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a b s t r a c t

Understanding the kinetics of passive oxide formation and breakdown has been an ongoing problem for
corrosion scientists for several decades. Here, we present a model for the formation of a passive oxide
film on a metal that is an extension of the Point Defect Model (PDM) by Macdonald and coworkers. We
replace the potential description of the PDM with a boundary value problem and ensure that Gauss's law
is satisfied at the oxide-solution interface by considering the presence of the Helmholtz layer in solution.
Our model predicts the observed linear variation of the steady-state film thickness with anode potential,
and an increasing film thickness with increasing pH. We perform a linear stability analysis of the model
and show that, depending on the parameters, the passive film may be unstable to morphological per-
turbations of the film interfaces, leading to nonplanar films and potentially the formation of a pit in the
oxide. This also implies that one-dimensional models, which assume planar interfaces, can be inappli-
cable in broad classes of corrosion processes. The analysis shows that a morphological instability exists if
the oxide dissolution mechanism is such that an increasing Helmholtz layer potential drop leads to an
increasing dissolution rate. The instability behavior is consistent with the literature on breakdown of
passivity in the presence of chloride ions. The theory provides insights on the initiation of passivity
breakdown leading to pitting corrosion and the role that interfacial energy plays in determining stability.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Metals can protect themselves from corrosion by forming pas-
sive oxide films on their surfaces. However, the corrosion resistance
conferred by the presence of a passive oxide film may not exist
indefinitely. Under certain conditions it is possible for this film to
break down locally, leading to pitting corrosion of the underlying
metal. Pitting corrosion is extremely difficult to model and predict,
and can lead to premature failure of a part while it is in service.
Several factors influencing the breakdown of the passive film have
been identified, including chloride concentration and local pH [1].
However, there is no generally accepted mechanism for the
breakdown of the film, and several competing models exist that
include disparate effects such as chloride adsorption to or incor-
poration into the film [2e4], Zener breakdown [5], and electro-
mechanical couplings such as electrostriction and flexoelectricity
[6e8].

There are many models that have been used to describe the
growth and breakdown of oxide films [9e15]. An important model
W. Voorhees).
that is used to explain the growth of passive films is the Point
Defect Model (PDM) [3,9,10]. The strengths of the PDM are that it
treats the diffusion of cations and anions through the film, along
with the reactions at the interfaces. The PDM also includes disso-
lution of the oxide film, and thus was the first model that could
account for steady-state film thicknesses. However, this model is
inherently one-dimensional, and thus assumes that the metal-
oxide and oxide-solution interfaces are always planar. This can be
problematic if the planar interfaces are unstable to small
morphological perturbations. To determine if this is the case, it is
necessary to develop a two- or three-dimensional model that can
follow the evolution of nonplanar interfaces. This is particularly
important, since, if either of the planar interfaces are morphologi-
cally unstable, then the one-dimensional model cannot be used to
describe oxide growth. Furthermore, these non-planar morphol-
ogies can grow in amplitude. When the amplitude of the pertur-
bations approaches the thickness of the passive film, localized
breakdown occurs. Thus, a two- or three-dimensional model will
describe both growth of a planar film and localization, and it is not
necessary to invoke a model for film growth that is based on
different physics to describe localization as has been done previ-
ously [3,16,17]. Such a higher dimensional model can also be
modified to include the effects of Cl�, and microstructural
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inhomogeneities such as grain boundaries and precipitates.
From morphological stability theory, it is well-known that

planar interfaces may be unstable to shape perturbations, leading
to complex interface morphologies [18,19], and breakdown events
[7,20]. The rapid and autocatalytic nature of film breakdown and pit
formation suggests that pitting may result from an instability in the
passive film itself. It is thus clear that a self-consistent morpho-
logical stability analysis of a passive film with a steady-state
thickness in aqueous environments is needed. A major challenge
is that existing models for passive film growth assume the form of
the electrostatic potential distribution from the metal to the solu-
tion [10,11], and thus cannot self-consistently describe the evolu-
tion of non-planar interfaces. Other models [12e15], while not
assuming the potential, do not include the interfacial energies of
the metal-oxide or oxide-solution interfaces that are critical in
determining the evolution of nonplanar films. Without interfacial
energy, or its manifestation, the Gibbs-Thomson effect,1 the evo-
lution equations for interfacial morphologies contain unphysical
singularities. Furthermore, this latter class of models are formu-
lated for specific metal-oxide systems. While offering great insight
into the passive film formation kinetics for those specific systems, it
can be difficult to use them to make general conclusions about
passivity.

Sincemorphological stability analyses of corrosion processes are
uncommon, we describe the basic ideas here. A more complete
description of the phenomena can be found in review papers of
Langer [18] and Sekerka et al. [19]. Morphological stability refers to
the stability of a particular idealized interfacial morphology, which,
in our case, is a planar thin film. To understand the instability
phenomenon, it is helpful to consider the case of unidirectional
solidification into an undercooled liquid. In unidirectional solidifi-
cation, as with passive film growth, there is a one-dimensional
model that the describes the composition fields in the solid and
liquid, with the implicit assumption that the solid-liquid interface
is planar. However, the planar interface can be unstable to small
shape perturbations, leading to the solid-liquid interface becoming
nonplanar, and implying that the one-dimension solidification
model is not physically relevant. The small shape perturbations,
when unstable, can develop into cells or dendrites. The shape
perturbations grow as a result of the diffusion field in the liquid, but
are opposed by interfacial energy that tends to planarize the
interface through capillarity [19].

A wide variety of morphological instabilities have been identi-
fied, all of which are a result of the competition between some
destabilizing driver (diffusion field [19], electric field [20], stress
[21,22], or magnetic field [23]) and the stabilizing driver, interfacial
energy. Morphological stability theory provides a rigorous frame-
work through which the development of these complex interface
shapes can be described. In a morphological stability analysis, the
dynamics of the non-planar interface are cast in terms of a small-
amplitude, fixed-wavelength perturbation of the idealized inter-
face shape. Evolution equations for the shape perturbations are
derived from the global evolution equations, which allows for the
growth rate of the perturbations as a function of their wavelength
to be identified. The morphological instability approach is powerful
in that it allows for the determination of mechanisms that lead to
instabilities, allowing one to identify what factors are important or
unimportant in determining morphology, as well as the size and
time scales of the instability. As noted by Okada [24], the
morphological stability analysis corresponds to an a posteriori
1 the Gibbs-Thomson effect accounts for how the chemical potential of a
component is modified by the presence of a curved interface with interfacial
energy.
approach, where we acknowledge the existence some perturbation
of the passive film interfaces (the source of the perturbation is left
unspecified), and examine how that perturbation evolves. The
perturbation could be due to, for example, thermal noise or small
microstructural inhomogeneities in the metal or oxide.

A few morphological stability analyses of passive oxide films
have been performed. Wagner considered the stability of a non-
planar oxide growth front and found that if diffusion in the alloy
is slower than in the oxide, the oxide will be nonplanar and rough
[25]. Okada analyzed the stability of passive film dissolution by
considering perturbations of the transport processes in solution
[24]. He explicitly included chloride adsorption to the oxide surface,
and found an instability whose growth rate increased with
increasing chloride concentration. However, these two analyses
neglected to consider how interfacial energy stabilizes the planar
interface shape [26]. Without the addition of this effect, the growth
rate of the instability diverges nonphysically to infinity as the
wavelength of the perturbation decreases. Furthermore, these an-
alyses only consider perturbations of one of the oxide interfaces,
despite the fact that in aqueous environments, both interfaces are
moving [10,13]. Thus, it was not possible to consider whether the
instability at one interface affects the stability of the other interface.

Singh et al. [27,28] and Stanton et al. [29,30] recognized the
importance of interfacial energy in their analyses of the linear
stability of anodic alumina growth. In this case, they consider the
influence of an “activation surface energy” on the reaction rates at
both film interfaces. It must be noted that this is not the macro-
scopic surface (interface) energy, but is a quantity associated with
the energy of the transition state for the interface reactions [31].
Furthermore, some authors [6,8], while not performing stability
analyses, have considered the stabilizing influence of a “surface
energy stress” by including a term g=L where g is the interface
energy and L is the planar film thickness. While having the same
units as stress, there is no stress associated with surface energy for
a planar surface. Surface energy only becomes relevant to
describing morphological evolution when the surfaces are curved.
A surface stress (which differs from surface energy) will lead to a
bulk stress in the film if the surface has non-zero curvature [32].

