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Phase-field model of oxidation: Equilibrium
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A phase-field model of an oxide relevant to corrosion resistant alloys for film thicknesses below the Debye
length L p, where charge neutrality in the oxide does not occur, is formulated. The phase-field model is validated in
the Wagner limit using a sharp interface Gouy-Chapman model for the electrostatic double layer. The phase-field
simulations show that equilibrium oxide films below the Wagner limit are charged throughout due to their inability
to electrostatically screen charge over the length of the film, L. The character of the defect and charge distribution
profiles in the oxide vary depending on whether reduced oxygen adatoms are present on the gas-oxide interface.
The Fermi level in the oxide increases for thinner films, approaching the Fermi level of the metal in the limit
L/Lp — 0, which increases the driving force for adsorbed oxygen reduction at the gas-oxide interface.
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I. INTRODUCTION

Corrosion resistant alloys withstand complete oxidation by
either preferentially forming or being coated by an oxide that
has slow growth kinetics which deter continued oxide growth
[1,2]. These protective oxide phases have such low ionic
conductivity that growth effectively stops after a continuous
layer has formed. Two of the most common protective
oxide phases are Cr,O3; and Al,O3, which provide corrosion
resistance in many high temperature alloys [3]. Although
these oxides are thermodynamically preferred to the oxide
phases of the metals they are commonly alloyed with for
high temperature applications; alloy concentration and kinetic
effects often lead to the nucleation of multiple oxide phases
during the onset of oxidation, which can have a strong effect
on the resulting morphology and composition of the surface
oxide layer at later stages [4-8].

Bridging the gap between thin and thick scale oxide growth
models is a well-known challenge, where thin and thick
are defined relative to the electronic screening length in the
oxide [9-12]. The most widely accepted theories for these
two limiting cases are the Cabrera-Mott [13] and Wagner
[14] models, which have been reviewed by Atkinson [11].
Both models rely on a single process being rate limiting:
cation injection in the Cabrera-Mott limit and diffusion in
the Wagner limit. A more complete model must address a
number of coupled physical processes in order to connect the
two regimes, namely, interfacial redox reactions, mass and
charge transport, and electrostatics. The coupling of these
processes is crucial to describing oxide growth, but the ensuing
mathematical complexities of the model require a numerical
treatment [12,15].

Here we employ a phase-field method to model an elec-
trochemical oxide-metal interface in contact with a gas. The
phase-field method is alogical approach for modeling a system
with multiple physical processes coupled at a moving interface
[16]. The method replaces a sharp interface description of a
two-phase boundary with a diffuse one, allowing the governing
equations to be continuous across a multiphase system. The
phase-field variable generally takes on a distinct value in each
phase and interpolates bulk properties smoothly through the
interfacial region. We treat the interfacial region as a two
phase mixture with distinct phase compositions, following the
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Kim-Kim-Suzuki (KKS) and Steinbach models [17,18]. The
KKS model decouples the equilibrium interfacial energy and
thickness from the chemical free energy expressions and is
better suited for treating systems with steep free energy com-
position curves, as is the case for most metal oxides. Although
not addressed here, it is relatively straightforward to add mul-
tiple crystallographic orientations and additional free energy
contributions such as that stemming from strain to a phase-field
model, which will be important in developing better models
of oxide-metal interfaces in the future [19,20]. In the present
study we focus on the addition of the electrostatic free energy
contribution to the system to model the electrostatic double
layer at the interface. Treating the electrostatic double layer is
important for modeling scales between the Cabrera-Mott and
Wagner regimes, but is computationally challenging due to the
exponential decay of space charge away from interfaces, which
requires an extremely fine numerical resolution to model ac-
curately [10,21]. We employ the simplest defect structure that
allows for oxide growth in order to avoid complications such
as multiple moving interfaces and defect-defect interactions.

Phase-field models of electrochemical interfaces, first
developed by Guyer et al. [22,23], have been used to model a
few one-dimensional electrochemical systems [24,25]. Guyer
et al. studied an electrolyte-electrode interface and showed that
the charge distribution and electrostatics agree with classic
electrochemical interface theory and that the differential
capacitance curves diverge from theory but qualitatively
agree with the complex curves seen in experiment [22]. A
continuing difficulty with electrochemical phase-field models
is understanding the interplay between the electrostatic double
layer and structural interface, as a closed-form solution for the
interfacial free energy and thickness are not currently known.
Here we solve the governing equations for an equilibrium
oxide film to demonstrate that for protective oxide phases such
as Cr,O3 and Al,Os3, the Debye length and structural interface
width are disparate enough to treat them independently. This is
validated with a sharp interface description of the electrostatic
double layer.

II. MODEL BACKGROUND

Two structural interfaces develop as an oxide layer forms on
the surface of a metal: a gas-oxide and oxide-metal interface.
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The oxide layer can grow or shrink by the migration of
either interface, with the velocities of the two interfaces being
determined by reaction thermodynamics, interface kinetics,
and relative mobilities of the defect structures in the oxide.
Anion and cation transport facilitate the motion of the oxide-
metal and gas-oxide interfaces, respectively. In a standard
phase-field model of a phase transformation, the length scale of
each moving structural interface is defined by the equilibrium
phase-field interfacial thickness, whereas in a sharp interface
description this interface has zero thickness [16]. In the present
study we will only consider anion diffusion in the oxide, so
that only the oxide-metal interface is in motion. In this case we
only need to treat the oxide-metal interface with a phase-field
description because the gas-oxide interface is stationary.

In addition to the structural interfaces, charged double
layers develop at phase boundaries in electrochemical systems.
The double layers form due to the differences in equilibrium
chemical potentials of the charged species in the materials
[26]. An associated electrostatic potential difference, referred
to as the Galvani potential, develops between the bulk phases
that equilibrates the electrochemical potentials across the
system. The space charge composing the double layer decays
exponentially in the bulk phases due to screening by mobile
charge carriers, with a characteristic length scale given by the
material’s screening length, referred to as the Debye length in
semiconductors, classically defined as [27]

SOkBT
Lp= |2, (1)
e~Cyq

where c; is the native charged defect density (moles of
elementary charge/m?) in the oxide, £? is the permittivity
of the oxide, and e is the elementary charge. Protective oxide
phases have Debye lengths on the order of tens or hundreds of
nanometers due to their low native defect concentrations [11].

Wagner derived the well-known parabolic growth law for
diffusion limited oxide growth by assuming the oxide scale
is large compared to its Debye length [14]. In other words,
Wagner assumed that the length scale of the electrostatic dou-
ble layer is very short compared to the oxide scale thickness,
which means that the spatial variations in the electrostatics
are localized at the interfaces. Under this assumption the
space charge in the bulk oxide is zero, which results in a
spatially invariant electric field from Gauss’s law. Wagner then
assumed a coupled currents condition in the oxide, or that
the net current is zero everywhere. With these assumptions
the interfacial charging is constant in time and the electric
field can be incorporated into an effective diffusivity for
ionic and electronic transport. Wagner’s assumptions break
down, however, when oxide thickness is not significantly
greater than the Debye length. When the oxide thickness is
on the order of the Debye length, the space charge can no
longer be considered localized at the interfaces. In this case,
the spatially resolved electric field must be treated in the
bulk oxide to accurately model growth. Since, from Eq. (1),
the Debye length in an oxide scales with its defect density
as Lp « ch/ 2, modeling the growth of oxide scales below
the Wagner limit is particularly important to understanding
the growth kinetics of protective oxide scales, which tend to
have low defect densities [11].
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FIG. 1. Schematic of a uniform oxide scale of thickness L grown
on a metal surface in gas.

III. MODEL DESCRIPTION

We consider a single oxide phase O (Metal Oxide) growing
on a metal M after a thin continuous layer of thickness L and
area A has nucleated on the surface, shown schematically in
Fig. 1. The coordinate system is chosen such that X is in the
growth direction and the oxide film is uniform in the y and
Z directions. In order to avoid considering volume expansion
during oxide formation, the lattice constants in the oxide and
metal are treated as equal. The oxide defect structure consists
of neutral anion vacancies, V4, and electrons e, as is known
to be reflective of alumina growth where oxygen vacancies are
the primary diffusing species [28]. By only treating neutral
anion vacancies we avoid having to consider defect-defect
interactions in the oxide that would need to be accounted for
if multiple ionic defects were included [29,30]. Although this
is a simplification of the defect structure, it has been shown
to capture the coupling of the spatially resolved electric field
with ionic diffusion that we are interested in [28,31,32]. The
electrons in the oxide are localized on the cation sublattice, so
that they have the same configurational entropy contribution as
the anion vacancies [33]. In this formulation, the conduction of
negative charge in the oxide is dominated by electron hopping
between cation sites as opposed to, for example, diffusion
of negatively charged cations or a conduction band in the
oxide [34].

