable simulations of specific binding of peptides and
polymers are just about to emerge.11,148,277 Prior simulation
studies often assume bare phosphate surfaces corresponding to
pH values above 14 that lead to immediate cell death.278–280

Carefully designed surface models and validated force fields
allow specific and accurate analyses of the interfacial properties
of apatites as a function of pH, including the reproduction of
hydration energies and peptide specificity. The INTERFACE
force field includes a surface model database with pH resolved
surface models that can be used and further customized for
predictive simulations.11 The game-changing impact of solution
conditions and their representation in models towards computed
surface energies, hydration energies, and specific peptide
recognition is illustrated in Fig. 30.277 The CHARMM-INTERFACE

force field and the PCFF-INTERFACE force field reproduce the
cleavage energy of neat hydroxyapatite, which is approximately
1100 mJ m�2 for the common prismatic (010) crystal plane.122

Upon protonation, the agglomeration energy decreases to 640
and 320 mJ m�2 at pH 10 and pH 5, respectively, related to
leaching of calcium hydroxide and a resulting lower cation
density on the hydrogenphosphate and dihydrogen phosphate
terminated surface.281–285 Similarly, the immersion energy in
water depends strongly on pH. Neat apatite surfaces react
immediately with water, and the hydration energies at pH 10
and pH 5 are about 800 and 620 mJ m�2, respectively (Fig. 30).
The values agree with hydration energies measured in experi-
ment in the range of 600 to 700 mJ m�2.286,287 First studies of
the binding of peptides found adsorption responses that are
similarly sensitive to the surface environment as seen for silica.
The peptide SVSVGGK, selected by phage display,232 adsorbs mainly
through ionic groups at higher pH and via different, less ionic
groups (S,V) at lower pH (Fig. 30). The computed binding energy of
�5 and �9 kcal mol�1, respectively, is in very good agreement with
the experimental binding free energy of �6 kcal mol�1 (KD = 5.4 �
10�5 M) on a polycrystalline HAP substrate.232 Simulations using
appropriate surface models, which may eventually be integrated
into databases, and force fields facilitate quantitative predictions
and easy access to length scales up to 100 nm at a million times
lower cost than ab initio and DFT approaches. Future applications of
such techniques include the analysis of bone and dentin
mineralization in extracellular environments, of the action of
drug molecules against osteoporosis, and of the formation of
atherosclerotic deposits in comparison with laboratory and
clinical tests. Arterial deposits also include calcium oxalates
which can be modeled using similar approaches.103,237,288

Several computational and experimental studies have been
dedicated to calcium carbonate in aqueous solution,289,290

Fig. 29 Termination of hydroxyapatite surfaces at different pH values
(adapted with permission from ref. 277).

Fig. 30 Major differences in surface properties of hydroxyapatite as a function of pH according to simulation with the CHARMM-INTERFACE force field
(numbers in black) and experiment (numbers in blue). The cleavage energy is drastically reduced towards lower pH values, and also the immersion energy
in water decreases. Simulations also show a reversal in binding mechanism of peptides to apatite surfaces. At pH 10, adsorption of the peptide SVSVGGK
on the (010) prismatic plane is mediated by ionic groups and comparatively weak. At pH 5, the polar and hydrophobic motif SVSV is more attracted and
the peptide binds notably stronger.
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interactions with organic molecules,104 self-assembled mono-
layers,238,291,292 as well as polyelectrolytes.237 The pK values of
carbonic acid are pK1 = 6.35 and pK2 = 10.33125 and indicate
that, under mineralization conditions of pH 8 to 10, the
majority of carbonic species in solution are hydrogen carbonate
ions (HCO3

�) and only small amounts of carbonate ions
(CO3

2�).293 However, similar to simulation studies of apatites,
prior computations have almost exclusively focused on carbonate
terminated surfaces (CO3

2�)104,294,295 which are only likely to be
present at pH values higher than 11. Suitable pH resolved
atomistic surface models for calcite still need to be developed
and validated to achieve mechanistic understanding and predictions
of biological assembly in consistency with experiment. At typical
pH values between 8 and 10 near the point of zero charge, the
surfaces of the CaCO3 polymorphs calcite, aragonite, and vaterite
are likely covered with hydrogen carbonate while the interior
mineral core consists of calcium carbonate. Realistic surface
models may involve, for example, 90/10 termination by HCO3

�

and CO3
2� at pH B 9, 50/50 termination by HCO3

� and CO3
2�

at pH B 10.5, and 10/90 termination with HCO3
� and CO3

2� at
pH B 11.5. Mineralization near pH 9 likely involves the
crystallization of hydrogen carbonate into carbonate under
consumption of hydroxide ions and formation of water; or
disproportionation of HCO3

� ions into CO3
2� and H2CO3.

Extensive experimental studies have described calcite nucleation
and growth41,236,293,296–298 and provide valuable input for realistic
simulations.

Adsorption of organic molecules has also been studied on
several other nanostructures using quantum mechanical methods,
including energy minimization and ab initio MD. An example is
the adsorption of catechol (o-dihydroxybenzene) on SiC, GaN, ZnO,
CdS, and CdSe surfaces (Fig. 31).242,299 Validated force fields are
not yet available for many of these compounds so that quantum
mechanical calculations of adsorption in the gas phase have been
reported as a first approximation. Further force field developments
will eventually allow insight into assembly at length scales up to
100 nm under realistic solution conditions.