The focus of this work is to develop and analyze the morpho-
logical stability of a model for passive film growth. The model we
formulate is an extension of the Point Defect Model (PDM) [9,10]
where we replace the assumed electrostatic potential distribution
with a boundary value problem and ensure that Gauss's law is
satisfied at the oxide-solution interface. We analyze the linear
stability of the model to simultaneous shape perturbations of the
metal-oxide and oxide-solution interfaces and identify the condi-
tions under which the film is unstable and breakdown may occur.
Our analysis explicitly considers the influence of interfacial energy
through the Gibbs-Thomson effect, as well as two models for the
dissolution of film at the oxide-solution interface. The instability
mechanism we find is consistent with the localized thinning
mechanism for pitting proposed in the literature [1,16,33]. From the
theory presented, we are able to give an indication of both the size
and time scales for the breakdown event. Previous models for
passivity breakdown have focused on the mechanism, while not
elucidating a size or time scale for breakdown.

2. Review of models for passive film growth

Several models for the growth of passive films exist, and we
begin by reviewing two of them here to discuss to the features of
the problem that need to be included in a realistic growth model.
All of the models recognize that during oxide growth, an electric
field exists across the film that drives the motion of charged defects
leading to growth of the film either at the metal-oxide interface (if



Fig. 1. Interfacial reactions in the PDM. The net result of reactions (1) and (2) is oxide growth at the M/O interface. The net result of reactions (3) and (4) is dissolution of the metal
substrate. Reaction (5) is the irreversible dissolution of the passive film. c is the charge of the cation in the oxide, while d is the charge of the cation in the solution. Kr€oger-Vink
notation is use to denote the point defects in the oxide, where a � is a positive charge relative to the host lattice, and a 0 is a negative charge relative to the host lattice.
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oxygen vacancies are the primary diffusing species) or the oxide-
solution interface (if cation vacancies/interstitials are the primary
diffusing species). Since we are interested in performing a
morphological stability analysis, we center our attention on
analytical models of passive film growth. The Wagner [34,35] and
Cabrera-Mott [36] models of oxide growth kinetics were originally
formulated for dry air oxidation and are missing some features (e.g.
interfacial potential drops) that critical to the electrochemical
growth of a passive film. The deficiencies of these models for
describing electrochemical film growth have been reviewed in
Refs. [9,11]. We thus focus on two extensions of these models, the
Point Defect Model (PDM) [9,10] and the Generalized Growth
Model (GGM) [11], which are directly applicable to passive film
formation in aqueous environments.

2.1. Point Defect Model (PDM)

In experiments, growth of a passive film is driven by applying a
potential to a working electrode composed of the alloy of interest.
The fact that the system is driven externally is included in the PDM,
as are the interfacial potential drops that are absent in the models
of dry oxidation mentioned previously. The assumptions of the
PDM are that the film is charge neutral,2 the electric field in the film
is independent of the applied anode potential and film thickness,
and the growth of the passive film is diffusion limited and due to
oxygen vacancy motion in the film [9,10]. The model proposes a set
of five interfacial reactions that account for growth of the passive
film, dissolution of the metal substrate, and dissolution of the
passive film, which are schematically shown in Fig. 1. Since both
growth and dissolution of the oxide film are included, the PDMwas
the first model that could account for observed steady-state
thicknesses of passive films. The model considers anodic re-
actions only, implying that the cathodic reactions (hydrogen evo-
lution and metal plating) are not rate limiting.

While the PDM has been shown to agree with many experi-
ments, several authors have questioned the validity of the as-
sumptions of the PDM, especially that of an electric field strength
that is independent of the anode potential and the film thickness
2 Charge neutrality is not explicitly part of the model formulation, but is
implicitly assumed based on the form of the steady-state transport equations that
are solved.
[11,33,37]. Furthermore, the PDM relies on some empirical pa-
rameters that limit one's ability to use the model to make a-priori
predictions about any single metal/oxide system. The PDM serves
as a diagnostic, rather than a predictive tool, at least when it comes
to describing the film growth kinetics. To our knowledge, numerical
integration of the PDM kinetic equations with the relevant empir-
ical parameters has not been conducted. However, fully numerical
models based on the PDM framework have been formulated,
yielding results that are largely in agreement with experimental
observations [12,13,37]. These models often account for the
coupling of the charged defect concentrations to the potential using
Poisson's equation, which distinguishes them from the PDM's
charge neutrality assumption.
2.2. Generalized Growth Model (GGM)

The GGMby Seyeux et al. is an extension of the PDM that aims to
bring more realistic assumptions to describing passive film growth
in aqueous environments. The GGM posits that the electric field in
the oxide, as well as the oxide-solution interface potential drop
(both assumed to be constants in the PDM) should evolve during
growth [11]. The GGM accomplishes this by proposing that there is
an unknown function of the film thickness that describes these
variations. Ultimately the GGM, like the PDM assumes that growth
of the film is diffusion limited. However, the GGM recognizes that
growth of the film can occur at the oxide-solution interface due to
cation motion in the film, and adds reactions to describe this pro-
cess. This model explicitly considers the influence of the alloy
composition on the growth of the film; the PDM was formulated to
describe film growth on a pure metal. Numerical simulations of
passive film growth on type 304 stainless steel were performed
using the GGM, and the computed film thickness vs. time curves
were found to be in good agreement with the corresponding the
experimental results [38].
3. Model for the evolution of passive films

From the above discussion, it is clear that there are several ap-
proaches to modeling the growth of the passive film, each having
their advantages and disadvantages. We choose to extend the PDM
in a similar fashion to the GGM, as we believe that the electric field
strength in the oxide and the potential drop at the oxide-solution
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interface should evolve during growth. We formulate the potential
in the system as a boundary value problem, so that the evolution of
the electric field and the oxide-solution potential drop occur simply
as a consequence of the boundary conditions at the passive film
interfaces. The model we formulate consists of three submodels: a
model for the potential distribution from the anode to the solution,
a model for the transport of cation and anion vacancies in the film,
and a model for the kinetics of the passive film dissolution reaction
(reaction 5 in Fig. 1).

In this section, we develop the model and its boundary condi-
tions for the most general case of a three-dimensional passive film
with nonplanar interfaces. In Section 4, we solve the model equa-
tions for the basic state corresponding to a passive filmwith planar
interfaces. In Section 5, we perform the morphological stability
analysis and identify the conditions under which non-planar
morphologies are to be expected.

3.1. Coordinate system

Before describing the model equations, we must first define the
coordinate system of interest. This is because when a passive film
exists with the steady-state film thickness, the boundaries of the
film are not stationary, but are both moving toward the metal at a
constant velocity, V, relative to an observer in the lab. The coordi-
nate system that we choose is shown in Fig. 2. We fix the metal-
oxide interface at x ¼ 0. The oxide-solution interface has variable
position x ¼ LðtÞ in the general case where the film is growing.
When the steady-state is achieved, LðtÞ becomes fixed in time. In
this section we will define the model equations in this frame of
reference. Prior to solving the equations in Section 4 we will cast
them to the moving reference frame where the film boundaries are
fixed in the steady-state.

3.2. Potential

Consider a system consisting of a metal, oxide, and solution as
shown in Fig. 2. A physical requirement missing from the PDM and
GGM is that Gauss's law must be satisfied at the oxide-solution
interface. To accomplish this, we follow the approach of Dewitt
and Thornton [14], and separate the potential into two parts: the
potential in the oxide, fO, and the potential in the Helmholtz layer
in solution, fH. We assume that the potential drop through the
Helmholtz layer is linear, which implies that the layer contains no
Fig. 2. Distribution of the potential from the anode to the solution. The governing equati
net charge and thus V2fH ¼ 0. The Helmholtz layer has fixed
thickness dH; its boundaries lie at x ¼ LðtÞ and x ¼ LðtÞþ dH. The
potential is continuous at the oxide-solution interface, or
fHðLðtÞÞ ¼ fOðLðtÞÞ. For convenience, we set the potential of the
bulk solution to be zero, or fHðLðtÞþ dHÞ ¼ 0.