With the preceding assumptions, the mole fractions X of
electrons and anion vacancies in the oxide are given by

molar density of i

X; = - — fori =e,v, 2
molar density of i’s sublattice e @

where e and v represent electrons and anion vacancies,
and electrons reside on the cation sublattice. In order to
avoid considering volume changes during diffusion, the molar
volume of the anions and anion vacancies are assumed equal
and the molar volume of the electrons is zero.

The metal is composed primarily of conduction electrons
e~ and metal atoms M*, with each metal atom contributing
one electron to the conduction band. The electrons are treated
as a free electron gas in the metal phase and the density of
states at the Fermi level is assumed small enough so that
the entropic contribution to the free energy of the electron
gas is negligible [35]. We assume there are no defects in the
metal phase, for example dissolved oxygen, that contribute
significantly to the oxide growth. However, from a modeling
perspective we cannot set the anion concentration in the
metal equal to zero, and for this reason we must assume a
small concentration of negatively charged oxygen defects in
the metal. For simplicity, we treat these oxygen defects as
interstitials so that they do not mix with the metal atoms on
the metal lattice. A single interstitial site is associated with
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each metal site so that the entropic free energy expression for
the oxygen atoms is equivalent in both phases.

The molar densities of electrons €', anions Aﬁ, cations M ZE,
and anion vacancies V} (Kroger-Vink notation) in the oxide-
metal system are denoted by c,, ¢,, ¢y, and ¢,, respectively,
which have charge numbers ¢, = —1, g, = ¢, =0, and
gy = 1. For accounting purposes in the oxide, we also define
electron holes 2™ on the cation sublattice that represent cation
sites that lack an extra electron. If we define C as the molar
density of the sublattices in the oxide and metal, structure
conservation requires

Ccm = ¢4 +c, =C everywhere, 3)

Cotcp=cC in the oxide, 4

which reflect that the cation molar density c,, is fixed and equal
to C across the system, and that the sum of the anion and anion
vacancy molar density must be equal to C everywhere. The
sum of the electron and hole molar density must be equal to C
in the oxide, but there is no structure conservation requirement
for the free electron gas in the metal. Therefore the system can
be fully described by the anion vacancy and electron densities.
The molar densities are related to mole fractions defined by
Eq. (2)as X; = ¢;/c. Given the charge numbers of each species
listed above, the defect density dependent charge density p is
given by

p= Y. qcF =(c,—c)F, (5)

i=e,a,m,v

where F is Faraday’s constant. The local electrostatic poten-
tial, ¥, in the system is related to the charge density through
Gauss’s law:

~V.[¢eE]=V [eVy] = —p, (6)

where ¢ is permittivity and E is the electric field. Although
we do not impose local charge neutrality, the total charge in
the system is conserved since there is no flux of charge into
the oxide-metal system from the gas phase:

/pdV:O:/[cu—}—ce]dV:O.
14 14

We only treat anion diffusion in the oxide; however it is
straightforward to adjust the system to describe cation vacancy
diffusion rather than anion vacancy diffusion, relevant to other
oxides such as NiO [36]. In this case ¢, would represent the
cation vacancy density. In order to conserve charge in the
oxide, mobile holes #°* would replace the conduction electrons
¢'. The corresponding defect charge numbers would be
qn =1, g, =qn =0, and g, = —1. Structure conservation
would require ¢, = ¢, + ¢, rather than c¢,, = ¢, + ¢,. The rest
of the paper proceeds assuming anion vacancy diffusion.

A. Bulk phase thermodynamic formulation

According to Egs. (3) and (4), an anion vacancy or electron
cannot be created on their associated sublattices without
removing an anion or hole. Therefore the chemical potential
of these single species cannot be evaluated without violating
structure conservation. To address this, we follow Lankhorst
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et al. by defining the following structure elements in the oxide:
{(Vi}=Vi—A; and {e}=¢ —h", @)

which represent an exchange of species occupying a particular
sublattice site [30]. The structure elements have physical
chemical potentials that can be evaluated as differences in
the nonphysical chemical potentials of the individual species
being exchanged.

We start by assuming an ideal solution model for the Gibbs
free energy density of the oxide phase. The ideal solution
model for the chemical part of the Gibbs free energy density
of the oxide phase is

Gl = <lui? +:) + 3 2

i=v,e

c? c—c? c—cf
+RT|{ In— + o In .
C c C

i

The quantity u$? 4+ 2@ is the chemical potential of the

defect-free oxide, which can be evaluated without violating
structure conservation. The quantities u?lj} are the standard
state chemical potentials of the structure elements defined in
Eq. (7) and are differences in the single species standard
state chemical potentials. For example, the standard state
chemical potential of the vacancy structure element is given
by upd = w3y — il

The anion and electron contributions to the chemical Gibbs
free energy density of the metal phase are treated with an ideal
solution and free electron gas model, respectively. A structure
element for the anions in the metal is defined in the same
fashion as in Eq. (7) for the oxide phase. Since there is no
condition of structure conservation for electrons in the metal,
the chemical potential of a single electron in the metal is well
defined. The chemical part of the Gibbs free energy density of
the metal phase is

M

C(‘
M oM M M oM
Gideal =Cu, + /0 e de+ (C -G )[M{a}

M M C—cM
+RT< v lncL—i—ln v )]
c—cM ¢ C

As with the oxide, the quantity 12 is the chemical potential of
the defect-free metal. The electron density dependent electron
chemical potential u is taken as the standard Fermi level
expression from free electron gas theory [35]:
NA5/3h2(37T2)2/3 ( M)2/3

= — - Ce

e ’

2m,

where /i is the reduced Planck’s constant, m, is the mass of
an electron, and N, is Avogadro’s number. To simplify the
notation, we drop the brackets representing structure elements
in the chemical potentials in the rest of the paper, but all defect
chemical potentials still refer to structure element chemical
potentials as defined in Eq. (7).

To make the problem more computationally tractable, we
express the composition dependent chemical Gibbs free energy
densities of the metal and oxide phases as second-order Taylor

expansions about the two-phase equilibrium densities ¢/, , for

i,eq’

i =e,vand j = O,M. We have taken advantage of the fact
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that the bulk phases must be charge neutral at equilibrium,
which from Eq. (5) implies that the equilibrium density of
electrons and anion vacancies are equal in a given phase:

b = =)
Ceq - Ce,eq - cv,eq

for j = O, M.

The Taylor expanded Gibbs free energy densities are given by

6! =6+ 3 [ullel —ct) + 18/l — )]

i=e,v

forj = O,M, 3)

where ,ulj g = (0 Gijdeal / ac{ )|c£q are the two-phase equilibrium
chemical potentials, Bl.j = (82Gi{ieal / ac{ 2)|c£ are the second
derivatives of the free energy densities at équilibrium, and
G = Giiieal |, are the equilibrium free energy densities. The
expressions for M,Je , and Bij are provided in Appendix A.

We can derive standard expressions for the chemical and
electrochemical potentials of each species from the Gibbs free
energy densities:

G/
aC,‘

Al =ul +qFy/ fori=ev and j=0,M. (9)

= g + B/ (c] = cly).

J _
M = eq

For convenience, we choose the arbitrary zero of the free
energy scale to coincide with the equilibrium chemical free
energy density of the oxide phase in two-phase equilibrium.
The chemical Gibbs free energy densities can then be written

1
o=y [ufeq(c? —c2)+ 5B;’(c? - cg)z], (10)

6" = X [ty et — el + 38 (e¥ — )] +

Y

where AG® = G°™ — G°© is the difference in two-phase
equilibrium Gibbs free energy densities, provided in Eq. (A4).
The quantity AG® contains the difference between the chem-
ical potentials of the defect-free metal and oxide structures
Ap°, defined by

Ap® =t — pn? — . (12)

B. Oxide-metal equilibrium

The oxide and metal phases are at equilibrium when
there is zero driving force for phase transformation and the
electrochemical potential of each species is uniform across
the system. These conditions result in three equations for the
two equilibrium defect densities and the equilibrium potential
difference between the bulk phases, Ay° = ef‘(’]’ - 1//31. The
potential difference Ay° is the Galvani potential between the
oxide and metal, a materials property related to the difference
in equilibrium chemical potentials of charged species between
the two materials [37,38]. The Galvani potential develops via
the formation of the electrostatic double layer as charged
species migrate to the material where they have a lower
chemical potential. The Fermi level is typically lower in the
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oxide than in the metal, in which case 1//3(’1’ will be higher
than 7.

