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HIGH RESOLUTION STUDIES OF SMALL PARTICLES OF GOLD AND SILVER

II. Singlecrystals, lamellartwins and polyparticles
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Axial illumination lattice imaging with a high resolution electron microscopehasbeenused tocharacterisedirectly the struc-
tures of complicated particlesof silver andgold found in theearly stagesof particulategrowth. Many of the particlesare con-
veniently classifiedunder a new, broad heading of “polyparticles”, indicating their similarity to polycrystals.Whereasthelatter
are composedof single crystals, theformer are constructedfrom smallerdiscreteparticles(e.g. icosahedralmultiply-twinnedpar-
ticles).

1. Introduction 2. Results

Our initial studies of the internal andsurfacestruc- Details of specimenpreparationandmicroscope
ture of smallmetal particleswith the CambridgeUni- operating conditionsare givenin I, andarenot repea-
versity 600 kV high resolution electron microscope ted here.
(HREM) [1,21 have established,unequivocably,the
presence of dislocations insmall multiply-twinned 2.1. Singlecrystals
particles(MTPs) [3,4]: detailedobservationsof both
decahedraland icosahedralMTPs (hereafterabbrevi. The shapesof the single crystals were in agree-
ated to Dh and Icrespectively)of silver and gold are mentwith previouswork onsimilar epitaxially-depo-
presented ina companion paper[5], hereafterlabel- sited particles(e.g. ref. [6]); nearly square shapes
led I. with a (100) epitaxy (fig. 1), and triangles for the

We have also shown that, withaxial illumination (111) epitaxy (fig. 2). A few rectangular(100) par.
lattice imaging, it is relatively straightforward tocha- tideswere also observed,almost certainlyas a result
racterise directly thestructureof more complicated of particle coalescence.Supportingevidenceis shown
particles. Indeed, a variety of particleswith different in fig. 3 and 4. The(200) lattice fringes in fig. 3
internal structureshavebeenobserved— the purpose displaya definite orientation change along a line
of the present paperis to describethese in detail. It between the two arrows,indicatingeithera low angle
is convenientto classify many of these particles under grainboundaryor a sharpchangein the thickness
the broadheading“polyparticles”, asthey aresimilar gradient. Both of thesepossibilities are associated
to polycrystals but with definite particles(e.g. Ics) with late stagesin coalescence.Fig. 4 showstwo par-
replacingsingle crystalsasthe basicunits. tides “frozen”, probably by thecooling of the sub-
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S nm Fig. 3. A icciangular particleof silver in (100) epitaxy with

evidencefor particle coalescence.There is a distinct change
Fig. 1. Typical, slightly rectangular,(100) epitaxcd single in the latticefringe orientationon a linebetweenthearrows,
crystal of silver. Crossed(020) and (002) lattice fringes of indicating either the presenceof a low angle grainboundary
0.203nmspacingareevident, or a sharpchangein thethicknessgradient

strate, in thenecking stageof coalescence.Similar,
though lower resolution,imageshavebeenpreviously .
published [7]. . -

2.2. Lamellar-twinnedparticles

Iamellar-twinned particles(or LTPs) are charac- -~

tensed by two or more parallel twin boundaries,
though thesimplest example, shown in fig. 5, has ‘~ -

only one twinboundary.Thesecanbe classifiedasa
simple type bf polycrsystal,although we feel they ,

-~
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Fig. 4. Two (100) orientedparticles of silver “froLen” in the
necking stageof coalescence.Crossed(020) and (002) lattice
fringes of 0.203 nm spacingare visible in one particle and

(020)- half spacingfringesof 0.102nm, aswell asfaint 0144
Fig. 2. Iriangular particleof silver with (111) epitaxy. nm fringes,arevisible in the other.
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Fig. 5. A lamellar-twinnedparticle of silver imaged down Fig. 6. Bi-icosahedralMTPof silver probablya resultof inter-
the shared(110) axis.The actual position of the twin boon- particular coalescence.The two epitaxial directionsof the
dary is ill-defined. Ics on the substrate areindicated: possible dislocationsare

alsoarrowed.

should be considered as a distinct particle type, nism for the formation of theseparticles inshown
given their frequent observation(e.g. ref. [8]). in figs. 7 and 8. The compositeparticle infig. 7 sug-

gests two Ics with the sameepitaxy in~the process
2.3. Polyparticles of coalescinginto a single Ic. Fig. 8 shows an Ic

necking with anotherwhich is itself part of a corn-
A very commonobservationwasof particles which

appearedto contain MTPs or LTPs either “embed-
ded” among othercrystalsor recognisablycoalesced
with them.Thesewere readily identified by the cha.
racteristic pattern of lattice fringes inside the par- , - — ‘~‘ -

tides. *

2.3.1.Poly-icosahedralMTPs - -

Theseparticles consist of lcs sharingdecahedra. 1 :
The simplest example is the bi-icosahedralMTP of -

silver shown in fig. 6. The epitaxial directions for the .