For the potential in the oxide, fO, we assume that the film is
charge neutral and thus V2fO ¼ 0. At the metal-oxide interface, we
fix the potential as fOð0Þ ¼ VA � DfM=O, where VA is the applied
anode potential relative to the bulk solution potential. DfM=O is the
potential drop at the metal-oxide interface, which we assume to be
a constant as in the GGM [11]. We assume that the oxide-solution
interface is not charged, and we require Gauss's law to be satis-
fied. Thus, the boundary condition at the oxide-solution interface
is:

vfH
vn2

� ε
rvfO
vn2

¼ 0 at x ¼ LðtÞ (1)

Here, vf=vn2 ¼ Vf,n2, where n2 is the oxide-solution interface
normal vector, shown in Fig. 2. ε

r ¼ εO=εH is the ratio of the
dielectric constants of the oxide and Helmholtz layer. By including
the Helmholtz layer in the solution, the oxide-solution potential
drop, DfO=S does not need to specified separately and is a natural
result of the model. Since the Helmholtz layer is considered part of
the interface, DfO=S ¼ fOðLðtÞÞ� fHðLðtÞþ dHÞ ¼ fOðLðtÞÞ:
3.3. Transport

The transport model that we employ is virtually identical to that
in the original PDM [9,10], as we utilize the set of reactions given in
Fig. 1. We also assume that reactions (1), (2), (3), and (4) in Fig. 1 are
in equilibrium at a given potential drop. We use the Nernst-Planck
equation

Jj ¼ �DjVCj �
DjzjF
RT

CjVfO; j ¼ V::
O; V

c0

M (2)

to describe the fluxes of cation and oxygen vacancies in the oxide.
Here, Dj, Cj , and zj are, respectively, the diffusion coefficient, con-
centration, and charge number of species j. F is Faraday's constant,
R is the gas constant, and T is temperature. The linear Nernst-Planck
equation assumes a small potential gradient (electric field) in the
ons for the potential are shown in the diagram, as well as the boundary conditions.
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oxide, which may not be true for these very thin passive films. The
Fromhold-Cook nonlinear flux equation [39] is likely more appro-
priate but makes obtaining analytical solutions very difficult. We
further assume that diffusion occurs under quasi-steady conditions
and thus V,Jj ¼ 0.

The primary change that wemake to the transport model is that
we reformulate the boundary conditions in order to satisfy struc-
ture conservation in the oxide and account for the Gibbs-Thomson
effect at nonplanar interfaces. Structure conservation is the
requirement that the number of cations and cation vacancies must
equal the total site density on the cation sublattice, the same being
true for oxygen anions and vacancies [40]. The structure conser-
vation requirement ensures that the vacancy concentrations are
bounded between 0 and 1 mol. frac. This change was needed to
avoid calculating vacancy concentrations that exceed the site
density of the appropriate oxide sublattice using the boundary
conditions in the original PDM [9,10]. This is because in the PDM, no
activity correction is made to the chemical potentials of the species
MM and OO, only the activities of vacancies are considered. The
second change that we make is to add a Gibbs-Thomson correction
to the chemical potentials of cation and anion vacancies at the in-
terfaces in order to account for how interfacial energy and curva-
ture modify the defect concentrations.

Our boundary conditions are listed in Table 1, and are formu-
lated by assuming an ideal solution model for the chemical po-
tentials of species in the oxide. We further assume that the partial
molar volumes of cation and oxygen vacancies are the same and
equal to V . The Dm+i values are calculated assuming the reactions
proceed from left to right as written in Fig. 1. In these boundary
conditions the presence of Cj=ð1� CjÞ ensures structure conserva-

tion, while the Vgk term accounts for the Gibbs-Thomson effect.
Appendix A gives a derivation of the boundary condition for the
cation vacancy concentration at the metal-oxide interface. The
other boundary conditions are derived similarly. The boundary
conditions in Table 1 can be shown to be equivalent to those given
in the original PDM if the defect concentrations are less than
z10�2 mol. frac and the curvatures, k1 and k2 are taken to be 0.
3.4. Passive film dissolution

The final piece of the model is a description of how the passive
film dissolves into solution. Dissolution of the passive film is
necessary in order for the film to achieve a steady-state thickness.
The prevailing view is that the passive film is far from the disso-
lution equilibrium of the Pourbaix diagram, and the dissolution
reaction can be considered to be irreversible [10,33,41]. The
dissolution rate is usually written in Butler-Volmer form, which
recognizes an explicit dependence of the rate on the oxide/solution
Table 1
Concentration boundary conditions for solving the transport equations. Dm+i is the sta
reaction as numbered in Fig. 1. aMdþ is the activity of cations in solution. gM=O and gO=S ar
k2 are the curvatures of the metal-oxide and oxide-solution interfaces. These boundary

Interface Species

Metal-Oxide Oxygen Vacancy

Cation Vacancy

Oxide-Solution Oxygen Vacancy

Cation Vacancy
potential drop. The dissolution reaction (reaction 5 in Fig. 1) gives
the net reaction that corresponds to movement of the oxide-
solution interface. This reaction may or may not proceed as a sin-
gle step, and the rate law has a strong dependence on the mecha-
nism considered. Unfortunately, dissolution of the passive film
cannot be posed in universal terms, since the dissolution mecha-
nism will depend strongly on the oxide considered and solution
chemistry as noted in Ref. [13].

We delineate two cases that plausibly describe the dissolution
reaction rate. The first case comes from the PDM [10] in which the

overall dissolution reactionMMþ c
2 OOþcHþ/Mdþþ cH2Oþ ðd�

cÞe� is used to write a Butler-Volmer rate law. The PDM assumes
the dissolution reaction occurs as a single step, and thus the
number of electrons involved in the reaction corresponds to the net
charge transferred across the interface. For a single step reaction,
the reaction orders correspond to the stoichiometric coefficients,

and the PDM dissolution rate, JPd, is

JPd ¼ kPdCMM
Cc=2
OO

Cc
Hþexp

 
aðd� cÞF DfO=S

RT

!
(3)

where kPd is the PDM dissolution rate constant and a is the charge
transfer coefficient. In this case, if d ¼ c (e.g. NiO dissolution [42]),
the dissolution rate will not depend on the oxide-solution interface
potential drop.

A second model of oxide dissolution is worth considering as
well, since several authors have noted a potential dependence to
the film dissolution rate, even if the cation charge does not change
when it is ejected into the solution, in contrast to the rate law used
in the PDM. For example, potential dependent dissolution has been
noted by Vetter [41] and Sato [43] for the passive films on iron and
nickel respectively. Vetter, when examining the dissolution of the
oxide film considers it to be a multi-step process where the release
of the cation into solution is the rate limiting step [41]. In his
analysis, the charge of the cation in solution, d, corresponds to the
net charge transferred across the interface. Thus, the dissolution
rate will always depend on the potential drop at the oxide-solution
interface, unless a neutral metal atom is ejected into solution. The

dissolution rate for the Vetter mechanism, JVd , is

JVd ¼ kVdCMM
Cc
Hþexp

 
adF DfO=S

RT

!
(4)

where kVd is the Vetter dissolution rate constant. We will consider

the behavior of our model for the two plausible dissolution rates, JPd
and JVd . The concentrations of oxygen and metal appearing in Eqs.
(3) and (4) are functions of the potential drop and the curvature of
ndard state free energy change for reaction i, where i corresponds the interfacial
e the energies of the metal-oxide and oxide-solution interfaces, respectively. k1 and
conditions correspond to the concentrations in mole fraction.

Boundary Condition

ð1� CVM
ÞCVO

¼ exp

 
�Dm+1 þ 2F DfM=O � VgM=Ok1

RT

!
CVM

1� CVM

¼ exp

 
Dm+3 � cF DfM=O � VgM=Ok1

RT

!

102pH
�

CVO

1� CVO

�
¼ exp

 
Dm+2 � 2F DfO=S � VgO=Sk2

RT

!

aMdþ

�
CVM

1� CVM

�
¼ exp

 
�Dm+4 þ dF DfO=S � VgO=Sk2

RT

!
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the oxide-solution interface. Thus the curvature of the interface can
affect the dissolution rate of the oxide.

4. Solution for a planar passive film

4.1. Film growth rate and moving reference frame

The growth rate of the film is the difference between the oxygen
vacancy flux at the metal-oxide interface (which leads to growth of
the film into the metal) and the dissolution rate:

dL
dt

¼ Vm
�
JVO

ð0Þ � Jd
�

(5)

where Vm is the molar volume of the oxide. When JVO
ð0Þ ¼ Jd, the

steady-state film thickness is achieved, and we focus on this state
rather than the transient that leads to the steady-state. At steady
state, LðtÞ ¼ Lss, the steady-state film thickness, and both themetal-
oxide and oxide-solution interfaces are moving toward the metal
with velocity V. This means that we can transform the coordinates
to the moving reference as x0 ¼ x� Vt, where x0 is the moving
reference frame coordinate. In this reference frame, the boundaries
of the film are fixed at x0 ¼ 0 and x0 ¼ Lss and the time dependence
of the boundary positions is eliminated. From now on, the analysis
is carried out in this reference frame and the primes are dropped on
the coordinate system for notational convenience.