The driving force for phase transformation in the oxide-
metal system, denoted by I1,,, with units of J/mol, can be
derived from the chemical free energy densities in Egs. (10)
and (11) and the electrostatic free energy density:

CMom = G¥ (e} ce") = G(c)) )
+ 20 L =)l ]+ oMM = o0y (13)

i=v,e
At equilibrium, the driving force must be zero:

l_Io/m |cf’ =cl=cf M =cl=clt = 0. (14)

The equilibrium electrostatic potentials of the bulk phases
E‘ZI and we":]’ do not appear in Eq. (14) because the bulk
phases are charge neutral at equilibrium. The condition of

electrochemical equilibrium of each species is given by
ﬂ,lM|CM yM = /,_LiO|C0’1/,34 fori =e,v. (15)

eq> Yeq eq

Equations (14) and (15) uniquely determine the equilibrium
densities and Galvani potential between the bulk phases. The
Galvani potential is solved for by substituting Eq. (9) into
Eq. (15) and rearranging to find ¥ — 12, and is given by

o M
_ I’Li,eq - I’Li,eq

AY° o F fori =e,v. (16)

C. Gas-oxide interface

The gas-oxide interface is treated as a sharp interface
throughout the paper since zero cation diffusion implies that it
is stationary. The oxygen flux from the gas phase onto the oxide
surface is assumed fast compared to the flux of oxygen into the
oxide, such that the oxygen supply from the gas is never rate
limiting. Therefore there is an adsorbed layer of oxygen present
on the oxide surface that is in chemical equilibrium with the
gas phase, independent of the oxygen flux into the oxide. It
is important to consider the charge state of oxygen species
present on the oxide surface. For example, at room temperature
oxygen primarily exists as a chemisorbed O ~ species on nickel
oxide [39] and as neutral O, on alumina [40]. We will consider
cases with and without surface oxygen reduction. If reduced
species do exist on the oxide surface then a second double layer
will develop at the oxide-gas interface. We defer treating this
second double layer until we have analyzed the oxide-metal
interface. Below we describe the reaction rates and equilibrium
conditions at the gas-oxide interface for both cases.

1. No surface oxygen reduction

If no reduced oxygen species exist on the oxide surface then
the oxygen reduction and injection into the oxide must occur
in a single step:

0x,+¢e +Vy < A (17)

The species O, is a charge-neutral oxygen adatom. The
change in molar Gibbs free energy for the above reaction is

My = =) — 2l — ity (18)
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remembering that the chemical potential of O is equal to

the chemical potential of oxygen in the gas, u,. The value
of e is given by pg = pye(T) + In p})/f, where po, is the
partial pressure of O, in the gas. The temperature dependent
standard state free energy of oxygen gas can be found in
a thermochemical database [41]. The flux of vacancies and
electrons at the gas-oxide interface due to the reduction
reaction is taken to follow first-order reaction kinetics and
is given by [42]

Jo = Jo = kT, (19)

where k is a temperature dependent rate constant. Equa-
tion (19) is valid for |I1,/,| < RT. Equation (18) must be
zero at equilibrium, which implies

fl +al = —p, atequilibrium. (20)

Therefore the bulk gas, oxide, and metal phases are at
equilibrium when Egs. (14), (15), and (20) are satisfied.

2. Surface oxygen reduction
If a reduced oxygen species does exist on the oxide surface
then we assume the oxygen reduction and injection into the
oxide occur in two steps, 7| and r;:

r N ’
+e Oads’

0><

ads

o,

n
ads + V/; A:;

where O], is the reduced oxygen adatom. Note that these
reactions sum to the reaction in Eq. (17). The surface
molar density of reduced oxygen is denoted ¢ (moles/m?)
and the associated surface charge density p” is defined as
A_ _ F A
P .
The change in molar Gibbs free energy of each reaction
step is

Mt =g = 7 = Mg @D

My = =) — g (22)

where fi,- is the electrochemical potential of the reduced
oxygen adatoms and is treated as a constant here. We do not
use the subscript o for ji,- to avoid confusion with the notation
for the electrochemical potential of oxygen in the oxide.

The reaction fluxes are again taken to follow first-order
reaction kinetics and are given by

Jo= T, 23)
Jy = Krznrzs (24

904

L = Krzl-[rz - Kr1 Hr11 (25)

ot

where k,, and k,, are the temperature dependent rate constants
for r; and rp. For simplicity we assume k. =k,,. Equa-
tions (21) and (22) must be zero at equilibrium. If we sub-
stitute the gas-oxide equilibrium condition —u, — 29 = ¢
from Eq. (20) into Eq. (21), then Egs. (21) and (22)
become equivalent and yield a single equation for the
equilibrium condition of the reduced surface oxygen
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species:

flg- = —[LUO at equilibrium. (26)
Since fi,- is treated as a constant here for simplicity, Egs. (21)
and (22) will reach equilibrium due to shifts in the vacancy and
electron electrochemical potentials at the gas-oxide interface.
The presence of the reduced oxygen species does not change
the equilibrium conditions for the bulk gas, oxide, and metal
phases, which are still given by Eqgs. (14), (15), and (20).

IV. OXIDE-METAL SHARP INTERFACE DESCRIPTION

We first treat the structural oxide-metal interface with a
sharp interface approach in order to calculate the interfacial
energy of the electrostatic double layer. The distribution of
space charge at the interface in our model follows Gouy-
Chapman theory, where the charged species obey a Boltzmann
distribution and have a negligible size effect [43]. The Debye
length L in the oxide and screening length Ly in the metal
for our free energy formulation are derived in Appendix B and

are given by
F2( 1 1\1"?
to=1o\Bo*389)] - &7

F2 /1 1\
Lsz S_M W_'_W , (28)

where &/ is the permittivity of phase j. As discussed in
Appendix B, in the dilute limit Eq. (27) agrees exactly with
the expression given in Eq. (1), and Eq. (28) approaches the
Thomas-Fermi screening length expected for a free electron
gas as the anion concentration in the metal goes to zero.

In the sharp interface description there are discontinuities
in the charge density and electric field, or equivalently the
gradient of the electrostatic potential, at the structural interface.
It is straightforward to calculate the magnitude of the space
charge that accumulates at the interface to equilibrate the
electrochemical potentials in the two materials, assuming
the oxide is in the Wagner limit. To calculate the interfacial
properties, we consider the oxide-metal interface to be at
x = 0, with the oxide and metal extending tox = —ooandx =
oo, respectively. Since the absolute value of the electrostatic
potential is arbitrary, we choose the value in the bulk oxide to
be zero for convenience. The charge density profile, following
Gouy-Chapman theory, is given by

A0€x/LD

forx < 0,
px) = AMp—x/Ls

for x > 0, (29)

which has a jump discontinuity at x = 0. The constants A©
and AM are the values of the charge density on either side of
the oxide-metal interface. The total charge in either phase, o ©
and o™, can be calculated by integrating the charge density
profiles:

0% = lim / p(xNdx' = A°Lp, (30)
x—0— —o0
o0

oM = 1ing+ p(xNdx' = AMLg. (31)
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Charge neutrality implies that the total charge in the oxide-
metal system, 0 4+ o™, must be zero. We define the magni-
tude of the charge in either phase, 0 %M as

o/M

o M
o | =1lo™].

:|U

The condition of charge neutrality allows us to solve for A
in terms of A?, Lp, and Lg from Egs. (30) and (31):

We can solve for the electrostatic potential ¥ (x) in the
system by integrating Gauss’s law, Eq. (6), for the charge
density profile in Eq. (29), with the boundary conditions

Iy oy

Iim — = lim — =0,
x—>—00 QX x—>00 0X
lim ¢ =0,
X—>—00
li =1l ,
xl}%)l* w xlg)l+ w

where, again, the choice of ¢ = 0 in the bulk oxide is arbitrary
and chosen for convenience. The resulting expression for the
electrostatic potential is

__AZgDZeX/LD for x < 0,
V(x) = (32)
ALt | AL (] omv/Ls) forx > 0,
where ¥ (x) is continuous but dyr/dx is discontinuous at x = 0.
At equilibrium, the difference in the electrostatic potential
between the oxide and metal phase is, by definition, the Galvani
potential Atr°. This allows us to solve for the magnitude
of the interfacial charging 0 and o™ in terms of Ay° by
considering the limits of Eq. (32):

AY® = [lim Y] = [ lim y(x)]
Lp Ls
= —LpA° (8—3 + S—M> (33)

Note that the two definitions of the Galvani potential in
Egs. (16) and (33) are distinct but must be equal to the same
value. We utilize Eq. (33) to solve for AC and AY in terms of
Av° and substitute the result into Egs. (30) and (31) to find
o 9/M a5 a function of Ar°:

Lp Lg\'
oM _ |(=D | =S o
oM =|(F ) e

Our use of quadratic Gibbs free energy density functions
results in a linear dependence of the surface charge on the
Galvani potential, rather than o o sinh (Avy°) as is the case
for an ideal solution model. In fact, Eq. (34) is the first-order
expansion of the ideal solution expression for the interfacial
charging of an electrostatic double layer [43].