4.2. Applications to understand the formation of biominerals,
drug delivery, and processes in solar devices

The formation of silica, phosphates, carbonates, and other minerals
from soluble precursors is a complex process that involves specific
chemistry, protonation–deprotonation equilibria, and hydration–
dehydration equilibria. The examples of mineralization in nature
such as diatoms, mollusks, nacre, bone, teeth, and marine
calcite skeletons are fascinating and still incompletely under-
stood today.112,114,217,236,300,301 Therefore, modifications of the
mechanisms to customize such materials is also a major
challenge. To-date, template approaches for mineral synthesis
starting with pre-assembled surfactants have been successfully
used in laboratory synthesis.302–305 A selection of promising
experimental findings and first computational studies related to
mineral formation are presented in the following to illustrate
opportunities for computational studies to elucidate mechanistic
understanding and accelerate the development of functional
materials.

Computational studies of interactions between ionic apatite
precursors and bone sialoprotein have been reported (Fig. 32).47

Bone sialoprotein is a highly phosphorylated, acidic, noncollagenous
protein in the bone matrix and considered to be a nucleator
of hydroxyapatite (Fig. 29 and 30). The interaction of a phos-
phorylated, acidic, 10 amino-acid model peptide sequence with
Ca2+ ions and hydrogenphosphate ions was investigated by
molecular dynamics simulation to understand the distribution
and development of potential crystal nuclei in solution. The
results show that the a-helical and random coil conformations
of the peptide support the formation of a Ca2+ equilateral
triangle around the surface of the peptide, which resembles
the distribution of calcium ions on the (001) face of hydro-
xyapatite crystals. However, the formation of a stable nucleating
template could not be consistently observed. The bone sialo-
protein nucleating motif may therefore be more likely to help
nucleate an amorphous calcium phosphate cluster, which
ultimately converts to crystalline hydroxyapatite. Mineralization
mechanisms may be investigated in more detail using models of
nanocrystals and phosphate species at specific pH conditions
and variable concentration of peptides.

In situ experimental measurements by liquid phase in situ
transmission electron microscopy (TEM) and AFM have recently
suggested a mechanism for the nucleation of calcium carbonate
in a matrix of polystyrene sulfonate (PSS) in solution (Fig. 33).236

The developing mineral interacts with the matrix-immobilized
acidic macromolecules, and time-resolved data have been able to
track the mechanism in a resolution close to one nanometer. The
binding of calcium ions to form Ca–PSS globules was identified as a
key step in the formation of metastable amorphous calcium
carbonate (ACC) that has been identified as an important precursor
phase in many biomineralization systems.234,238,240,292,296 The
findings demonstrate that ion binding can play a significant
role in directing nucleation, independently of any control over

Fig. 31 Adsorption configurations of catechol molecules on wurtzite
(10%10) surfaces in vacuum by DFT (PBE-GGA): (a) SiC, (b) GaN, (c) ZnO,
(d) InN, (e) CdS, and (f) CdSe. Dashed lines identify molecule–substrate H
bonds. Reproduced with permission from ref. 299.
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the free-energy barrier to nucleation. The in situ techniques
provide detailed insight that could be further resolved and
tested using simulations in atomic resolution. The mechanism
is similar to adatom deposition (path 2, Fig. 19), with ions
rather than atoms.

In situ experimental observations also provided footage of a
cluster attachment process for iron oxide hydroxide nanoparticles
of the approximate composition 5Fe2O3�9H2O (Fig. 34). This
process is similar to cluster attachment of metal nuclei (path 1,
Fig. 19). Twin formation occurs once small clusters attach in
various orientation to another particle and find a favorable fit
(Fig. 34a–g).190 High-resolution transmission electron micro-
scopy using a fluid cell showed that finally a sudden jump over
less than 1 nanometer fused the clusters together, followed by
lateral atom-by-atom addition initiated at the contact point.
Interface elimination was observed at a rate consistent with the
curvature dependence of the Gibbs free energy. The observations
are also consistent with the typical range of Coulomb and van-
der-Waals interaction of overall electroneutral mineral surfaces
that has been identified by molecular simulations on silicate,
aluminate, and clay minerals.79,80,84 Over 95% of surface attraction
is typically lost after more than 1 nm separation and strong surface
interactions require o0.5 nm distance, relatively independent of
specific surface chemistry.

In Section 4.1, we have shown that binding constants of
peptides onto silica and apatite surfaces can be predicted in
quantitative agreement with experiment.82,148,253 These methods
can be applied to computational screening of the binding of
drug molecules to inorganic surfaces and their release from
nanostructures under realistic solution conditions. For example,
the loading of drugs to and release from porous silica nano-
particles may be investigated as a function of particle surface
chemistry, pH, and temperature to explain experimental data
and make predictions for specific systems.7 Also, the binding of
bisphosphonate osteoporosis drugs to apatite nanocrystals is
not well understood in experiment and would benefit from
simulations.277,306–308 Prior force-field based computational
screening studies suffered from unrealistic apatite surface models
(pH 4 14)309,310 and the absence of solvents due to limitations of

Fig. 32 A snapshot illustrates the interactions among Ca2+ ions, hydro-
genphosphate ions, and the glumatic-acid rich peptide domains in
molecular dynamics simulations (SpSpEEEEEEEE). Distances are indicated
in Angstroms. Reproduced with permission from ref. 47.