4.2. Non-dimensionalization

We non-dimensionalize the equations to facilitate the solution
of the governing equations and remove several of the explicit
parameter dependencies. For simplicity, we assume that the
diffusion coefficient for cations and anions is the same. In general
the diffusion coefficient of cations and anions will differ, and we
allow them to differ in the general model formulation (see Eq. (2)).
Having only one diffusion coefficient value implies that there is
only time scale in the system, which simplifies our interpretation of
the perturbation growth rates in Section 6. We choose a charac-
teristic length equal to the Helmholtz layer thickness, dH which is
generally small. The characteristic time scale thus follows from the
diffusion coefficient and characteristic length scale. The non-
dimensional variables are as follows:

fx�; y�g ¼ fx; yg
dH

; t� ¼ D

d2H
t; C�

i ¼ VmCi; f� ¼ 2F
RT

f (6)

Any energy quantity that appears (such as when setting the
concentration boundary conditions) is non-dimensionalized by RT.
The rest of the paper will refer only to the non-dimensionalized
variables, and the asterisks will be dropped for notational conve-
nience. Wherever we refer to a dimensional quantity with di-
mensions of length, we use dH ¼ 0:4 nm.

4.3. Solution of the model equations

The non-dimensionalized solution for the potential in the oxide
and Helmholtz layer are, respectively,

fO ¼ �VA � DfM=O

ε
r þ L

xþ VA � DfM=O (7a)

fH ¼ fOðLÞðLþ 1� xÞ (7b)

For the purposes of describing the steady-state, the most
important quantities are the electric field in the oxide, E ¼ �VfO
and the potential drop at the oxide-solution solution interface,
which is simply fOðLÞ. The electric field in the oxide is

E ¼ VA � DfM=O

ε
r þ L

i (8)

The transport equations V,Jj ¼ 0, when nondimensionalized
and cast into the moving reference frame, have the following form:

V2CVO
þ VCVO

$VfO þ V
vCVO

vx
¼ 0 (9a)

V2CVM
� VCVM

$VfO þ V
vCVM

vx
¼ 0 (9b)

For the planar film, the boundary conditions we use are those
given in Table 1 with k1 ¼ k2 ¼ 0, since the interfacial energy has
no effect for planar interfaces. The oxygen and cation vacancy
profiles for the 1D planar state are

CVO
¼ Aexp

�
�
�
vfO
vx

þ V
�
x
�
þ B (10a)

A ¼ CVO
ðLÞ � CVO

ð0Þ
exp

h
�
�
vfO
vx þ V

	
L
i
� 1

(10b)

B ¼
CVO

ð0Þexp
h
�
�
vfO
vx þ V

	
L
i
� CVO

ðLÞ
exp

h
�
�
vfO
vx þ V

	
L
i
� 1

(10c)

and

CVM
¼ A0exp

��
vfO
vx

� V
�
x
�
þ B0 (11a)

A0 ¼ CVM
ðLÞ � CVM

ð0Þ
exp

��
vfO
vx � V

	
L
	
� 1

(11b)

B0 ¼
CVM

ð0Þexp
��

vfO
vx � V

	
L
	
� CVM

ðLÞ
exp

��
vfO
vx � V

	
L
	
� 1

(11c)

where vfO=vx can be found from Eq. (7a). Using Eqs. (2), (10) and
(11) in Eq. (5), we can obtain an equation for dL=dt ¼ 0. This is a
non-linear equation for the steady-state film thickness, L ¼ Lss,
which we determine numerically. The resulting non-linear equa-
tion is:�
� vCVO

vx
� CVO

vfO
vx

�
x¼0

¼ Jdjx¼Lss (12)

where CVO
is given by Eq. (10), the velocity is V ¼ � Jd, and the

concentrations in Jd are evaluated using the boundary conditions in
Table 1 for the oxide-solution interface located at x ¼ Lss.
4.4. Parameters

In order to utilize the model and compute Lss as a function of
applied potential, VA, and solution pH, we must specify several
parameters, including the dielectric constant ratio, εr , standard-
state interfacial reaction free energy changes, Dm+i , metal-oxide

interface potential drop, DfM=O, and dissolution rate constant,
kdiss. Of particular importance are the reaction free energy changes
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(equivalent to equilibrium constants), since they play a vital role in
setting the defect concentrations, and choosing values arbitrarily
can lead to unphysically small or large vacancy concentrations and
non-charge-neutral lattices. We take the values of the free energy
changes such that the defect concentrations in the film are nomi-
nally 10�3 mol. frac. at pH 4, which is reasonably consistent with
defect concentrations deduced from Mott-Schottky analyses of
passive films [44], and well with in the range of defect concentra-
tions listed in Ref. [45]. We note that in order for the bulk film to be
charge neutral, the following conditions must be met:
CVM

ð0Þ ¼ CVO
ðLÞ and CVO

ð0Þ ¼ CVM
ðLÞ. If this condition is not met,

then for an oxide MO, the bulk cation and oxygen vacancy con-
centrations are unequal and the assumption of charge neutrality is
broken. In order to ensure this condition is met, we calculate Dm+2
and Dm+4 based on the values on CVM

ð0Þ and CVO
ð0Þ. The parameters

that we ultimately choose are listed in Table 2. The dissolution rate
constants k were chosen so that the computed film thicknesses
were in the range 1e100 nm at pH¼ 4. These are given in terms of
the diffusion coefficient D, since we work with the non-
dimensional rate constants which are normalized by D. Unambig-
uously defining parameters is very difficult due to the lack of model
experiments that aim to measure these fundamental constants.
4.5. Steady-state film thicknesses under various anodizing
conditions

Using the parameters in Table 2, we compute the value of the
steady-state film thickness, Lss as a function of VA and pH, for d ¼
2. These results are shown in Fig. 3 for both the PDM (Fig. 3aec)
and Vetter (Fig. 3def) dissolution rate laws. For both rate laws, the
model predicts that Lss increases linearly with increasing VA. This
behavior is consistent with experimental observations [47] and
Table 2
Parameter values input to our oxide growth model.

Parameter Value

(a) PDM Dissolution Mechanism
ε
r 1.5
T=K 300

Dm+1=Jmol�1 1:55� 104

Dm+2=Jmol�1 3:62� 104

Dm+3=Jmol�1 � 1:5� 104

Dm+4=Jmol�1 5:52� 104

aMdþ 10�6[46]

kPd=m
10mol�3 s�1 8:87� 109D

DfM=O=V 0.001 [11]
c 2
VA=V 0e0.5
pH 4e6
d 1, 2, or 3

(b) Vetter Dissolution Mechanism

ε
r 1.5
T=K 300

Dm+1=Jmol�1 1:55� 104

Dm+2=Jmol�1 3:24� 104

Dm+3=Jmol�1 � 1:5� 104

Dm+4=Jmol�1 4:98� 104

aMdþ 10�6[46]

kVd=m
7mol�3 s�1 1:88� 1014D

DfM=O=V 0.001 [11]
c 2
VA=V 0e0.5
pH 4e6
d 2
the prediction from the PDM [10]. Furthermore, we predict that Lss
increases with increasing bulk solution pH, which is also consis-
tent with experimental observations [47]. We find that Lss in-
creases exponentially with pH, which is due to the fact that pH is a
logarithmic scale and we have assumed from the stoichiometry
that the order of the dissolution reactionwith respect to protons is
2. Thus, as pH is increased, the dissolution rate decreases expo-
nentially and the film can grow to much larger thicknesses before
JVO

ð0Þ ¼ JdissðLssÞ. While not shown in Fig. 3, a linear increase in Lss
with VA is found for d ¼ 1 or 3, only the computed film thicknesses
change. For d ¼ 1, larger film thicknesses are found, while for d ¼ 3
smaller film thicknesses are found. We found that for pH¼ 3 (not
shown), the computed film thickness were unphysically small,
which points to the fact that the passive state may not exist due to
fast oxide dissolution kinetics.
5. Linear stability analysis

Since the model parameters lead to reasonable film thicknesses
(above pH 3), and the behavior of Lss with respect to VA and pH is
qualitatively consistent with experimental observations, we can
investigate howa perturbation in the shape of interfaces evolves for
both of the dissolution mechanisms considered. To reiterate, we do
not consider the source of the perturbation when conducting the
analysis. The perturbation could correspond some microstructural
inhomogeneity; the only requirement is that the size of the
perturbation is small. We consider the linear stability of the in-
terfaces, and thus this approach only gives information about the
very initial stages of an instability. The full interfacial evolution
after the instability requires a numerical treatment using level-set
or phase-field methods.
5.1. Introduction of the perturbation