We can derive the equilibrium electron and anion vacancy
density profiles in the system by substituting the electrostatic
potential profile given in Eq. (32) into the expression for the
electrochemical potential given in Eq. (9). Electrochemical
equilibrium requires

. (34)

12 (x) = aM(x) = constant
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fori = v,e. Applying the boundary conditions

- 0_ .0
lim ¢ =¢, and

X—>—00

lim ¥ =M
X—> 00 ! eq

fori = v,e and solving for the equilibrium electron and anion
vacancy density profiles yields

forx <0,

¢y = qigo ()
Ci(x)zi P (35)

M —qifwlv(x) — Ay°] forx >0,

fori =v,e,

where we have simplified the expression in Eq. (35) using
the expression for the Galvani potential given in Eq. (33).
Like p(x) in Eq. (29), the electron and anion vacancy density
profiles have jump discontinuities at x = 0.

Finally, we can calculate the electrostatic portion of the in-
terfacial energy by integrating the free energy density over the
oxide and metal using the charge densities and corresponding
electrostatic potentials derived above (see Appendix C):

1 [(BeM = BY) (1, + 1)

- _ o o
: ROEYT Ay ]a . (36)

Yy =

Examining Eq. (36), the formation of the double layer will
always decrease the total free energy of the system. The
second term on the right-hand side of Eq. (36) is expected from
electrocapillary theory, and alone would yield the well-known
Lippmann equation 09 = —(dyy /dAY°),, [44]. The first
term on the right-hand side of Eq. (36) is a result of the free
electron gas model and arises due to the difference in parabolic
constants in the metal phase.

V. PHASE-FIELD MODEL

We now represent the structural oxide-metal phase bound-
ary as a diffuse interface described by a phase-field parameter
¢. The phase-field parameter ranges from 0 to 1, where
¢ = 0 represents the oxide phase and ¢ = 1 represents the
metal phase. Bulk properties are interpolated smoothly across
the diffuse interface by a common interpolation function
p(@) = $>(10 — 15¢ + 6¢2) that satisfies Ip(¢)/d¢ = 0 in
the bulk phases [45]. The value of p(¢) may be interpreted as
the local volume fraction of the metal phase. The oxide-metal
interface is considered a two-phase mixture, where the average
molar density ¢; in the mixture is the weighted average of the
two phase densities [17]:

¢ = p)cM + (1 = p@)c? fori=en. (37)

We assume that the phase compositions satisfy local electro-
chemical equilibrium in the two-phase mixture, following the
standard approach for multi-component systems [46,47]. As
both the phase-field interfacial thickness becomes small and
the film thickness becomes large compared to the Debye length
in the system, the phase-field model will approach the sharp
interface description described in Sec. I'V.
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A. Free energy functional

The total free energy of the oxide-metal system is given by
the free energy functional:

F(@,cv,ce,¥y) = / [G"’ + G + %wp]dv, (38)

that includes a phase-field, chemical, and electrostatic contri-
bution.

The phase-field free energy density G? is the sum of a
symmetric double well potential and a gradient energy penalty
term, and is given by

GY = §|V¢>|2 + AP — I,

where € is the gradient energy coefficient and A sets the height
of the double well. The phase-field free energy density goes
to zero in the bulk phases and sets the free energy penalty for
components in the two-phase mixture at the interface. When
the Galvani potential in the system is zero and there is no
driving force for oxidation, no space charge develops in the
system and the model reduces to a phase-field model of a
phase transformation without charged species (see [17,48] for
example). In this case, the two parameters € and A completely
determine the equilibrium thickness, ¢, and energy, y,, of the
oxide-metal structural interface:

2e VeA
g:\/; and y¢=—3ﬁ. (39)

The second term in Eq. (38), G'*, is an interpolation of the
chemical component of the Gibbs free energy densities of the
pure phases given in Egs. (10) and (11):

G = p(#)GM +[1 — p()1G°. (40)

The chemical free energy densities of the two phases in
Egs. (10) and (11) are expressed in terms of the individual
phase densities ¢Z, ¢, ¢?, and ¢). In order to express
Eq. (40) in terms of the average molar densities ¢, and c,,
defined in Eq. (37), we assume the local two-phase mixture
is at electrochemical equilibrium. We do not include the
equilibrium Galvani potential difference between the two
phases in the two-phase mixture: ¥ (x) = ¥ (x). Including
this internal potential difference would imply a charged double
layer at the interfaces within the two-phase mixture, and no
double layer would develop across the diffuse interface. If
one were interested in modeling an electrochemical interface
using a grid spacing much larger than the electronic screening
lengths in the materials of interest, then assuming an internal
Galvani potential would be reasonable. Local electrochemical
equilibrium within the two-phase mixture with no internal
electrostatic potential difference implies, from Eq. (9),

ufeq—i—Bio(cf)—cgl) = /Lf‘,"eq+Bfw(cfw—c%) fori =e,v.
41

The defect densities in each phase can be expressed as a
function of ¢ and the average molar density ¢; by solving
the four equations given in Eqgs. (37) and (41) for ¢2, cM, ¢©,

and cf)” . Expressing Eq. (40) in terms of ¢, and ¢,, the total
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Gibbs free energy density can be simplified to

1 BOBM
G = Z |:H«z}eq(ci - Ceq) + E ZB'Z (ci — Ceq)2

F? 1—
" - p(@)l - P(@)] (Awo)z] + p()AGE,

where
Ceg = () + [1 = p(¢)les,

[1— p@IBY uf,, + p(@)BC ul,
B; ’

Bi =[1— p(¢)I1BY + p(#)BP. (42)

The ¢ dependent density profile ¢., can be interpreted as
the average equilibrium defect density of the two-phase
mixture, and would be the equilibrium defect density profile
for Ay° = 0. The phase-field dependent terms (; ., and B;
are interpolated equilibrium chemical potentials and parabolic
constants.

The third term in Eq. (38) is the electrostatic energy density
in the system, where ¥ is the electrostatic potential in the two-
phase system and p is the charge density defined in Eq. (5). The
electrostatic potential must satisfy Gauss’s law everywhere:

=V [ E]=V -[e(p) VY] = —plcuv.co),

where the permittivity (¢p) = p(¢)e™ + [1 — p(¢)]e? isnow
treated as an explicit function of the phase-field variable
¢ and is an interpolation of the bulk values of the two
phases. In reality the permittivity is depressed at the oxide-
metal interface, but this is omitted in the present model for
simplicity [49].

Mieq =

B. Phase-field oxide-metal interfacial energy

The interfacial energy per unit area in the phase-field model,
denoted y, is defined conventionally as

F=VG0 +VMGM 4 Ay, 43)

where VO and VM are the volume of the oxide and metal
phases and A is the area of the interface. The first two terms on
the right-hand side of Eq. (43) are the free energies of the bulk
oxide and metal phases at equilibrium, and the third term is
the free energy of the interface. Remembering that p(¢) is the
local volume fraction of the metal phase, AG° = G°M _ G99,
and the energy scale is set so that G°? is zero, the free energies
of the bulk phases at equilibrium can be written

VOGOO + VMGOM
= A/{[l — p(IG°? + p($)GM}dx
=A / p(P)AG dx. (44)
Rewriting Eq. (38) as F = Af[Gcﬁ 4 Gt %tﬁp]dx and

substituting it into the left-hand side of Eq. (43), we can use
Eq. (43) along with Eq. (44) to solve for y:

y = / [G¢ +G* + %wp - p(¢)AGO}dV.
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We show below that when the Debye length Lp and the
screening length of the metal Ly are significantly larger than
the structural interface thickness ¢, the interfacial energy ap-
proaches the sum of the structural and electrostatic interfacial
energies given in Egs. (36) and (39):

y—=>vy+vys for¢/Lp K1 and ¢/Lg<1. (45)