Fig. 33 Mechanism of CaCO3 mineral formation in a biomimetic poly-
styrene sulfonate matrix (PSS) according to liquid phase in situ TEM
(ref. 236). (a) Initially, Ca2+ ions (blue dots) bind with the SO3

� group of
the PSS (red), as indicated in molecular detail in the green box, leading to a
locally high Ca2+ concentration in the Ca–PSS globules deposited on the
surface of a Si3N4 substrate (orange) and to low free Ca2+ concentration in
the surrounding solution, where it binds to dissolved PSS. (b) CO3

2� (or
HCO3

�) ions (red and yellow dots) from an ammonium carbonate source
then diffuse into the globules (black arrows), where they bind with
Ca2+ ions, replacing the weaker SO3

�/Ca2+ interaction and creating
a supersaturated state. (c) At a critical value of supersaturation (after
B20 min), amorphous calcium carbonate nuclei (light blue sphere) appear
and grow as a result of the continued generation of CO3

2� (or HCO3
�)

ions. However, free Ca2+ ions do not diffuse into the globules (blue
arrows with pink cross) owing to the low Ca2+ concentration in solution
compared with that in the globules, which is fixed by the solubility of
amorphous calcium carbonate (ACC). (d) The growth of ACC stops when
the supply of excess Ca2+ ions in the globules is depleted, but the
continuous generation of CO3

2� (or HCO3
�) ions eventually raises the

supersaturation of the solution to the level required for vaterite nucleation
on the Si3N4 substrate. (e) Vaterite continues to grow until the remaining
free Ca2+ ions are depleted. (Reproduced with permission from ref. 236).
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DFT computational methods.279,280 The use of chemically realistic
force fields and surface models will make simulations much more
useful (Fig. 29 and 30). Drug delivery has also been suggested
using clay minerals such as montmorillonite as a carrier material.311

Adsorption/desorption equilibria can then be monitored using the
CHARMM-INTERFACE force field11 or CLAYFF.90

Mineral–organic interfaces also play a major role in solar
devices.312–316 The interface between oxides or quantum dots with
conductive polymers determines polaron dynamics, charge transfer,
and ultimately affects the power conversion efficiency.317 Molecular
dynamics simulations can help visualize the morphology devel-
opment beyond the 10 nm scale. Charge separation and exciton
dynamics can subsequently be followed locally from first principles
simulations (Fig. 35).318 It is believed that the charge transfer
excitons (CT1, CT2, CT3) rather than the intramolecular excitons
(M1, M2, M3) play crucial roles in the photovoltaic performance as
both photocurrent and open circuit voltage depend on them.
For the poly-3-hexylthiophene/zinc oxide junction, the averaged
energy of the three possible charge transfer excitons after ab
initio molecular dynamics simulation is 1.7, 2.0, and 2.3 eV.
These values are in good agreement with measurements from
photoinduced absorption spectroscopy of 1.9 to 2.5 eV.318

Often the band structure is important to decide upon suitability
of a quantum dot for a photovoltaic device, luminescent device, or

electronic sensor. Understanding the interaction of nanoparticles
with stabilizing surfactants can then be critical. NMR spectroscopy
and IR spectroscopy are helpful to probe the composition and
surface chemistry, as shown for the example of an indium
phosphide quantum dot (Fig. 36).319 The combination of
techniques allowed the identification of binding modes of
carboxylate surfactants to an InP surface. Molecular simulations,
once appropriate force fields are derived, can then determine
equilibrium conformations, binding energies, and electronic
properties in combination with ab initio methods. Oxide and
mineral surfaces are often also catalytically active, which provides
opportunities for multiscale simulations to predict both charge
transfer and reactivity under given conditions.320,321 Thin films
of biological or organic molecules on oxide surfaces also find
applications in bioadhesives.322

5. Inorganic–organic interfaces in
polymer composites and building
materials

The performance of polymer nanocomposites, hydrogels, and
building materials also depends on specific inorganic–organic inter-
actions.228,242,323–330 The presence of clay, silica, cement minerals,

Fig. 34 Oriented attachment of iron oxide hydroxide nanoparticles in solution. (a–g) Sequence of TEM images showing the typical dynamics of oriented
attachment. The surfaces of particles I and II made transient contact at many points and orientations (points 1–1, 1–2, 2–3, and 3–4) before finally
attaching and growing together (points 3–5). (h) High-resolution image of interface in (g) showing twin structure (an inclined twin plane). The yellow
dashed line in (g) shows the original boundary of the attached particle. (i and j) High-resolution in situ TEM image (i) and fast Fourier transform (FFT) (j) of
an interface from another oriented attachment event demonstrating formation of a (101) twin interface after attachment. The grain boundary is
delineated by a dashed line in (i). Scale bars are 5 nm for (a) to (g). Adapted and reproduced with permission from ref. 190.
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or graphitic nanostructures within a polymer matrix introduces
changes in morphology and material properties related to the
presence of ionic surfaces, interfacial interactions, and inter-
facial reconstruction.80,326,331,332 Polymer–inorganic nanocom-
posites, for example, find applications in structural materials,
capacitors, batteries, and sensors.333 Property predictions have

been aided by simulations and this section describes modeling
of inorganic–organic interfaces in such nanocomposites, organically
modified clay minerals, and cement materials in comparison
to measurements.