We perturb the 1D system as shown in Fig. 4. The perturbations
are described as follows:

h1ðy; tÞ ¼ 0þ bh1 expðikyþ stÞ (13a)

h2ðy; tÞ ¼ Lss þ bh2 expðikyþ stÞ (13b)

fO ¼ fO þ bfOðxÞexpðikyþ stÞ (13c)

fH ¼ fH þ bfHðxÞexpðikyþ stÞ (13d)

CVO
¼ CVO

þ bCVO
ðxÞexpðikyþ stÞ (13e)

CVM
¼ CVM

þ bCVM
ðxÞexpðikyþ stÞ (13f)

Here, the quantities with hats are the perturbation eigenfunctions,
and those with bars correspond to the solution of the planar 1D

model with oxide thickness Lss. bh1 and bh2 are the amplitudes of the
shape perturbations at the metal-oxide and oxide-solution in-
terfaces respectively, and both are ≪1. They are particularly
important since all of the perturbation eigenfunctions can be

written as functions of bh1 and bh2. The goal of the morphological
stability analysis is to solve for the perturbation eigenfunctions and
determine the value of s. If s>0 the perturbations grow in time and
the passive film is morphologically unstable. If s<0 for all k, then
the planar geometry is stable, while if s is complex, then traveling

waves are possible. Once s is known, the ratio bh1=
bh2 can be



Fig. 3. Variations of the steady state film thickness Lss vs. VA and pH. Calculated film thicknesses are shown as blue x's, while the dashed line is a linear fit to the data. The results are
shown for d ¼ 2 and results for pH¼ 4, 5, and 6 are shown. (a)e(c) correspond to the PDM dissolution rate law and d ¼ 2, while (d)e(f) correspond to the Vetter dissolution
mechanism and d ¼ 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Schematic showing the perturbed passive oxide film with all important
quantities labeled. (a) depicts a sinuous perturbation meaning bh1=

bh2 � 0. (b) depicts a
varicose perturbation, meaning bh1=

bh2 <0. l and V are the same for both the sinuous
and varicose perturbation.
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determined. The sign of bh1=
bh2 indicates whether the interface

perturbations are sinuous or varicose (see Fig. 4). The sinuous

perturbation is characterized bh1=
bh2 � 0 and the varicose mode is

characterized by bh1=
bh2 <0.

Inserting Eq. (13) into the governing equations for the potential
(V2f ¼ 0) and vacancy concentrations (Eq. (9)) yields the following
equations for the perturbation eigenfunctions:
v2bfO

vx2
� k2bfO ¼ 0 (14a)

v2bfH

vx2
� k2bfH ¼ 0 (14b)

v2bCVO

vx2
þ
�
vfO
vx

þ V
�

vbCVO

vx
� k2bCVO

¼ �vCVO

vx
vbfO
vx

(14c)

v2bCVM

vx2
þ
�
V � vfO

vx

�
vbCVM

vx
� k2bCVM

¼ �vCVM

vx
vbfO
vx

(14d)

Here, we keep only the terms that are first order with respect to the
perturbation amplitudes, and thus neglect terms that involve
products of the perturbed potential and perturbed concentration
fields, for example.
5.2. Linearized boundary conditions

In order to solve for the perturbation eigenfunctions, the
boundary conditions must be linearized to reflect the presence of
the interface perturbations. In order to do this, we must define the
interface normal vectors and curvatures. Thermodynamics dictates
that we choose an outward pointing normal to define the curvature
of the oxide phase and thus the normal vector for the metal-oxide
and oxide-solution interfaces point in opposite directions. At the
metal-oxide interface, the normal vector is

n1 ¼ ikbh1expðikyþ stÞi� j and the curvature is k1 ¼ V,n1 ¼ �
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bh1k2 expðikyþ stÞ. At the oxide-solution interface, the normal

vector is n2 ¼ � ikbh2 expðikyþ stÞiþ j, and the curvature is k2 ¼
V,n2 ¼ bh2k2 expðikyþ stÞ:

The linearized boundary conditions for the potential are:

bfO ¼ �bh1
vfO
vx

; at x ¼ 0 (15a)

vbfH
vx

� ε
rvbfO
vx

¼ 0 at x ¼ Lss (15b)

bfH ¼ bfO þ bh2

�
vfO
vx

� vfH
vx

�
at x ¼ Lss (15c)

bfH ¼ �bh2
vfH
vx

at x ¼ Lss þ 1 (15d)

The linearized boundary conditions for the concentration per-
turbations are:

bCVO
¼bh1

 �
exp

h
� Dm+1 þ DfM=O

i
þ 2exp



Dm+3 � Dm+1

�	
gM=Ok2 � vCVO

vx

!
at x ¼ 0

(16a)

bCVO
¼ �CVO

�bfO þ bh2
vfO
vx

þ gO=Sbh2k
2
�

�bh2
vCVO

vx
at x ¼ Lss

(16b)

bCVM
¼ bh1

 
CVM

gM=Ok2 � vCVM

vx

!
at x ¼ 0 (16c)

bCVM
¼ CVM

�
d

2

�bfO þ bh2
vfO
vx

�
� gO=Sbh2k

2
�

�bh2
vCVM

vx
at x ¼ Lss

(16d)

Note that for the stability analysis, we now include the inter-
facial energy terms since, for k>0, the interfaces have curvature
and the Gibbs-Thomson effect is relevant. The surface energy has
no effect if the film remains planar (k ¼ 0), unlike in the analyses of
passivity breakdown by Sato [6] and Heuer [8]. The non-
dimensionalized interfacial energy is defined as g� ¼
Vg=ðdHelmRTÞ, and we have chosen gM=O ¼ gO=S ¼ 0:4 J=m2. The
value of 0:4 J=m2 was chosen based on the work of Marks [4] and
roughly equal to the calculated oxide-solution interface energy for
the Al2O3(001) surface. The metal-oxide interface energy that we
employ is likely low based on the values calculated by DFT [48,49],
which indicate that this energy greater than 1 J/m2 for Al2O3 in-
terfaces with Al, Ag, Cu and Ni. This means that we are likely
underestimating the metal-oxide interface energy and thus are
underestimating the stability of that interface.

The derivation of the linearized boundary conditions for the
concentration perturbations are given in Appendix B, and the so-
lutions to the perturbation eigenfunctions are given in Appendix C.
5.3. Perturbation growth rate, s

The growth rate of the perturbation is found by considering how
the velocities of the metal-oxide and oxide-solution interfaces are
perturbed by the presence of the shape perturbations. The veloc-
ities of the interfaces are found from the following equations:

V1 ¼ dh1
dt

¼ �JVO
ðh1Þ (17a)

V2 ¼ dh2
dt

¼ �Jdðh2Þ (17b)

Taking the derivatives and utilizing the perturbation eigen-
functions in the dissolution rate laws Jd, it is possible to show that
the perturbed interface velocity can be written as the following
system of equations

sbh1 þbJVO
ðh1Þ ¼ 0 (18a)

sbh2 þbJdissðh2Þ ¼ 0 (18b)

where bJVM
ðh1Þ is the perturbed oxygen vacancy flux and the metal-

oxide interface and bJdðh2Þ is the perturbed dissolution rate.