C. Free energy minimization

The equilibrium solution of the oxide-metal system must
minimize the free energy F(¢,c,,c.,¥) with respect the defect
density, phase-field variable, and electrostatic potential fields.
We cannot take functional derivatives of Eq. (38) with respect
to ¢, ¢y, c., and Y independently, however, because i is
itself a functional of ¢, and ¢, by Gauss’s law. Following the
approach of Guyer et al. [22], we introduce a Lagrangian £ to
ensure that the solution satisfies Gauss’s law without explicitly
accounting for the dependence of i on ¢, and ¢, when taking
the functional derivatives:

L::f—/,\(v.[evw]+p)dv,

where the Lagrange multiplier A must be a field A(x) in order
to satisfy Gauss’s law across the system. The variations of £
with respect to ¢, ¢, c., and ¥ are then

8L _ 9GP aG¢+aGlot+aew V. 46
Vo | 09 | 9 ’

s 09
(SE 8Gtot l
o0& _ + -~y Fq;, —AFq;  fori=v,e, (47)
Sc; ac; 2
SL 1
— = —p—V-[eVA] (48)
sy 2

The variations with respect to the nonconserved fields ¢ and
Y must be zero and the variations with respect to the conserved
density fields must be constant at equilibrium. By substituting
Gauss’s law into Eq. (48), we can see that Eq. (48) is zero only
when A = —%W, which reduces Eqs. (46) and (47) to

5L 9G? 0G*  aG™  19s _
ok _ _vVv. + —z—=IVyl5, 49
Y Ve~ 209
5£ 8Gtol
I +q1F1,0=/11 fOI'i:v,E. (50)
Sc; ac;

Equation (50) can be interpreted as the electrochemical po-
tential of each species in the two-phase mixture. Considering
Eq. (20), the gas-oxide-metal system is at equilibrium when
fly + fle = — L, everywhere.

We formulate Allan-Cahn and Cahn-Hilliard type evolution
equations for the nonconserved phase field and conserved
defect density fields:

d 8L
9 =—-My—, (51)
ot )

86‘,‘

at
where M, and M, are the defect mobilities and My is the phase-
field mobility. We do not discuss the details of the mobilities
here since they do not affect the equilibrium solutions. We
make the simplifying assumption that the defect mobilities are

=-V.J,=V-M;Vja;) fori=uv,e, (52)
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TABLE 1. Physical and phase-field parameters.

Ap° 4x10° J/mol
C 9x10* mol/m?
o 0.0001 ¢
M 0.999 ¢

T 1000 K
eV £0

g9 70 &y
NS 0.05V

¢ 0.1Lp

Yo 2x1073 J/m?

constants so that they can be pulled outside of the divergence
operator for computational efficiency.

Values for the physical parameters used in the model,
except when explicitly varied, are provided in Table I.
These values result in a reasonable value of the difference
in the two-phase equilibrium Gibbs free energy densities,
AG®, of ~7 x 10° J/mol for an oxide-metal system [7]. The
permittivity of the oxide is chosen as an approximation for
the high-temperature permittivity of alumina [50,51]. The
permittivity of the metal is the real part of the static permittivity
of a free electron gas [52]. The dependence of the model on the
equilibrium defect densities c$, and ¢}/ as well as the structural
interface thickness ¢ is discussed below.

D. Nondimensionalization

For numerical purposes, the model is scaled by the Debye
length L p, chemical diffusion coefficient of anion vacancies
in the oxide D,, molar density of the oxide C, and temperature
T. The nondimensionalized physical parameters are indicated
with a tilde and given by

- X . 7 tD, _ «RTLp
_x:—, C:—, = —, K:—’
Lp C L3 cD,
c_GLly 5_BCL, __elp - AL
kT’ kgT kT kgT’
. eRTLpN, _  pL}Ny ucL3,
72 , b= o P
. YF 3 - M, kgT
= —, C=cCL;N , M, = )
V= Ry pA e T paL’)
- MykgT - MgykgT
MU = —3 N ¢ - .
D,C2L3, D,Lp

From this point forward we drop the tildes and take all physical
variables to be in their nondimensional form. The evolution
equations (51) and (52) and Poisson’s equation are cast in di-
mensionless form and solved below. The nondimensionalized
evolution equations are provided in Appendix D.

VI. NUMERICAL METHODS AND CONVERGENCE

The nondimensionalized forms of the evolution equations
(D1), (D2), and (D3) are solved with an explicit Euler scheme
using second-order finite differences on a uniform grid. The
sharp gas-oxide interface and the center of mass of the metal

032801-8



PHASE-FIELD MODEL OF OXIDATION: EQUILIBRIUM

are located at the left and right boundary points, x = 0 and
x = x,. The system is considered symmetric about x = x,,
which implies the metal is being oxidized from both sides and
another oxide-gas interface exists at x = 2x,. Symmetry then
implies the following boundary conditions at x = x,:

JU|X=X, = Je'x:x,. - Oa
Vi, =0.

A. Gas-oxide interfacial boundary conditions

The oxygen chemical potential in the gas, j1,,is set to satisfy
Eq. (20) in all simulations. The value of the electrochemical
potential of the reduced adsorbed oxygen species, fi,-, is
discussed below. In the first two sections of results, Secs. VII A
and VIIB, no adsorbed oxygen reduction is permitted. This
allows the oxide-metal interface to be studied without the
presence of another double layer at the gas-oxide interface.
In this case, because ji, is set to satisfy Eq. (20), the boundary
conditions for the defect fluxes at the gas-oxide interface
according to Eq. (19) are given by

Jv|x=0 - Je|x=0 = O

If oxygen reduction is permitted, as in Sec. VIIC, then
the boundary conditions for the defect fluxes at the gas-oxide
interface are given by Egs. (23) and (24). In this case as the
system evolves the oxide surface will charge until Eq. (26) is
satisfied, where the equilibrium value of the surface charge
density p* is a function of fi-.

B. Electrostatics
1. No surface oxygen reduction

If no charge exists on the oxide surface then the boundary
conditions are such that charge is conserved over the domain
0 < x < x,. The electrostatic potential and electric field are
computed at each time step by integrating Gauss’s law using
the trapezoidal rule with the boundary conditions (x =0)=0
and E(x =0)-x =0:

Ex) %= 1 /x o(x"dx', (53)
e(x) Jo

Y(x) =— /X E(x")-%dx', (54)
0

which ensures that the value of E(x) - ¥ will be zero at x = x,
if the evolution equations are accurate to at least second order.

2. Surface oxygen reduction

If surface oxygen reduction is included in the model, then
the charged layer on the oxide surface invalidates the boundary
condition E(x = 0) - £ = 0. We assume the thickness of the
adsorbed surface layer, /, is short compared to other physical
length scales in the system. In this case the boundary conditions
for the electric field and electrostatic potential at x = 0 can be

found by integrating Gauss’s law from x = —/ to x = 0 in the
limit/ — 0, assuming constant charge density within the layer:
A
s P
E(x=0)-x = po
Y(x=0)=0,

PHYSICAL REVIEW E 95, 032801 (2017)

where & is the permittivity of the reduced oxygen layer.

So the charged surface layer does not introduce a jump in
the electrostatic potential at the gas-oxide interface in the
limit [ — 0, but does introduce a jump in the gradient of the
electrostatic potential.

The electric field and electrostatic potential within the oxide
and metal phases are still calculated according to Egs. (53)
and (54), except that x = —/ is the lower bound of the integral
rather than x = 0.

C. Metal screening length relaxation

For protective oxide phases, the Debye length is at least
an order of magnitude larger than the structural oxide-metal
interface assuming a reasonable structural interface thickness
of around 0.5 nm. A typical Thomas-Fermi screening length
in a metal, however, tends to be on the order of 0.5 A.
This requires the structural interface be ~0.05 A in order to
uncouple the electrostatic and structural interfacial properties,
which is currently computationally unfeasible since we want
to model oxide scales on the order of a few Debye lengths
in thickness. For this reason we are motivated to relax the
screening length in the metal to make the problem more
tractable. We introduce a relaxation factor o that scales
the permittivity and the parabolic coefficients of the chemical
free energy density of the metal in such a way that the screening
length L g increases but the magnitudes of the interfacial charge
o 9/M and electrostatic interfacial energy yy, given in Eqs. (34)
and (36), are unchanged:

BY — aBY, BM - aBM, M — aeM. (55)

The above scaling increases Lg by a factor of « but leaves the
defect structure in the oxide phase unchanged. It is unhelpful to
relax Lg larger than L p, as the maximum structural interface
thickness will then be limited by Lp. Relaxing Lg has
the disadvantage that the domain size must be increased to
ensure that the metal thickness remains much greater than L,
but this disadvantage is far outweighed by the computational
gains from increasing the grid spacing. The equilibrium charge
distribution and electrostatic potential profiles for several
values of « are shown in Fig. 2, demonstrating that the defect
structure profiles and electrostatics in the oxide are unaffected
by relaxing the metal’s screening length. In all subsequent
results, the screening length is relaxed to the Debye length by
settinge = Lp/Lsg.