5.1. Polymer nanocomposites and modified clay minerals

A major challenge for performance improvements of composite
materials is often the uniform dispersion of filler materials
such as clay platelets, carbon nanotubes, silica nanoparticles,
or metal flakes.334–336 Computer simulations using atomistic
and coarse-grained models recently allow following the kinetics
of exfoliation of clay layers in a polymer matrix (Fig. 37). For
polymer melts, blending, compounding, and extrusion are
typically necessary to overcome barriers towards polymer inter-
calation into mineral layers and exfoliation/dispersion of the
filler platelets, tubes, or particles, which is severely hindered
at long chain lengths (4103 monomers) due to folding and
long relaxation times. Other factors that affect the exfoliation
of nanofillers are also the interactions between the layers or
particles themselves (Fig. 38). In order to exfoliate the layers of
a filler material such as graphene or clay, the interactions
between the layers must be overcome, void spaces in the
polymer matrix for the new positions of the individual layers
must be created, and then the two materials regain some of the
required free energy by forming the mineral–polymer interface
(MP) (Fig. 38a).88 The process requires many conformational
transitions of the polymer. Unless it occurs in solution with
easy relaxation in a good solvent, it may never complete even
during extrusion at high temperatures for extended periods of
time.228 However, if the cohesion between the mineral layers is
very strong, such as between layers of unmodified clay minerals,
it may be impossible to ever complete. Organic surface modification
can reverse the strong surface polarity of clay minerals and lead to a
range of tunable cleavage energies (Fig. 38b).

Typical clay minerals like montmorillonite, veegum, as well
as muscovite mica contain variable amounts of dissociable
cations on the surfaces of the nanometer-thick layers, for
example, sodium ions in a typical montmorillonite Na0.33[Si4O8]-
[Al1.67Mg0.33O2(OH)2] with a cation exchange capacity of B90 meq/
100 g.68,331 The extended basal (001) surfaces are not subject
to protonation–deprotonation equilibria, pore formation, and
dissolution in contrast to silica and apatites. Therefore, layered
silicates often serve as model substrates to study surface forces
and self-assembly processes. Systematic experimental and
computational studies have shown the influence of the area
density of cations and of the type of cations on swelling, ion
exchange, adsorption of organic molecules, and assembly of
surface-grafted surfactants.18,337–341 Ion exchange of surface
cations by alkylammonium and alkylphosphonium surfactants
reverses the polarity from hydrophilic to hydrophobic and
enables better miscibility with nonpolar solvents and polymer
matrices in packaging materials, automotive and aerospace
parts, commodity plastics, and coatings (Fig. 39).18 The exchange
of surface cations such as sodium or lithium for alkylammonium
ions may occur spontaneously or require prior exfoliation of
the nanometer-thick clay mineral layers at high temperature in

Fig. 35 (a) Top and (b and c) side view of a poly-3-hexylthiophene
(P3HT)/ZnO interfacial atomic structure. (d) Schematics of excitons
studied including intramolecular (M1, M2, M3) and charge transfer (CT1,
CT2, CT3) excitons. (e and f) The exciton density of states (DOS) of P3HT/
ZnO with the ground state energy set to 0. The blue, red, gray, yellow, and
white spheres in panels a–c represent Zn, O, C, S, and H atoms, respectively.
Reproduced with permission from ref. 318.

Fig. 36 (a) Graphical schematic representation of InP quantum dots
isolated using synthesis and purification. (b) Basic carboxylate binding
modes and (b) additional carboxylate binding mode observed in indium
carboxylate complexes according to multidimensional NMR and IR studies.
Reproduced with permission from ref. 319.
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solution.342 The surfactants enter the galleries and arrange as
homogeneous molecular layers or as islands, depending on the
chain length, packing density, and stoichiometric amount
(Fig. 39).332 The intercalated amount can be often determined
by an increase in the gallery spacing d using X-ray measurements
and in comparison to results from molecular simulation.

At stoichiometric ion exchange, the arrangement of surfac-
tants on the individual even surfaces depends on the packing
density l0, which is defined as the ratio of the cross-sectional
area of a surfactant chain AC,0 to the available surface area per
cationic site AS:137

l0 ¼
AC;0

AS
: (2)