The perturbed vacancy flux at the M/O interface bJVO
ðh1Þ is given

by the expression

bJVO
ðh1Þ ¼

"
�
 
vbCVO

vx
þ bh1

v2bCVO

vx2

!
� CVO

vbfO
vx

�
�bCVO

þ bh1
vCVO

vx

�
vfO
vx

#
x¼0

(19)

The perturbed dissolution flux from the PDM rate law is

bJPd¼�JPda�d2�1
��bfOþbh2

vfO
vx

�
�kPd

�
ð1�CVM

Þ
�bCVO

þbh2
vCVO

vx

�
þð1�CVO

Þ
�bCVM

þbh2
vCVM

vx

��
�C2

Hþexp
�
a

�
d

2
�1
�
fO

��
x¼Lss

(20)

while the perturbed dissolution flux from the Vetter rate law is:

bJVd ¼
"
J
V
da

d

2

�bfO þ bh2
vfO
vx

�

� kVd

 bCVM
þ bh2

vCVM

vx

!
C2
Hþexp

�
a
d

2
fO

�#
x¼Lss

(21)

Regardless of the choice of the dissolution rate law, it is possible
to the cast the perturbed velocity system (Eq. (18)) into the matrix
form

�
sþ f1ðkÞ f2ðkÞ
f3ðkÞ sþ f4ðkÞ

� bh1bh2

!
¼ 0 (22)

Here the functions f1; f2; f3, and f4 are complicated (but analytical)
functions associated with either the perturbed vacancy flux (f1 and
f2) or perturbed dissolution flux (f3 and f4). In order to find a non-
trivial solution, the determinant of the coefficient matrix must
equal zero, which yields a quadratic equation for sðkÞ. With sðkÞ
known, we can solve for the ratio bh1=

bh2. Since there are two so-
lutions for sðkÞ, we expect that one of the solutions corresponds to

the sinuous perturbation (bh1=
bh2 � 0) and the other corresponds to

the varicose perturbation (bh1=
bh2 <0). For the parameters we
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choose, we find that the discriminant of the quadratic equation for
sðkÞ is always greater than 0 and thus we do not find any imaginary
roots that would correspond to a traveling wave instability.
Analytical expressions for sðkÞ have been obtained using Mathe-
matica, but are rather long and cumbersome write down and as
such they will not be given here.
5.4. Stability dispersion curves sðkÞ

For investigations of the stability of the system, we use the pa-
rameters listed in Table 2 and fix the pH at 4. This is because at this
pH value, the calculated steady state film thicknesses are of the
same order of magnitude as those measured in experiments. At
lower pH values, the film thicknesses are sub-nanometers, while
for higher pH values the film thicknesses are on the scale of mi-
crons, much thicker than naturally formed passive films. We break
the analysis of stability into 3 cases: (i) d ¼ 1, (ii) d ¼ 2 and (iii) d ¼
3. For each of the cases, we examine the stability behavior as a
function of VA, for both the PDM and Vetter dissolution mecha-
nisms. For the Vetter dissolution mechanism, the stability curves
have the same general shape regardless of the value of d, so for this
mechanismwe only show plots for d ¼ 2, since for an oxideMO, it is
most likely the that the cation has the same charge in the oxide and
solution (e.g. NiO [42]).

When considering the two roots of the quadratic equation for
sðkÞ, we find that one of the solutions (corresponding to subtracting
Fig. 5. Stability dispersion curves as a function of d and Vapp for the PDM dissolution mec
sponding to oxidative dissolution of the passive fim in the PDM framework.

Fig. 6. Illustration of how the plot of bh1=
bh2 gives an indication of the expected film mor

correspond to the images in (b)e(g). As k increases from 0, the perturbation wavelength decr
rotated 90+ counterclockwise with respect to the coordinate system depicted in Fig. 4. (For
the Web version of this article.)
the discriminant) gives bh1=
bh2 <0 for all k, VA, and d. This solution

corresponds to a purely varicose perturbation and has sðkÞ<0 for
all k, indicating that this solution is unconditionally stable. Since we
are primarily interested in the instabilities that may be present, we
will not discuss this solution further. Inwhat follows, the dispersion
curves are given in terms of the non-dimensional variables and as
such do not have units. Quantities involving the length scale are
dimensionalized assuming dH ¼ 0:4 nm.
5.4.1. PDM dissolution mechanism
The stability dispersion curves for the sinuous mode as a func-

tion of VA and d are shown in Fig. 5. First, we note that s ¼ 0 and bh1=bh2 ¼ 1 at k ¼ 0 for all values of VA and d, which indicates that
translating the planar passive film in space does not affect its sta-
bility. We also note that the dispersion curves themselves are
essentially independent of VA. For d ¼ 1 and d ¼ 2, we find that s<
0 for all k, whichmeans that perturbations of the passive film shape
are unconditionally stable. For d ¼ 3, corresponding to oxidative
dissolution of the film, we find an instability is present, where s>0.
The max growth rate of the perturbation corresponds to a wave-
length of z1:3 nm, assuming a Helmholtz layer thickness of
dH ¼ 0:4 nm.

The ratio bh1=
bh2 is also plotted as an inset in Fig. 5. The curves

show bh1=
bh2/0 as k/∞. Fig. 6 illustrates how the plots of bh1=

bh2
give the expectedmorphology of the film interfaces. In all cases, s>
hanism. The inset plot shows, the ratio bh1=
bh2. An instability is found for d>2, corre-

phology. (a) shows bh1=
bh2 vs. k for d ¼ 3 and VA ¼ 0:5 V. The red x's and their labels

eases and the metal-oxide interface becomes increasingly flat. The figures in (b)e(g) are
interpretation of the references to colour in this figure legend, the reader is referred to
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0 except for Fig. 6b, which is the k ¼ 0 case. Fig. 5 shows that the
wavenumber number with the maximum growth rate is about k ¼
2. Since this perturbation has the max growth rate, this is the
perturbation wavenumber that is most likely to be observed in the
linear regime. The figure indicates that for this wavenumber, the
morphology of the film will be similar to what is shown in Fig. 6g.
As k increases from 0, the wavelength of the perturbation de-
creases, while the amplitude of the metal-oxide interface pertur-
bation also decreases. For large enough k, the metal-oxide interface
is essentially flat, and the shape perturbation exists only at the
oxide-solution interface.

From Fig. 5c, we note that for d ¼ 3 and the smallest VA shown

(0.1 V), bh1=
bh2 does become negative around k ¼ 1:5. This means

that it may be possible to support an unstable varicose perturba-
tion. However, the corresponding steady-state film thickness in
these conditions is 0.3 nm, which is quite thin and may not
correspond to a uniform passivating film but perhaps discrete oxide
nuclei on the surface. The origin of the change in behavior for this
very thin film is the fact that the perturbed fields at the interfaces
interact in the bulk portion of the film. For the thicker films at
higher VA, the field perturbations decay away from the interfaces
sufficiently fast that the two interfaces do not interact.
5.4.2. Vetter dissolution mechanism
Fig. 7 shows the dispersion curves that result from the Vetter

dissolution rate law. As before, the curves are essentially the same

regardless of the value of VA. At k ¼ 0, s ¼ 0 and bh1=
bh2 ¼ 1, which

again confirms the translational invariance of the system under
consideration. Fig. 7 shows the dispersion curves for d ¼ 2 and in-
dicates the max growth rate of the perturbation occurs at a
perturbationwavelength ofz 1.3 nm. The instability is present and
the dispersion curves have the same shape for any d>0.

The ratio bh1=
bh2 for the Vetter dissolution mechanism is also

plotted as the inset in Fig. 7. As for the PDM mechanism, the plot
Fig. 7. Stability dispersion curves for the Vetter dissolution mechanism as a function of
VA for d ¼ 2. The instability is found for any d>0. The inset plot shows bh1=

bh2.
implies that when the instability is triggered, the metal-oxide

interface will remain essentially planar, since bh1=
bh2 is essentially

0 except for very small k (long wavelength) perturbations.
6. Discussion

6.1. Mechanism of the instability

Having established the presence of instability in the passive film
growth model, we now turn to identifying the mechanism driving
the instability. In Fig. 8 we plot the perturbed dissolution rate and
the perturbed oxygen vacancy flux at the metal/oxide interface as a
function of k for both the PDM and Vetter dissolution mechanisms.
These plots can be interpreted as follows: when the perturbed
quantity is negative, that quantity is increased in the troughs of the
perturbed interface, while it is decreased at the peaks of the per-
turbed interface. For dissolution, the negative perturbed dissolu-
tion rate indicates that the troughs of the oxide-solution interface
will dissolve faster than the peaks of that interface, and the non-
planar oxide-solution interface will become more exaggerated
over time. A similar argument can be made for the perturbed ox-
ygen vacancy flux at the metal-oxide interface. We note that in
Fig. 8b and VA ¼ 0:1 V, the perturbed oxygen vacancy flux at the
metal-oxide interface does become positive, indicating that the
vacancy flux will tend to stabilize that planar interface. This case, as
discussed previously, corresponds to a very small Lss such that this
behavior may never be observed.

The plots in Fig. 8 indicate that the changes in the dissolution
rate at the oxide-solution interface are orders of magnitude larger
than the changes in the vacancy flux at the metal-oxide interface,
which implies that the instability is dominated by dissolution of the
oxide. This instability supports the localized thinning model for
film breakdown [1,16]. The shape of the perturbed dissolution rate
curves matching those of the unstable dispersion curves shown in
Figs. 5 and 7 lends additional support to the idea that the instability
is dominated by locally enhanced dissolution of the troughs.