two Ics are also marked. It is clear that neither of -- -

the constituent particles is adopting the epitaxial
alignment, suggestingthat this particleresults from
the coalescenceof two Ics, rather than from the .

nucleation of one Ic uponanother. (A nucleation
processwould be expected to occur with one of the 5 nm
MTPs epitaxially oriented.)Particlesresemblingcoa- -

lescedMTPs were tentatively suggestedby mo [61 - - -

and Komoda [9] although neitherwere able to Fig. 7. A compositeparticle of silver suggestingcoalescence
as the origin of polyicosahedralMTPs. Two (112) epitaxedprovideclear structuralidentifications. Ics can beidentified, frozen in theprocessof coalescinginto

Further evidence for coalescenceas the media- a single Ic.
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~ I ie. I II, I xampk of .i de~ahcdralMTP forming a bridge
___________________________________ • betweenIwo icisahedralMTPs.

tides may contain strain-relievingdislocations;pos-

________________ sibleexamplescanbeseenin fig. 6.
S

- 2.3.2.Icosahedral-decahedralMTPs

In a similar manner to thatdescribedabove for

Fig. 8. Coalescencebetweenan Ic andan elongatedhi-icosa- the poly-icosahedralMTPs, these particlesare the
hedralMTP. The continuity of the latticefringesacrossthe result of combiningan Ic with a Dh by sharing two
“neck” shouldbe noted, tetrahedralsegments.An exampleis shownin fig. 9.

Furthermore,not only does this poly-particle struc-
ture occurseparately,it also appearsaspart ofa more

posite particle. Thecontinuity of the directions of complicatedparticle. Fig. 10, for example,shows a
the lattice fringes between thetwo Ics should be Dh bridging two Ics in perfectregisterwith the left-
noted. Finally note that, in common with the dis- handIc.
crete icosahedralMTP, these poly-icosahedralpar-

2.3.3.Decahedral-lamellarMTPs
This particular structure(seefig. 11) is againsirni-

lar to those describedabovein that it correspondsto

a low energy matchingbetweentwo particles. An

-. ‘ alternativeinterpretationof this particlewould be as

- ‘. ~ -

-~ ,., . S.nm ,

snm
I ie. 9. lcosahedral—dccahedralMI P. 1 he Ic on the left and
theDhon theright aresharingtwo tetrahedralsegments. Fig. 11. Adec.ihedr,iI-lamellarMTPof silver.
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Fig. 12. (a) Polyparticleof gold. Left-handparticleis a (111) Fig. 13. (a) Polycrystal of gold with suggestionsof lamellar
oriented Ic coalescedwith anotherwhich may be an Ic. A twinning along the left lower edge. (b) Polycrystal of gold
possible partial dislocation is arrowed. (b) Polyparticte of with someevidencefor lamellar twinning.
gold showinga (111) orientedIc embeddedin thelower left
and a possible lamellartwin in thelowerright.

a Dh with two rather extendedsegmentsandan addi- the ratherloose title of polycrystalsbut this maybe
tional twinned segment.However, the former classi- misleading.It is suspected thatthey arepolyparticles
fication seemsmore appropriateto the manner in whichare not being observedin an orientationsuit-
which we believe these particlesare formed, i.e. by able for decodingtheir structuresvia lattice imaging.
coalescence.

2.3.4. Morecomplicatedpolyparticles 3. Discussion
Particleswith an identifiable segmentembedded

within a large undecodableregion were frequently The resultspresentedheredemonstratethe useful-
observed.Two typical examplesare shownin fig. 12, nessof lattice imagingas a methodof directly identi-
as explained in thefigure caption.The present meth- fying and characterisingsmall particles, as well as
od of identification is not always capableof com- showingits potential forin-situ studiesas a meansof
pletely decodingsuchparticles.However,these obser- following the initial stagesof particle nucleation.The
vationsprovide furtherevidencethat particlesretain techniqueis somewhat analogousto theselectedzone
their integrity asunitseven whencoalesced, dark field (SZDF) method employed byHeinernann

andPoppa [10] whereby the(111) and (200) dark
2.4. Polycrystals field imagesare recorded,along with the direction of

translationswith defocus, togive the origins of the
A numberof particleswere observedwhich could various diffracted beams. Themajor advantageof

not be readilyclassified;two examplesare shown in direct lattice imagingis that it enablesall (111) and
fig. 13. It is possibleto group these particlesunder (200)dark field imagesto be recordedsimultaneously
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on a singlemicrographwith full directional informa- [15—17])havesuggestedthe possibility ofpolytetra-
tion and very high spatial resolution. This isof sub- hedralstructures(which are polyicosahedralMTPsin
stantial conveniencefor decoding complicatedpar- a 3D network) in amorphousmaterials.Our observa-
tides. tions of polyicosahedralMTPs appear to provide

The predominantfeature of the presentobserva- somecircumstantialevidencefor thesemodels.
tions is the manner in whichvarious particles,such
as MTPsand LTPs, appearto retain their integrityas
units wheninvolved in a larger particle. Thegeneral Acknowledgements
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