In Fig. 2, the ratio of the phase-field interface thickness
to the metal’s screening length, ¢/Lg, was set to 0.1. This
choice was made by testing the convergence of the phase-field
model to the sharp interface description as a function of ¢ /L p.
Charge distributions near the oxide-metal interface for five
values of {/Lp are shown in Fig. 3. The correspondence
between the charge distribution in the phase-field model and
the sharp interface double layer described by Eq. (29) becomes
better as ¢/Lp decreases. In order to measure how well the
phase-field model captures the sharp interface description,
we calculate the error in Eq. (45), which is a measure of
how decoupled the structural interfacial free energy and the
electrostatic interfacial free energy are. The error in Eq. (45)
is plotted as a function of {/Lp in Fig. 4. Equation (45) is
satisfied within 0.5% for ¢{/Lp = 0.1, which we choose as
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_AO L
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FIG. 2. Equilibrium charge distributions and electrostatic poten-
tials for four values of « that set Lg/Lp =1, 0.5, 0.25, and 0.1.
The ratio of ¢ to Lg is 0.1 in all cases. The charge distribution and
electrostatic potential in the oxide are unaffected by the relaxation of
the metal’s screening length.

an acceptable value for accurately reproducing the the sharp
interface description.

VII. RESULTS AND DISCUSSION

A. Wagner limit

The Debye length in the oxide is ~5.5 nm for the parameters
listed in Table I. The equilibrium defect density profiles, along
with the average two-phase equilibrium density c., defined
in Eq. (42), for an oxide film of thickness L = 10Lp are
plotted in Fig. 5. The oxygen vacancy and electron densities
go from 0.0001 in the oxide to 0.999 to the metal. This makes
it difficult to see the shifts in the defect profiles at the interface
because they are small relative to the overall density change
across the interface. Since c,, is the equilibrium density profile
across the interface for Ay ° = 0, we are really interested in
the deviations of ¢, and c, relative to ¢, for Ay° # 0, which
will show the changes in ¢, and ¢, from c,, at the interface
due to the formation of the double layer.

The deviations of the anion vacancy and electron density
relative to ¢, for L =10Lp, as well as the correspond-
ing charge density and electrostatic potential, for the same

M '
A Oxide

P
[en)

decreasing ¢/Lp
Metal

A() L

9.5 10 10.5
T / L D
FIG. 3. Charge distribution near the oxide-metal interface for
¢/Lp =0.4, 0.2, 0.1, 0.05, and 0.025. The dashed black lines are
the sharp interface solutions given in Eq. (29). The screening length

in the metal is relaxed to L p. The white and light gray regions indicate
the oxide and metal, respectively.
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1071
/—5 [-]
Fj; 1072 °
< °
 107° .
- 1074 ’ :
1072 1071 10°

¢/Lp

FIG. 4. Error in Eq. (45) as a function of ¢/Lp. The error
converges with (¢ /Lp)? until ¢/Lp ~ 0.25, at which point the error
due to the grid spacing becomes significant. For ¢ /L, = 0.1, Eq. (45)
is satisfied within 0.5%.

simulation shown in Fig. 5 are shown in the left panel of
Fig. 6. As seen in Fig. 5, both defect densities approach c,,
in the bulk phases, which are at equilibrium once the Galvani
potential difference has established across the interface. Near
the interface, the defect densities approach the interfacial
values of the sharp interface density profiles given in Eq. (35),
which are indicated in Fig. 6 by the dashed horizontal lines in
the defect density plots.

The defect density and electrostatic potential profiles will
always be exponential in the thick-film limit. However, the in-
terfacial values of the defect densities relative to the two-phase
equilibrium defect densities will be a function of the two-phase
equilibrium defect densities according to Eq. (35). To visualize
how the interfacial values of the defect densities change as a
function of the two-phase equilibrium defect densities, the
shift in the equilibrium oxygen vacancy density from Eq. (35)

relative to ceoq at x = L as a function of the equilibrium

defect density in the oxide, [c,(x = L) — c1/c, is plotted
in Fig. 7. As ¢$ — 0, the value of [¢,(x = L) —c{1/c5,
approaches a constant value for a given value of Ay°. This
is because as ch — 0, B® = BY — o0, which decreases the

0 as ceoq becomes small. The

equilibrium deviations from ¢,

1
0 0.5
0 5 10 10 15 20
0 . | .
0 5 10 15 20

FIG. 5. Equilibrium defect density profiles across the oxide-metal
interface for L = 10L p, as well as the average two-phase equilibrium
density c,, given in Eq. (42). The horizontal dashed lines indicate the
interfacial values of the defect concentrations in the sharp interface
treatment, given in Eq. (35). The defect densities are at equilibrium
at ¢, in the bulk phases once the Galvani potential difference has
developed across the interface, but deviate from c,, near the interface
for Ay° # 0 due to the double layer formation. The deviations of ¢,
and c, from c,, for this simulation are plotted in Fig. 6.
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FIG. 6. The deviations of the anion vacancy and electron density relative to ¢,, (see Fig. 5), charge density, and electrostatic potential
profiles for an equilibrium oxide-metal interface with L = 10L, (left) and L = L, (right). The left figure is the same simulation as Fig. 5. The
horizontal dashed lines in the defect density plots indicate the oxide-metal interfacial values of the defect concentrations in the sharp interface
treatment, given in Eq. (35). Sharp interface (SI) profiles for the charge density and electrostatic potential from Egs. (29) and (32) are also
plotted with the phase-field (PF) results. The interfacial region defined by L — ¢ < x < L + ¢ is shaded in light green.

— 07/.0 ; M
value of [c,(x = L) — ¢,,1/c,, is weakly dependent on ¢

eq
and the dependance weakens as 1 — cé‘/q’ — 0, being nearly
independent of ¢,/ for I — c}! < 1072 as evident in Fig. 7. This
is advantageous for the model because it demonstrates that the
equilibrium defect density in the metal does not strongly affect
the defect structure in the oxide.

The two defect structures contribute equally to the elec-
tronic screening in the oxide phase as seen in the symmetric
deviations of ¢, and ¢, from c,, in Figs. 5 and 6. This is because
the density of the anion and cation sublattices are equal in our
model, which leads to both defects having the same parabolic
constants in the oxide according to Eq. (Al). In the metal,
however, the free electron gas is nearly exclusively responsible
for electronic screening as expected from Eq. (B2), unlike in
previous phase-field models of oxide-metal interfaces [24,25].

The charge distribution and electrostatic potential shown in
Fig. 6 from the phase-field simulation show excellent agree-
ment with the sharp interface description given in Egs. (29)
and (32). This demonstrates that for a typical oxide-metal
system, where the Debye length is an order of magnitude larger
than the structural interface, the electrostatic and structural

10°

FIG. 7. The thick-film limit of the deviation of the equilibrium
oxygen vacancy density in the oxide at the oxide-metal interface
(x = L) from Eq. (35) relative to cg] as a function of the equilibrium
defect density in the oxide. Three values of the equilibrium defect
density in the metal are plotted.

interfaces can be treated effectively as independent when the
screening length in the metal is relaxed. This is advantageous
because, although we cannot derive a closed-form solution for
y in the phase-field model, we can accurately predict it given
the large difference in interfacial length scales.