The packing density also equals the cosine of the segmental tilt
angle of the grafted surfactants and determines the occurrence
of reversible melting transitions of flexible surfactants, e.g.
alkyl chains, upon heating (Fig. 40). The surface-attached alkyl

chains undergo order–disorder transitions as a function of
temperature that have been extensively studied by differential
scanning calorimetry, IR spectroscopy, SFG, NMR spectroscopy,
sum-frequency generation, and computer simulation. Significant
thermal transitions occur at intermediate packing density l0

between 0.20 and 0.75, whereby up to two reversible transitions
have been identified (Fig. 41).18 These transitions correspond to
the partial melting of the alkyl backbones, given a sufficient
chain length 4BC10, as well as to lateral rearrangements of the
head groups on the clay mineral surface that are often not
immediately reversible upon cooling.341,343 The second type of
transition is common for quaternary ammonium head groups
that have a lower barrier for rearrangement on the surface,
whereas primary ammonium head groups do not exhibit the
second type of thermal transition due to additional hydrogen
bonds with the surface.68,88,344,345

The alkyl chains confined between such minerals layers are
in a quasi-liquid state.68,345 The variety of conformations

Fig. 37 Intercalation of ‘‘long’’ polyvinylalcohol (PVA) chains into a
selected clay tactoid using coarse-grain representations of clay layers
and polymer. The side and top views of the tactoid are shown for
simulation times of 0.8 ns and 4.75 ns. For each timeframe, the side view
illustrates the bending that the lowermost clay sheet undergoes to
accommodate the intercalating PVA polymer molecules. In the top view,
the polymers that intercalate into the spacing between the lowermost
sheets are colored according to their molecule number, such that they can be
differentiated during visualization. It is observed that the polymer initially
intercalates as short loops (an example is circled in blue at the 0.8 ns
snapshot), and then progresses further into the interlayer to form a relatively
linear chain on the clay surface. Reproduced with permission from ref. 334.

Fig. 38 Thermodynamic model for exfoliation of fillers in polymer matrices
and computed cleavage energy of organically modified montmorillonite. (a) A
thermodynamic model for the free energy of exfoliation DG of mineral layers
in a polymer matrix. The cleavage energy of the filler lamellae is easier to adjust
by choice of specific surfactants than changing the host polymer and its
cleavage energy (DGP), or the interfacial forces (DGMP). Dispersion in
polymer matrices is achieved for lowest DG. (b) The cleavage energy of
montmorillonite (CEC = 91 meq/100 g) modified with alkylammonium
surfactants of different chain length and head groups exhibits maxima
and minima depending on completion of alkyl monolayers and bilayers
(indicated by numbers). Residual strong Coulomb forces upon cleavage of
quaternary ammonium surfactants at short chain length are found due to
incomplete partition of the charged head groups between the two layers
until a thickness of a partial bilayer is reached. Reproduced with permission
from ref. 88.
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between solid-like with less gauche conformations and liquid-
like with more gauche conformations could be observed in
molecular models as a function of chain length and packing in
the interlayer space. On substrates with low cation exchange
capacity (CEC) and single-arm surfactants, the packing density
is 0.1 to 0.2 and the backbones are oriented near-parallel to the
surface (Fig. 40 and 42). The degree of conformational disorder
is high and no reversible melting transitions are observed. On
substrates with higher CEC, or in the presence of multi-arm
surfactants, e.g. trioctadecylmethylammonium ions, the packing
density is higher (e.g. 0.4) and the alkyl chains assume a regular tilt
angle relative to the surface. In these systems, reversible melting
transitions occur (Fig. 41a). For very high packing density 40.75,
quasi-crystalline order leads to over 90% anti conformations and
allows no reversible melting transitions (Fig. 40). High packing
densities over 0.80 are also found for thiol surfactants on Ag, Au,
and Cu.137 The case of low packing density leads to significant
variation in interlayer packing. As the chain length of the
surfactants increases, flat-on monolayers, bilayers, and multi-
layers are formed, as represented by stepwise increases in basal
plane spacing as observed in X-ray diffraction (Fig. 42).

The successive filling of organic layers leads to maxima and
minima in interlayer density as well as in the cohesive energy
between the layers (Fig. 38). The fluctuations in interlayer
density cause changes in the cleavage energy between 45 and
30 mJ m�2, in the percentage of gauche conformations between
30% and 15%, and in the interlayer density between 800 and
600 kg m�3.88 The variation of cleavage energies is particularly
interesting as a contribution to barriers for exfoliation of layered
silicates in polymer and solvent matrices. The organic material

acts as a separator of interlayer Coulomb attraction that
amounts to several hundred mJ m�2 if not mitigated by organic
surfactants. Some Coulomb attraction remains at monolayer
thickness depending on the choice of the head group (Fig. 38b).
For monolayer and bilayer coverage, the alternation in cleavage
energies between high and low values can be seen. Interlayer
properties such as gallery spacing, interlayer density, the percentage
of anti and gauche conformations, associated changes in vibration
spectra, as well as cleavage energies can be computed in near-
quantitative agreement with measurements. The current upper
size limit to monitor the motion of atoms in predictive quality
using classical molecular dynamics simulation is between
10 and 100 nm.

Fig. 39 Schematic of clay mineral layers (brown) containing mixtures of superficial alkali cations (green dots) and alkylammonium surfactants (tilted light
brown areas). Partial ion exchange may lead to either (a) homogeneous structures containing surfactants and remaining alkali cations or (b) phase
segregated structures containing islands of surfactants and portions of non-exchanged cations. Adapted from ref. 18 and 332.

Fig. 40 Structure of homogeneous alkyl monolayers (chain length Z C10)
on flat substrates as a function of the packing density l0. Significant
reversible thermal transitions are found at packing densities between
0.20 and 0.75. Reproduced with permission from ref. 137.