The reason for the enhancement of the dissolution rate in the
troughs of the perturbed oxide-solution interface can be found by
plotting the perturbed potential through the Helmholtz layer, as
shown in Fig. 9. The plot indicates that perturbation leads to an
increase in the Helmholtz layer potential drop in the troughs, which
serves to increase the dissolution rate there. This effect dominates
over the changes in the vacancy concentrations at small k, but at
large k the concentration changes dominate and capillary effects
stabilize the planar film. The perturbed potential drop is indepen-
dent of the dissolution mechanism considered. The primary
conclusion that we make is that any oxide whose dissolution rate
increases with increasing Helmholtz layer potential drop will
experience the instability described here.
6.2. Morphology evolution

Fig. 10 shows how the interfacial morphology is expected to
evolve shortly after the onset of the instability, depicting the
increasingly nonplanar interfaces. In this figure, the arrows denotes
the total velocities of the interfaces, not the perturbed velocities.
Thus, the net direction of interface motion is still toward the metal
in the presence of the perturbations, and the mean interface po-
sitionmoves downward in time, as depicted. The magnitudes of the
arrows denote the relative magnitude of the interface velocities.
Since the perturbed dissolution rate is much greater than the per-
turbed oxygen vacancy flux at themetal-oxide interface, we can see
that the morphology change occurs predominantly at the oxide-
solution interface. In Fig. 10, the amplitude of the metal-oxide



Fig. 8. Plots of the (a) perturbed dissolution rate bJPd, and (b) perturbed oxide growth rate bJVO
for the PDM dissolution mechanism, as well as the (c) perturbed dissolution bJVd and (d)

perturbed oxide growth rate for the Vetter dissolutions mechanism. These plots are only given for the case where an instability is present, that is for d ¼ 3 for (a) and (b) and d ¼ 2
for (c) and (d).
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interface perturbation is exaggerated so that the morphology
development at that interface can be visualized.

Since we have only considered linear stability, we do not know
whether the unstable dissolution at the oxide-solution interface
will expose the underlying metal to the solution. There remains a
distinct possibility that the complete interfacial evolution leads to a
new steady-state passive film with nonplanar interfaces. Future
work with phase-field simulations will aim to address the long-
term evolution of morphology after the onset of the instability.
6.3. Perturbation time scale

In the previous section, we were able to identify the length of
the instability atz1:3 nm since dH is known to be small, and a value
of 0.4 nmwas used as discussed previously. Defining the time scale
of the perturbation is far more difficult. This is because time was
non-dimensionalized by the diffusion coefficient D, which is diffi-
cult to determine for passive oxide films. While diffusion data for
bulk oxides does exists, the defect concentrations in passive films
can be orders magnitude larger than in bulk oxides [45], and thus
diffusion coefficients in passive films would be expected to be
larger than in the bulk films.

The growth rate of the instability is given at themaximum in the
sðkÞ curves. Figs. 5 and 7 indicate that the max growth rate of the
perturbations is between 2� 10�4 and 2� 10�3. This means that
the time constant, t, for the instability, is between 8� 10�17 m2=D
and 8� 10�16 m2=D. Diffusion coefficients in passive films have
been calculated for WO3 from experimental data using the PDM
[44], as well as for Cr2O3 using density functional theory (DFT)
calculations [50]. The PDM analysis indicates that the diffusion
coefficient in WO3 films is in the range 3:7� 5:3� 10�19 m2=s,
while the DFT calculations indicate that the diffusion coefficient in



Fig. 9. Plot of the perturbed potential at the oxide-solution interface. The red line are
equipotentials, meant to give an indication of the direction of the perturbed electric
field. At the troughs of the interface, the potential drop through the Helmholtz layer in
increased. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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Cr2O3 is in the range 8:6� 10�23 � 10�18 m2=s. Using these values
of the diffusivity, this suggests that t is between 800 s and 9:3� 106

s. We note that these values are very material dependent, and it is
possible that for certain materials the diffusion coefficients may be
larger and reduce the time constants for the instability.

Since the diffusivities in passive films have not been analyzed for
a wide variety of oxide materials, a survey of the literature on
diffusion coefficients in the bulk oxides MgO, NiO, and Al2O3 in-
dicates that the bulk vacancy diffusion coefficient at 300 K can
range anywhere from 10�64 to 10�16 m2=s Refs. [51e59]. This
bounds the value of t between 8� 10�5 s and 8� 1048 s. This large
variance in the time constant indicates that the small value will
yield a rapidly growing instability, and the latter value corresponds
to an instability that will not be observable.
Fig. 11. Comparison of the stability dispersion curves for the Vetter rate law as the
surface energy g is varied. The parameters used are listed in Table 2, with pH¼ 4 and
d ¼ 2. The growth rate of the perturbations increases as g decreases.
6.4. Connection to pit initiation models

Finally, we would like to make an explicit connection to the
literature on pitting corrosion, especially the dependencies on
presence of the chloride and oxidizers in the environment. Frankel
[1] has noted that the presence of oxidizers in the solution exac-
erbates the problem of pitting corrosion, and our analysis predicts
that oxidizing dissolution (i.e. chromia dissolution in the presence
of permanganate, a strong oxidizing agent [60]) is inherently
unstable.

It is also known that the chloride concentration plays a roll in
determining the pitting behavior of a passive film. This could be due
to adsorption of chloride ions catalytically enhancing dissolution,
Fig. 10. Expected evolution of the interfacial morphological shortly after the onset of the i
present. The arrows show the relative magnitudes and directions of the interfacial velocities.
The black-dashed lines are meant to guide the eye. The non-planarity of the interfaces bec
or chloride incorporation into the passive film leading to voiding at
the metal/oxide interface [3]. Okada has shown that chloride
adsorption to the oxide-solution interface and subsequent
complexation with the cations in the oxide film leads to a disso-
lution rate that increases with increasing oxide-solution potential
drop [24]. When this happens, we would expect the breakdown
instability that we describe here. We also note that DFT calculations
have shown that chloride adsorption on some oxides leads to a
reduction of the oxide-solution interface energy [4]. Reduction of
the surface energy leads to larger perturbation growth rate and a
wider range of unstable wavenumbers in cases where an instability
exists, as shown in Fig. 11. The reduction of the surface energy is
greater at larger Cl� concentrations.

With respect to the localized nature of the passive film break-
down, the work of Marks [4] shows that in general the surface
energy variation due to chloride adsorption is a strong function of
the orientation of the oxide surface, with some orientations
nstability. (a) shows the initial state of the system, with a morphological perturbation
(b) shows the interfacial morphology a short time after the instability in (a) is triggered.
omes increasingly exaggerated because of the instability.
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showing greater reductions in the surface energy than others (e.g
the (100) surface of Al2O3 shows much greater reduction in surface
energy than the (001) surface. This heterogeneity in the surface
energy reduction suggests that certain grains of the oxide film will
be more vulnerable to breakdown due to Cl� adsorption and the
resulting morphological instability. Furthermore, our analysis does
not include a trigger for the shape perturbation, which could
correspond to some localized damage or flaw in the oxide film as
other models have proposed. If the initial perturbation is localized,
then the subsequent film thinning due to the instability will be
localized as well. Furthermore, any thinning of the film due to the
instability, in the absence of a nonlinear steady-state, may even-
tually lead to the oxide locally dissolving away and will manifest as
the initial breakdown step for pit initiation.