B. Below the Wagner limit

The deviations in the equilibrium defect density profiles
from c.4, charge density, and electrostatic potential for a
thin oxide film are shown in the right panel of Fig. 6. Note
that the interfacial region in the thin-film limit looks larger
than that in in the Wagner limit due to the smaller domain
size shown. Unlike in the Wagner limit, all of the oxide is
charged at equilibrium when the film is thin, which invalidates
the oxide-metal equilibrium equations given in Sec. IIIB
because the oxide can no longer be assumed charge neutral.
Therefore the equilibrium potential difference between the two
phases will not equilibrate to the Galvani potential defined in
Eq. (16), as seen in Fig. 6. The thin oxide layer is unable
to accommodate enough charge to lower the electrochemical
potential of charged defects in the metal by the difference in
two-phase equilibrium chemical potential levels. To illustrate
this, we plot the equilibrium electrostatic potential difference
between the two phases, A,y = ¥|,—x, — ¥|,—0, and the
interfacial charge o as a function of L/L p in Fig. 8. Following
Guyer et al. we define the interfacial charge in the phase-field
simulation as

o= /P(¢>)P av, (56)

where we have chosen to integrate over the metal so that
o 1is positive. Charge conservation ensures that integrating
over the oxide, o = f[l — p($)lpdV, will yield the same
magnitude result as Eq. (56) but with opposite sign; therefore
the choice is arbitrary. As expected from the sharp interface
treatment, as L /L p becomes large A, and o approach Ayr°
and o 9/M respectively. Below approximately L/Lp = I,
A, and o begin to decrease towards zero with decreasing
oxide thickness proportional to exp(L/Lp). Since Ay, is a
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FIG. 8. Log-log plot of the equilibrium electrostatic potential
(black) and interfacial charge (green) across the oxide-metal interface
as a function of L/Lp. As the film becomes thick compared to the
Debye length, A, approaches Ayr° and o approaches o %/ defined
in Eq. (34). As L becomes small compared to the Debye length, both
A, and o decay to zero as exp(L/Lp).

measure of the system’s ability to lower the Fermi level in
the two-phase system to the equilibrium electron chemical
potential in the oxide, this indicates that the Fermi level
at the gas-oxide interface will be higher for thin oxide
films. This is confirmed in Fig. 9, where the equilibrium
value of fi, at x = 0 is plotted as a function of L/Lp. For
large L/Lp, fl.|x=0 approaches ,ugeq as expected for a thick

oxide film. As L/L p becomes small, fi.|,—o approaches ,ufeq.
So as a thin oxide film transitions into the Wagner regime, the
Fermi level at the gas-oxide interface decays approximately
exponentially from u)!, to u2,, as the thickness of the film
is increased, with a characteristic length scale of Lp. This
change in Fermi level at the gas-oxide interface does not affect
the equilibrium oxygen chemical potential in the gas, given in
Eq. (20), because the equilibrium electrochemical potential of
oxygen vacancies at the gas-oxide interface is lowered by an
equal amount. However it does increase the driving force for
surface oxygen reduction, I1,; defined in Eq. (21), which we
discuss in Sec. VIIC.

The equilibrium oxygen chemical potential required in the
gas is not affected by the shift in Fermi level for thin films;
however it does decrease slightly in the thin film regime.
This is due to the increase in interfacial energy y of the

M;‘\[(q o
°
= °
L ° o PF result
) ° o e L/to
- °
o
M((')Atq [ ) ° ? ? ) °
0 2 4 6 8 10

L/Lp

FIG. 9. Equilibrium electrochemical potential of electrons at the
gas-oxide metal interface as a function of L /L ;. When the oxide film
is thin compared to the Debye length, the electrochemical potential
of electrons at the gas-oxide interface is equal to ,ufeq. As the film
thickens, fi.|,—o approaches Mgeq, indicating that the bulk oxide is
nearly charge free and the conditions of bulk phase equilibrium given

in Sec. III B are satisfied.
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FIG. 10. Equilibrium interfacial energy y as a function of L/Lp.
When the film is thin, the electrostatic interface is unable to fully
develop and y approaches the structural interfacial energy y,. As the
film thickens, the electrostatic interface develops and y approaches
the sum of the structural and electrostatic interfacial energies yy + yy .
The interfacial energy decays as y o exp(—2L/Lp).

oxide-metal interface as the film becomes thin, which is
plotted in Fig. 10. As seen in the figure, y is proportional
to exp(—2L/Lp) and decays from the structural interface
value y, to the thick-film limit y, + yy as the film thickness
becomes large compared to Lp. The exp(—2L/Lp) decay
is the result of both the electrostatic potential difference and
interfacial charge increasing as exp(L /L p) to their thick film
limits, as seen in Fig. 8, which determine the electrostatic
free energy of the charge distribution. The magnitude of
the transition is determined by the relative sizes of the two
interfacial energies given in Egs. (36) and (39). This decrease in
interfacial energy with increasing L implies that the thin oxide
film has a lower equilibrium value of u, than the thick film
limit w, = —pf,, — g, The additional driving force for
oxidation due to this effect will in general be small compared
to the bulk driving force of oxidation at realistic oxygen partial
pressures, which is large. This implies that the double layer
will mainly affect the oxide growth law through its influence
on the defect densities and electric field in the oxide.

C. Surface oxygen reduction

To investigate the effect of adsorbed surface oxygen
reduction in the system we include the surface reduction
reaction as described in Sec. III C 2. Phase-field results for
the equilibrium surface charge density p** as a function of
both the electrochemical potential of the O~ adatoms fi,-
and the oxide thickness are plotted in Fig. 11. The value of
flg- is plotted relative to ,U~3 ¢ because in the Wagner limit
when ji- = — ,uff ¢q 10 surface oxygen reduction will occur at
three-phase equilibrium. This is evident from Eq. (26) because
the equilibrium value of ¢ will approach /1,3 ¢q In the Wagner
limit, and is confirmed in Fig. 11 by the fact that p** goes to
Z€ero as jlg- + /,Lvo,eq goes to zero and L /L p becomes large.

In Fig. 11 the magnitude of p” increases linearly as
flg- decreases, whereas it increases exponentially as L/Lp
decreases. The linear relationship between p* and flg- is a
result of the quadratic free energy densities, having the same
origin as the linear dependence of the surface charge o /M on
the Galvani potential in Eq. (34). The exponential dependence
of p# on L/Lp is related to the exponential dependence of
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L/Lp
FIG. 11. The phase-field value of the equilibrium surface charge
density p* as a function of both the electrochemical potential of the
O~ adatoms, fi,-, and the oxide thickness. The value of fi,- is plotted
relative to s, because in the Wagner limit when fi,- = —uf,, no
surface oxygen reduction will occur at three-phase equilibrium, which
is demonstrated by the fact that p** goes to zero as fg- + /Lg eq 80€S
to zero and L /L, becomes large.

the vacancy and electron electrochemical potential at x = 0
on L/Lp, as demonstrated in Fig. 9.

To visualize the defect density and electrostatic profiles
in the oxide with reduced oxygen adatoms present, we plot
the equilibrium defect density profiles, charge density, and
electrostatic potential for L = 10Lp and L = Lp in the left
and right panels, respectively, of Fig. 12. These simulations are
equivalent to those in the left and right panels of Fig. 6 except
for the presence of the charged surface layer of infinitesimal
thickness /, which is shown schematically in the figures. The
electrochemical potential of the reduced oxygen adatoms, fis-,
issetto &, — 0.02 eV/mole. This value is chosen in light of
Fig. 11 so that both the value of ji,- and the film thickness have
the same order of magnitude effect on the equilibrium value
of the surface charge p**. These simulations are initialized
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with p = 0, which then decreases according the Eq. (25)
until equilibrium is reached. This leads to the formation of an
additional double layer and associated electrostatic potential
gradient at the gas-oxide interface. As discussed above, in the
limit of [ — 0, the drop in v across the surface layer goes to
zero, but the gradient of i at x = 0 is nonzero, unlike in the
case of no surface oxygen reduction.

In the thick-film limit, shown in the left panel of Fig. 12,
the double layers at the gas-oxide and oxide-metal interfaces
are nearly independent. In this case, the charge distribution
and electrostatic potential difference across the oxide-metal
interface still agree with the sharp interface treatment. The
double layer at the gas-oxide interface raises the electrostatic
potential in both the oxide and metal relative to the gas and the
magnitude of this shift is proportional to chemical potential of
the O~ adatoms. However, because the gas-oxide double layer
shifts ¥ in both the oxide and metal phases, the oxide-metal
equilibrium conditions given in Egs. (14) and (15) still hold.

For a film of thickness L = Lp, shown in the right panel
of Fig. 12, the double layers at the gas-oxide and oxide-metal
interfaces cannot be considered independently. In this case,
electrons from the metal will also contribute to oxygen
reduction at the gas-oxide interface which leads to a larger
surface charge density p” than that in the thick-film limit
shown in the left panel of Fig. 12. From the charge density
profile for the thin film in Fig. 12, we see that the metal is
more negatively charged than we would expect from the sharp
interface model of the single oxide-metal interface. Again,
this is because electrons from the metal are being transferred
to both the oxide and surface layer. This is the opposite result
of what happens when no surface charging is permitted as in
Fig. 6, which is discussed above.