Fig. 41 Reversible thermal transitions according to simulation and differential
scanning calorimetry (DSC). The packing density l0 is 0.40. (a) A transition
of semi-ordered octadecyltrimethylammonium chains to random orientation
on mica upon heating in molecular dynamics simulation. Order–
disorder transitions of the backbone as well as lateral rearrangements
of the quaternary ammonium head groups occur. (b) DSC data indicate
two corresponding transitions, of which the rearrangement of head
groups is not immediately reversible. Reproduced with permission from
ref. 18 and 341.
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5.2. Cement minerals and concrete

Cement minerals share some of the properties of clay minerals
although they are typically exposed to hydration reactions and
exhibit many possible nano and micromorphologies that contribute
to the stability and durability of building structures.327,347,348

Important cement minerals include tricalcium silicate, dicalcium
silicate, tricalcium aluminate, gypsum, ettringite, double layer
hydroxides (LDH) such as monosulfate (hydrocalumite), other
Afm phases, tobermorites 9, 11, and 14 Å that may represent
hydrated phases, as well as calcium silicate hydrate (CSH) gel
with various calcium-to-silica-to-water (C/S/H) ratios.326,349 The
quantitative simulation of structural and surface properties of
these phases is feasible with the PCFF-INTERFACE force field,
including quantitative insight into aqueous properties and
polymer-stabilized phases.11 These recent tools can answer open
questions in the understanding of the interfaces, reactions, and
structure formation on the nanometer scale, helping to overcome
limitations in experimental techniques.327,349–353 In combination
with quantum and continuum methods, multi-scale simulations
are expected to play a significant role in gaining further funda-
mental understanding of grinding and hydration processes in
cement due to growing pressure to reduce the global CO2

footprint upon cement production, to increase the lifetime of
building structures, and rationalize the setting properties of
alternative cement formulations.351

An example for a strongly ionic and reactive surface is that of
tricalcium silicate, Ca3SiO5, the main component of Portland
cement (also called C3S). The mineral is composed of individual
silicate tetrahedra, calcium ions, and oxide ions. The anisotropy
of the arrangement of ions is comparatively low and cleavage
energies of various crystal planes are similar (Fig. 43).80 Cohesion
is caused to over 95% by internal Coulomb interactions and is very
strong; the cleavage energy of 1340 mJ m�2 is comparable to
precious metals (Table 1). Unhydrated portions of cement particles

consist mainly of C3S and the strength of C3S, including a bulk
modulus of 105 GPa, contributes to the mechanical stability of
concrete. It is hereby notable that tricalcium silicate is nevertheless
only partially ionic and partially a covalent compound, as the
atomic charges are ca. +1.0e for Si, �1.0e for silicate oxygen,
+1.5e for calcium ions and �1.5e for oxide ions, respectively (see
Section 2). The balance between covalent and ionic bonding is also
innately connected to the reactivity of the surfaces with water. In
the first step of the hydration reaction, oxide ions are instantly
hydrated to hydroxide ions, and silicate tetrahedra experience
hydration to superficial silanol groups. The process of subsequent
deposition of calcium hydroxide and dissolution of individual
silicate species leads to condensation and formation of oligomeric
silicates (C–S–H gels).327 Ongoing investigations by spectroscopy,
imaging, and simulation aim at better understanding of such
nanoscale processes to control the complex interactions between
multiple inorganic and added organic phases, both thermo-
dynamically and kinetically.

The cation density on the surface and interactions with
organic molecules can be conveniently analyzed using models

Fig. 42 Gallery spacing and visualization of alkylammonium montmor-
illonites as a function of chain length. (a) Basal plane spacing of alkyl
ammonium chains grafted to montmorillonite of low CEC (91 meq/100 g)
as a function of head group and chain length at stoichiometric ion
exchange. The successive formation of monolayers and bilayers is shown
using atomistic models, and the computed basal plane spacing agrees
better than 5% with X-ray data. (b) TEM micrograph of an organically
modified montmorillonite lamella embedded in an epoxy polymer matrix
(upright orientation). The visualization of the layered silicate is possible
similar to the simulation, however, the location of surfactant chains or of
polymer cannot be traced. Reproduced with permission from ref. 345 and 346.

Fig. 43 The surface of tricalcium silicate, Ca3SiO5, and its interaction with
organic alcohols used as grinding aids. (a) Adsorption on the representative
(040) surface involves complexation of Ca2+ ions and hydrogen bonds
between hydroxyl groups of the alcohols with hydroxide and silicate
groups on the mineral surface (shown for TEA at 383 K). Some disorder
of the superficial silicate tetrahedra can be seen. (b and c) Origin of the
reduction of agglomeration forces by multiple molecules above mono-
layer coverage in the agglomerated and separated state (shown for
glycerine). The agglomeration energy corresponds to the difference
in energy between state (c) and (b). (d) Common alcohols and amines
used as grinding aids in cement production. Reproduced with permission
from ref. 80.
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and molecular dynamics simulation (Fig. 43). Alcohols and amines
of low molecular weight such as glycerine and triethanolamine are
commonly used to prevent agglomeration of cement particles
upon grinding to achieve energy savings in a ball mill (Fig. 43d).
Computer simulations helped explain the effect of such modifiers
in molecular detail.80 The analysis of adsorption energies on
representative low energy (040) surfaces showed that adsorption
can be rather strong on initially hydrated as well as on non-
hydrated surfaces, on the order of �20 to �50 kcal mol�1. The
origin of adhesion are the complexation of superficial Ca ions
by hydroxyl groups in the alcohols as well as hydrogen bonds
between superficial hydroxide groups of C3S and amine or
hydroxyl groups of the alcohols (Fig. 43a). The area density of
calcium ions on the surface is very high, including 3.2Ca2+ per nm2