7. Summary

We have developed and analyzed the morphological stability of
a model for the growth of a passive oxide film on a metal surface
under potentiostatic conditions. The model for the growing planar
film leads to a linear increase is the steady-state film thickness with
applied potential VA and an increase in the steady-state film
thickness with increasing pH. Both of these results are consistent
with experimental observations. The linear morphological stability
analysis finds that, depending on the parameters and dissolution
mechanism, the passive oxide film may be unstable to shape per-
turbations which grow exponentially in time. Dissolution of the
passive film is unstable for the PDM oxide dissolutionmechanism if
the cation is oxidized upon being ejected to solution. If cation
ejection is the rate limiting step for oxide dissolution, then the
passive film is always morphologically unstable. We find that the
results are consistent with the literature on oxide film breakdown
in the presence of chloride ions, and that passivity breakdown may
be a morphological instability in the passive film. Our results also
imply that one-dimensional models for passive film formation can
be inapplicable in broad classes of corrosion processes. Our analysis
is unique in that it predicts both the size and time scales of the
breakdown event. The analysis provides insight into the mecha-
nisms responsible for the formation of non-planar films and
potentially the formation of a pit or pore in the oxide.
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List of Symbols

f; f; bf Potential, unperturbed potential, perturbed potential
VA Potential applied to the metal relative to the bulk

solution potential
DfM=O Potential drop at the metal-oxide interface
ε
r Ratio of the dielectric constants of the oxide and

Helmholtz layer (εoxide=εHelm)
dH Thickness of the Helmholtz layer

C; C; bC Vacancy concentration, unperturbed vacancy
concentration, perturbed vacancy concentration

D Vacancy diffusion coefficient
zj charge number of species j
F Faraday's constant
Dm+i Standard state change in chemical potential for reaction

i as numbered in Fig. 1
c; d Charge of the cation in the oxide and solution

respectively
aMdþ Activity of cations in solution

JPd; J
V
d Dissolution flux for the PDM and Vetter dissolution

mechanisms, respectively
Vm Molar volume of the oxide
V Velocity of the interfaces in the steady-state
L; Lss thickness of the film, thickness of the unperturbed filmbh1;

bh2 Perturbation amplitudes at the metal-oxide and oxide-
solution interfaces, respectively

s Growth rate of the perturbation
k Wavenumber of the perturbation
k1; k2 curvature of the metal-oxide and oxide-solution

interfaces, respectively
Appendix A. Derivation of boundary conditions with
structure conservation and the Gibbs-Thomson effect

Including the structure conservation requirement and Gibbs-
Thomson Effect in the boundary conditions is very straightfor-
ward. Here we will derive the boundary condition for the cation
vacancy concentration at themetal-oxide interface. The approach is
the same for the remaining concentration boundary conditions.

The reaction we are considering is m þ Vc0

M % MM þ ce
0
.

Following from Macdonald [10], we first consider the chemical
potentials of all species involved in the reaction, assuming an ideal
solution model for the chemical potentials.

~mm ¼ m+m (A.1a)

~mVM
¼ m+VM

þ RT ln
�
CVM

�þ VgM=Ok1 � cF fOðh1Þ (A.1b)

~mMM
¼ m+MM

þ RT ln
�
1� CVM

�
(A.1c)

~me ¼ m+e � F fm (A.1d)

Here ~mj represents the electrochemical potential of species j, m+j is

the standard state chemical potential of species j, V is the partial
molar volume of the vacancy, gM=O is the energy of the metal-oxide
interface, and k1 is the curvature of the metal-oxide interface. Here
we note two things. First, the chemical potentials of VM and MM are
coupled together by the structure conservation requirement.
Setting CMM

¼ 1� CVM
ensures that the cation vacancy concentra-

tion cannot exceed the site density of the cation sublattice. The
second thing to note is the presence of the term VgM=Ok1 for the
electrochemical potential of cation vacancies. This term accounts
for how capillarity at a non-planar interface modifies the vacancy
chemical potential in accordance with the Gibbs-Thomson effect.
For a planar metal-oxide interface, k1 ¼ 0 and the interface energy
has no effect.

To obtain the boundary condition in Table 1, we assume that the
reaction is in the equilibrium. This means that

P
prod

nj~mj �
P
react

nj~mj ¼

0, where the nj are the stoichiometric coefficients. Using the ex-
pressions in Eq. (A.1) in the equilibrium condition and rearranging
terms, we arrive at the boundary condition
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CVM

1� CVM

¼ exp

 
Dm+3 � cF DfM=O � VgM=Ok1

RT

!
(A.2)

Appendix B. Linearized concentration boundary conditions

Here we will show the procedure for obtaining the linearized
boundary condition for the cation vacancy concentration at the
metal-oxide interface. In the non-dimensional variables, it is easy
to show that

CVM
ðh1Þ ¼

1
exp

�� Dm3� þ DfM=O þ gk
�þ 1

(B.1)

Since the expected defect concentration is expected to be small
(order 10�2 or smaller), we can safely ignore the 1 in the denom-
inator of the expression without affecting the results to obtain the
approximate expression

CVM
ðh1Þ ¼ exp

�
Dm3

� � DfM=O � gM=Ok1

	
(B.2)

Since k1 ¼ �bh1k2expðikxþ stÞ and bh1≪1, we can expand the
exponential as
C ¼ �bh1

�
VA � DfM=O

	
ε
r cosh½kðLss þ 1Þ �

ðLss þ ε
rÞðεr coshðkLssÞsinhðkÞ þ coshðkÞsinhðkLssÞ Þ

þbh2

�
VA � DfM=O

	
ε
rð1þ ε

r � ðε� 1ÞðcoshðkÞ � coshð2kLssÞ þ cohsðkþ 2kLssÞ Þ Þ
ðLss þ ε

rÞðεr coshðkLssÞsinhðkÞ þ coshðkÞsinhðkLssÞ Þ

(C.1c)
CVM
ðh1Þ ¼ exp

�
Dm3

� � DfM=O
	�

1� gM=Ok1

	
¼ CVM

ð0Þ � CVM
ð0ÞgM=Ok1

¼ CVM
ð0Þ þ CVM

ð0ÞgM=Obh1k
2 expðikxþ stÞ

(B.3)

Now, we can Taylor expand the left hand side of this equations
as follows

CVM
ðh1Þ ¼CVM

ð0Þþðh1�0ÞvCVM

vx
jx¼0

¼CVM
ð0ÞþbCVM

ð0ÞexpðikxþstÞþbh1expðikxþstÞvCVM

vx
jx¼0

(B.4)

Here we have only kept terms that are linear with respect to bh1.
Combining Eqs. B.3 and B.4 and rearranging we obtain the linear-
ized boundary condition

bCVM
ð0Þ ¼ bh1

 
CVM

ð0ÞgM=Ok2 � vCVM

vx
jx¼0

!
(B.5)

A similar procedure is followed for the remaining boundary
conditions, except at the oxide-solution interface, we must also
Taylor expand foxideðh2Þ about x ¼ Lss.
Appendix C. Perturbation eigenfunctions

The perturbation eigenfunctions are needed to evaluate the
perturbed oxygen vacancy and dissolution fluxes in order to
compute sðkÞ. These solutions are given here:

Appendix C.1. Potential perturbation eigenfunctions

The general solution to the perturbed oxide potential is fOðxÞ ¼
A sinhðkxÞ þ B coshðkxÞ and the general solution to the perturbed
Helmholtz layer potential is fH ¼ C coshðkxÞþD coshðkxÞ. Plugging
these expressions into the linearized boundary conditions we find
that the coefficients are

A¼�bh1

�
VA�DfM=O

	
ðcoshðkÞcoshðkLssÞþ ε

r sinhðkÞsinhðkLssÞÞ
ðLssþ ε

rÞðεr coshðkLssÞsinhðkÞþcoshðkÞsinhðkLssÞÞ

�bh2

�
VA�DfM=O

	
ððεr�1ÞcoshðkÞ� ε

r Þ
ðLssþ ε

rÞðεr coshðkLssÞsinhðkÞþcoshðkÞsinhðkLssÞÞ
(C.1a)

B ¼ bh1

�
VA � DfM=O�

Lss þ ε
r (C.1b)
D ¼ bh1

�
VA � DfM=O

	
ε
r sinh½kðLss þ 1Þ �

ðLss þ ε
rÞðεr coshðkLssÞsinhðkÞ þ coshðkÞsinhðkLssÞ Þ

þbh2

�
VA � DfM=O

	
ðεr � 1Þεrðsinh½kðLss þ 1Þ � � sinhðkLssÞ Þ

ðLss þ ε
rÞðεr sinhðkÞ þ coshðkÞtanhðkLssÞ Þ

(C.1d)
Appendix C.2. Concentration perturbation eigenfunctions

The solution for the concentration perturbation eigenfunctions
is significantly complicated by the inhomogeneous nature of the
governing equations. The homogeneous solutions have the form

bCVO
¼ Ferþx þ Ger�x þ bCP

VO
(C.2a)

bCVM
¼ Hesþx þ Ies�x þ bCP

VM
(C.2b)

where
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r± ¼ ��V þ vyfO
�
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
V þ vyfO

�2 þ 4k2
q

2
(C.3a)

s± ¼ ��V � vyfO
�
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
V � vyfO

�2 þ 4k2
q

2
(C.3b)

and bCP
VO

and bCP
VM

are the particular solutions satisfying the inho-
mogeneous governing equations. The particular solutions to the
inhomogeneous problems and the unknown coefficients F; G; H
and I were found using Mathematica. The closed form analytical
solutions are rather long and complex and not given here.
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