In the thin-film limit with surface charging, the defect
density, charge density, and electrostatic potential profiles
all become approximately linear. This is because the film
thickness is on the order of the screening length and the

€ — Ceq
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FIG. 12. The deviations of the anion vacancy and electron density relative to c., (see Fig. 5), and electrostatic potential profiles for an
equilibrium gas-oxide-metal system L = 10L, (left) and L = L (right), with a layer of reduced oxygen on the surface. The horizontal dashed
lines in the defect density plots indicate the interfacial values of the defect concentrations in the sharp interface treatment, given in Eq. (35).
The sharp interface (SI) profile for the charge density at the oxide-metal interface from Eq. (29) is also plotted with the phase-field (PF) results.
The sharp interface model gives a poor description of the state of the oxide in the thin-film limit (right), as expected. The interfacial region
defined by L — ¢ < x < L + ¢ is shaded in light green. The layer of reduced oxygen on the oxide surface is shown schematically as the light
blue region, where the thickness / is exaggerated to make it visible. The electrostatic potential drop between the bulk oxide and metal in the
thick-film limit (left), or Galvani potential, is highlighted and equal to Ayr°.
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exponential decay e~*/%» appears roughly linear for x /L p <
1. The constant electrostatic potential profile in the oxide is
familiar from the potential profiles assumed in other theories
of thin film oxide growth such as the point defect model
[53] and Cabrera-Mott theory [13]. This is not the case
when no surface charging is permitted. The reason for this
is that the boundary condition E(x = 0)-* = 0 constrains
the equilibrium gradients of the defect and charge densities at
x = 0to all be zero, which is evident in Fig. 6.

VIII. CONCLUSIONS

We have developed a phase-field model of an oxide-metal
interface in a gas-oxide-metal system and studied its equi-
librium behavior. The model includes a hybrid ideal solution
and free electron gas description of the bulk thermodynamics,
and Poisson’s equation to describe the electrostatics. The
phase-field method achieves an accurate representation of a
Gouy-Chapman double layer, derived herein using a sharp
interface description, when the electronic screening lengths
in both phases are significantly larger than the length scale
of the structural interface. While the screening length in
protective oxide phases satisfies this condition, the screening
length in a metal is generally on the same order of magnitude
or smaller than an oxide-metal structural interface width,
which makes it difficult to model the double layer without
using a computationally intractable structural interface width.
However, we have shown that the screening length in the
metal can be relaxed without modifying the defect profiles,
interfacial energy, or Debye length in the oxide. This allows for
the maximum structural interface width to be set by the Debye
length rather than the metal’s screening length. We have not
derived an analytical expression for the interfacial energy in the
phase-field model, but show that it is accurately described by
the sum of independent structural and electrostatic interfacial
energies for ¢/Lp < 0.1, the ratio of the structural interface
width to the Debye length.

The phase-field simulations show that an oxide film of
thickness on the order of the Debye length or smaller is
unable to establish the equilibrium Galvani potential expected
between the bulk oxide and metal phases in the thick-film limit,
which results in the oxide being charged throughout. For the
defect structure considered above this leads to a decrease in
the ionic defect concentration; however, a number of possible
charge distributions across the oxide are possible depending
on the relative kinetics and energies of transfer of the charged
defects at the oxide-metal and gas-oxide interfaces [10]. This
space charge can either inhibit or enhance the oxidation rate
depending on whether it has the same or opposite sign as
the rate limiting species, respectively [21]. As the oxide film
becomes thin relative to the Debye length, an increase in the
oxide’s Fermi level increases the driving force for surface
oxygen reduction, which can modify the shape of the electric
field in the oxide by changing the magnitude of the surface
charge on the gas-oxide interface.

The present study is motivated by the desire to model oxide
films during growth. Thermodynamic assessments show that
oxide-metal systems of interest can only be at thermodynamic
equilibrium with oxygen gas for extremely low oxygen partial
pressures [8]. Therefore, as discussed above, protective oxide

PHYSICAL REVIEW E 95, 032801 (2017)

phases inhibit corrosion kinetically rather than thermodynam-
ically. Solving for the equilibrium solution to the oxide-metal
system is useful in that it allows us to quantitatively study
how the phase-field formulation couples to the electrostatic
double layer, which would not be possible in a nonequilibrium
simulation and which has not been done in the previous
phase-field models of oxidation.
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APPENDIX A: GIBBS FREE ENERGY COEFFICIENTS

The Gibbs free energy coefficients in Eq. (8) written as
functions of the standard state chemical potentials and two-
phase equilibrium concentrations are

o o

c C—c
0 _ 00 eq eq
Kieq = iy + RT In <~ RT In c

fori =v,e,

M M

C C C
M __ oM eq eq
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The difference in equilibrium chemical Gibbs free energy
densities AG° = G°M — G°? is given by
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(A4)

APPENDIX B: DEBYE LENGTH
AND SCREENING LENGTH

The Debye length in the oxide is derived by assuming
constant defect electrochemical potentials in the oxide in the
presence of a spatially varying electrostatic potential [27]. This
allows us to solve for the functional form of the electrostatic
potential in the oxide by solving the homogeneous solution to
Gauss’s law. We use a constant C to absorb terms independent
of 1. The electrostatic potentials in the system as defined

032801-14



PHASE-FIELD MODEL OF OXIDATION: EQUILIBRIUM

in Eq. (9), assuming constant electrochemical potentials at
equilibrium, are given by
8G9

80 =20 4 yqr
(SC,‘
= Mfeq + Bio(c,- - cgl) +vq;F =C,

which we can use to solve for the functional form of the
equilibrium density profiles:

F
= e =TV +C. (B1)

The charge density in the system defined by
Eq. (5) is p =(cy, —c.)F. Substituting Eq. (Bl) into
p yields
1 1
_ 2
p=—-F (ﬁ-'_F)w +C.
We can now find the homogeneous solution to Gauss’s law:

80v2¢ = =P,

h L PR + ! o
where Lp = 0\ 50 T o .

The Debye length L, characterizes the decay length of space
charge, electrostatic potential, and electric field in the oxide,
and reflects the coupling of the electrostatics to the chemical
free energy of the charged defects. If we substitute B and
B2 from Eq. (A1) into the Debye length we have

Lo RTce0
b= ZCQI(C—cqu)FZ’

which agrees exactly with the classical Debye length given in
Eq. (1) in the dilute limit.

The screening length in the metal, Lg, can be derived in an
analogous fashion, resulting in

X
¥ o exp (‘L—s)’

F2( 1 1\
where LS: {;‘_M W_I_@ .

J
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Substituting Eqs. (A2) and (A3) into the screening length
yields

(NI

3m, (ce"’ql) g

NR2(372)5

F? [ ceg(C = cay)
eM

L =
5 RTC

(B2)

Examining the metal’s screening length Lg, as the density
of anions in the metal becomes very small (céZ /C =~ 1), their
contribution to the screening in the metal goes to zero. In
this case, the screening length approaches the Thomas-Fermi
screening length [35].

APPENDIX C: ELECTROSTATIC INTERFACIAL ENERGY

The electrostatic interfacial energy in the sharp interface
description can be derived by calculating the total energy of
the equilibrium defect density profiles, charge density, and
electrostatic potential given by Egs. (29), (32), and (35). As
in Sec. IV, we consider the oxide-metal sharp interface to be
at x = 0, with the oxide and metal extending to x = —oo and
x = 00, respectively, and the electrostatic potential in the bulk
oxide to be 0. This treatment is therefore valid in the Wagner
regime, where the charge density decays to zero on a length
scale much smaller than the oxide thickness:

0 1
Yy = f y I:GO(CUO,ceO) + §p01/10i|dx
inf 1
+ / [GM(cf cg') = AG” + EprM}dx
0

:l<2+LS - (By_BS/I)(MQ/qu_FMJUWeq)
2\ g0

M F(BY + BM)
— AwO]AW.

M
(ChH

Substituting Eq. (34) into (C1) yields

_l (Béw_By)(Mé‘:qu—'—M%eq)
W=a F(BM + BM)

— Aw}ao. (C2)

APPENDIX D: FREE ENERGY PARTIAL DERIVATIVES

The nondimensionalized versions of the evolution equa-
tions (51) and (52) are given by

oOnpM M o
% = M, <2A¢<—2¢2 43¢ — 1) +eVip— 3’;—2’”{AG° + Z [—m,eq (cog = cap) + % B?" ((B" 5 BiB" )<ci — Ceg)
2 2pM 2 R0

_ B%q,.cmpo — (M - ch))(c,» —cep) + %(AW)Z[I ) (Z"i)z @Y, ” - %g—ZIVwIZ), (D1
%% _u vz[u n B‘?By(c —c )+cw} (D2)
8[ v v,eq BU v eq ’
dce 2 2B
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