on the immediate outer surface layer and 2.6Ca2+ per nm2 in
the upper plane of silicon atoms, totaling 5.8Ca2+ ions per nm2.
Due to the high charge of calcium and the high area density on
the surface, the cations do not easily dissolve or swell. However,
they induce very strong adsorption. At the same time, an
organic layer of more than monolayer thickness reduces the
strong Coulomb forces between cleaved surfaces very effectively
(Fig. 43b and c). The adsorbed molecules thus function as a
spacer, and the agglomeration energy can be computed as the
energy difference between the separated (Fig. 43c) and unified
surfaces (Fig. 43b) in equilibrium. It was also found that the
effectiveness as a spacer, which reduces the agglomeration
energy between cleaved mineral surfaces, does not correlate
with the trend in adsorption strength. Flexible, surface adaptive,
and strongly adsorbing molecules such as glycerine do not
effectively keep the surface apart; rather some alkyl groups are
required to act as a potent spacer and grinding aid. The reduction
in agglomeration energy can be quantified in first approximation
by assuming idealized even surfaces, and the computed trend
among a number of candidate molecules agrees with observations
in energy savings in the ball mill (Fig. 44).80 Just one monolayer
of organic molecules of about 0.5 nm thickness reduces the
agglomeration energy over 95% compared to the original cleavage
energy of 1340 mJ m�2, and by about 80% compared to the
agglomeration energy of 250 mJ m�2 of initially hydrated
tricalcium silicate surfaces. The high efficiency is due to the
spacer effect and the minimization of local dipole moments by
molecule-specific complexation of surface ions.

6. Challenges and opportunities

The diverse examples illustrate a range of systems where
computational insight into inorganic–biological and inorganic–
organic interfaces contributes to better understanding of binding
mechanisms, nanostructure growth, chemical reactions, and other
property predictions to help improve devices and other products.
Major challenges associated with the mentioned simulation
methods are (1) the interpretation of computational results in
the context of a broad spectrum of length and time scales, (2)
the need for reliable and perhaps electronic-structure enhanced
force fields for a broader range of compounds, (3) the question

to which extent chemical knowledge and automation shall be
used to derive new parameters, as well as (4) the choice of
problems for computer simulations of societal relevance where
the broader impacts are high.

A common challenge is often how to interpret the simulation
data, for example at a length scale of 10 nm and a time scale of
100 ns, in the context of a device or a product that is macro-
scopic, performs over the duration of seconds, and involves
nanoscale self-assembly as well as electrical conductivity. In a
biosensor, as an example, the function of the device is inherently
multi-scale, and pertinent information can be obtained from a
range of experimental measurements, DFT calculations, MD
calculations, and coarse-grain/continuum models. Complex
problems such as this are common, and it is then important
to break down and relate the overall performance to sub-problems
that can be answered using individual experimental and computa-
tional techniques for relevant time and length scales (Fig. 1). The
most effective combination of approaches, such as the translation
of atomistic information into coarse-grain models and vice versa,
to obtain comprehensive predictions, can be a determinant for the
level of success versus failure.

Another challenge is the development of validated force
fields for a broader range of compounds, especially for inorganic
compounds, and eventually the inclusion of electronic structure
features such as the arrangement of p electrons in graphitic
materials, d electrons in transition metals, etc.71 The procedure
for such developments, where the Hamiltonian reproduces
structures and energies, has been laid out (Fig. 3). Some classes
of promising compounds that may benefit from further parameter
developments include graphitic materials, organic (polymeric)
semiconductors, quantum dots, layered materials such as
(Mo,W)(S,Se)2, metals of different crystal structure, alloys,
oxides, and mixed oxides. Ultimately, it would be desirable to
cover most (or all) compounds across the periodic table in high
accuracy in a uniform simulation platform. A continuing
challenge is that breaking or forming covalent bonds in simulations
require adjustments in bond connectivity, reactive force fields, local
QM calculations, or QM/MM approaches.50,354–358

Fig. 44 Computed agglomeration energy of C3S, initially hydrated C3S,
and organically modified surfaces slightly below monolayer coverage in
the separated state (0.20 mg m�2). The trend correlates with the observed
energy demand in ball mills. Reproduced with permission from ref. 80.
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Such development efforts also raise the question to which
extent chemical knowledge and understanding of the models
should be the basis of force field development, or automated
fitting approaches should be employed.73,76,77,359 Opinions are
divided on this point, nevertheless, experience shows that force
fields and models based on chemical knowledge and careful
interpretation of all parameters outperform automated assign-
ments by a margin. It is helpful to recall that models are always
a copy of the real thing, i.e., they will never be as good as real.
Therefore, a choice needs to be made between the best attempt
involving current chemical knowledge and interpretation, or to
leave the parameter derivation to fitting algorithms which by
themselves may involve additional assumptions and not match
up in validity. The benefit of automated parameters derivation
is access to a broader range of compounds and the commercial
potential of broadly usable simulation platforms. In this regard,
automation can be very beneficial to the scientific community
provided procedures are simple and sensibly chosen. On the
other hand, careful compound-per-compound chemical analysis,
including analogy considerations to similar compounds and
parameter validation against experiments, appear to be necessary
at least for key compounds to provide supportive benchmarks
for automated approaches. The INTERFACE force field, or
similar approaches that take into account chemical knowledge
and understanding, send a clear message that force fields
based on this approach can outperform DFT methods in
(non-electronic) properties. Then, the accuracy of classical force
fields exceeds that of quantum methods at a million times
lower computational cost.

A major challenge is also the choice of problems for simulations.
While simulations tend to be less involved than experiments, a
certain entrance barrier is present, especially if model development
and validation efforts must precede actual mechanistic analyses and
property predictions in comparison to measurements. It is therefore
advisable to choose modeling problems carefully with respect
to anticipated impacts, specific societal or corporate product
needs, and feasibility to solve the stated problem. The choice of
computational methods can also be guided by the type of
experimental data that is available or anticipated to become
available for comparison and verification of predictions.

7. Conclusion

In conclusion, methods for the simulation of inorganic–organic
interfaces and applications to materials design have been
reviewed. The emphasis was placed on the 1 to 100 nm scale,
classical atomistic methods, and a feedback loop between
refined understanding of chemical bonding, translation into
accurate force fields, chemically realistic simulations, and
interpretation of the computational results in the context of
experimental characterization and performance measurements.
Specifically, surface properties of metallic and nonmetallic
solids at the nanometer scale and governing principles of the
selective adsorption of molecules, surfactants, and biopolymers
were explained and illustrated by examples. Clear distinctions

emerge between precious metal surfaces, polar pH responsive
surfaces such as silica, and densely ionic mineral surfaces such
as calcium apatites. Whereas precious metal surfaces are rather
simple chemically and exhibit strong attraction, many polar
surfaces are prone to protonation/deprotonation equilibria and
surface reactivity. The differences in surface chemistry determine
available options to control the assembly of surfactants, polymers,
and biomacromolecules, and to grow defined nanomaterials
from available precursors. A wide variety of chemically different
surfaces may often be encountered that originate from the
‘same’ principal material such as silica, apatite, or calcium
carbonate. We explained, from the perspective of accurate
atomistic models, simulation, and from available experimental
results, the mechanisms of selective binding of ligands and
polymers to these different materials classes as they are currently
known. Applications to estimate binding affinities to nano-
particles, to understand crystal growth, to design catalysts, and
to predict agglomeration forces have been shown. The examples
also demonstrate that the accuracy of force fields, supported by
the interpretation of the parameters and comparison with
experiment, can exceed that of density functionals at a fraction
of the computational cost.

The different types of substrates possess unique surface
characteristics. High surface energy on metal surfaces leads
to soft epitaxial adsorption and associated growth preferences.
Cation dissociation and hydrogen bonding on silica surfaces
depends strongly on pH and leads to binding of highly different
peptide sequences. A fixed area density of cations on clay
minerals, which results from defect substitution sites, allows
grafting of surfactants layers with controllable definition by ion
exchange. Strongly ionic surfaces on apatites and tricalcium
silicate are subject to protonation reactions with water, which
regulates ion dissociation and binding of organic molecules
and polymers. Essentially, the individual surface chemistry
determines the interactions with solvents, polymers, and biological
molecules so that it appears difficult to formulate universal rules for
the design of binding biopolymers that apply to all materials types.

Simulations can provide quantitative trends in interactions
and help design binding molecules for each class of materials,
allowing the formulation of materials-specific concepts with
predictive character. These concepts are (1) epitaxial matching
of molecules to given metal surfaces (under consideration of
the role of induced charges if applicable), (2) the determination
of the area density of dissociable ions on silica, apatite, and clay
mineral surfaces as a function of pH to anticipate the role of
ion pairing and cation exchange versus hydrogen bonds and
hydrophobic effects, (3) consideration of protonation states
on pH responsive surfaces such as apatite and calcite, e.g.,
based on pK values, to control specific adsorption of charged
molecules, (4) elucidation of the packing density and prediction
of tilt angles and thermal behavior of surfactant chains on
substrates where grafting can be controlled, and (5) specific
consideration of surface reactions on nanocatalysts, especially
rate-determining steps, based on chemical knowledge/first
principles calculation and including the impact of interfacial
assembly on reaction kinetics.
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Application of such concepts can provide guidance even without
numerical simulations, and semi-quantitative or quantitative
predictions are feasible using the simulation techniques described.
Laboratory synthesis and characterization is ultimately required
to test properties of new materials, empirically found or aided
by simulation. The feedback loop with computation accelerates
traditional trial-and error approaches in materials discovery and
performance enhancement.
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