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An analysis of the effects of beam convergence is carried out for high resolution electron microscope imaging, including the 

changes in diffraction across the illumination aperture by a Bloch wave approach. It is shown that the effect of a small tilt u is 

to introduce a perturbation U.V, into the projected 2D Schrodinger equation for the Bloch waves. By using perturbation 

theory (essentially a k.p analysis), it is shown that the dominant effect is a modification of the non-linear convergence 

envelope term between different Bloch waves. The effects should be larger for defects than for single crystals, and important 

for thicknesses of more than - 50 nm, thicknesses similar to those at which non-linear effects are important. The general 

trends with structure, elemental composition and incident electron voltage are briefly described. 

1. Introduction 

Over the past few years considerable success 
has been achieved in high resolution electron mi- 
croscopy using the technique of structure imaging 
to examine local inhomogeneities (e.g. ref. [l]). The 
majority of this work has been concerned with thin 
specimens, combining the experimental results with 
fairly detailed numerical calculations performed 
by the multislice technique (e.g., refs. [2,3]). Thicker 
specimens have often been ignored, primarily be- 
cause the numerical calculations often give only 
poor agreement with the experimental results 
(which in some cases may be due to non-linear 
terms). Progress towards an understanding of 
thicker specimen has been slow, one of the main 
reasons being the difficulty in locating errors or 
invalid approximations inside a “black-box” 
numerical routine. 

Although analytical techniques are well estab- 
lished using Bloch wave techniques, e.g. ref. [4], 
relatively little work has been performed using 
these for thicker specimen HREM. Some attempts 
have recently been made [5-71 to correlate HREM 
with Bloch waves, but only in the absence of the 
imaging envelope terms, which is a poor ap- 
proximation to an operating electron microscope. 

In this paper we analyze the effect of beam 

convergence by including the variations in the 
diffraction conditions by a Bloch wave expansion, 
and using perturbation theory to describe these. 
The required perturbation has the very simple 
form which is proportional to the momentum op- 
erator, which implies that the effects can be large 
around crystalline defects. (The analysis is essen- 
tially a k . p perturbation analysis - see, for in- 
stance, ref. [8].) With a few small approximations 
and simplifications, we find that errors arise in 
conventional non-linear imaging equations for 
typical thicknesses of more than - 50 nm. 

2. Theory 

In the framework of a Bloch wave solution for 
swift electron diffraction, we consider a series 
solution in the form (e.g. refs. [4,9-121) 

#(r)=CC,‘(u) eq{ -2ni[z/h-s,(u)z]} l_i>, 
i 

(1) 
where k = z/X + v specifies the incident beam di- 
rection, and ]j) and s/(u) are respectively the 
eigenfunctions and eigenvalues of 

&,lj) = (87r*/A) s,(u) l_Q, (2) 
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with 

H, = v,z + 

! j) a Bloch wave of form 

Ij) =CC,(u) exp[-27ri(u+g).n], 
R 

(4) 

and V,(r) the projected potential, with u and p 
respectively reciprocal and real space vectors in 
the zone axis plane, z down the zone axis, and X 
the electron wavelength. Eq. (2) is equivalent to 
solving a two-dimensional band structure problem 
[10,12]. 

Considering now a small change in the incident 
direction specified by a vector u in the diffraction 
plane, the change in H,, takes the form: 

Ho+Ho+u.zf’, (5) 

where 

H’= 0,. (6) 

Dealing with H’ by perturbation theory, we 
make the standard expansion 

lj) -lj) +U.c’~;,lm) + . . . . (7) 
I?, 

~,(u)-~,(~)+~~~~(u)+~z~,~~s,*(u),,,+ . . . . 
Im 

(8) 

and assuming (for simplicity) that non-degenerate 
perturbation theory can be used, we have the 
standard results 

a:,= (X/8m2)(mlH’lj)/(s,(u) -G,(u))~ (9) 

(87r’/X) s:(u) = (j[H’lj). (10) 

@772/h) $bh, = ~‘W4’l~>(Sfh> 

;rsb-%W]. (11) 

Before proceeding further, we should point out 
the physical significance of some of the terms in 
eqs. (5)-(11). The perturbation H’ is proportional 
to the momentum operator, so S:(U) is propor- 
tional to the expectation of the transverse 

momentum of thejth Bloch wave in the 2D poten- 
tial of eq. (2). Assuming correct orientation of the 
crystal down a zone axis, S,*(U) = 0. We also note 
that both u;, and the terms in the sum in eq. (11) 
are inversely proportional to the difference s, ( u) - 
s,,(u). Hence the main interactions arise from 
adjacent branches of the dispersion surface. Fi- 
nally, since H’ is a gradient operator, it follows 
that the effects of illumination angle are most 
important whenever the wavefunction is rapidly 
varying. This implies larger effects at any crystal 
defects than in the bulk crystal. The effect of the 
operator also increases with larger g values. and 
hence becomes more important with higher resolu- 
tion (assuming the convergence is constant). This 
is important for current high voltage machines 
which are primarily limited by the chromatic ab- 
berration terms. 

The expansion of lj) and s,(u) to first and 
second order respectively will be valid for most 
experimental cases where the convergence is small 
compared to the first Brillouin zone size, the latter 
being the natural unit of scale in reciprocal space 
in a Bloch wave approach. We only require rela- 

tively small changes in lj) and s,(u), which can 
lead to large changes in J/(r) if z is large. Writing 
out the expansion of $(r, u) for variations in the 
incident directions, we have 

=c co’(u)+~‘c~(u) u.a;,l 
/ [ M 1 

X exp 
( [ 

-2ri z/X+u.r-z s,(u)+u.s~(t’) 
( 

It is appropriate to briefly discuss the first-order 
correction to the amplitude, u. .I:, C,“‘( ~)a!,,, and 
to the Bloch wave, u. IIn a~,lm). If either or both 
of these are important in the final result, the 
conventional reciprocal space integration will be 
invalid even for a very thin crystal. For the mo- 
ment we will assume that the crystal has a center 
of symmetry and is accurately aligned on a zone 
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axis. For a symmetric Bloch wave, both of these The exact variation of S,(U) will in general 

first-order terms have the wrong parity and must depend upon the specimen employed and the ac- 

be zero. The only case where they can be non-zero celerating voltage of the microscope. Therefore, 

is for an asymmetric Bloch wave. However, both rather than becoming involved in one particular 

first-order terms have odd parities, and must experimental set-up, we choose here to look in a 

therefore be paired with another odd term in order more general fashion at the effects and extract the 

to yield any effect in the final (symmetric) integra- trends. Assuming a correct orientation down a 

tion over the convergence. The only other odd zone axis, we can omit si( u) and estimate s,*(u),,. 

terms are other first-order corrections, or terms (We note that tilting the crystal off the zone axis 

due to the spherical abberration and defocus phase has a number of large disadvantages in terms of 

shift, x, of form sin(u . OX). Both of these are the image localization, as discussed elsewhere [12].) 

inherently small for small U, and the final contri- Taking the dispersion surface curvature to be of 

bution is of order u*, i.e. essentially a second-order the same order as for a free electron sphere, a 

correction. reasonable approximation is 

Therefore, as a rule the effect of these two 
first-order terms is small, and it is justifiable to 
ignore them, although there is an important excep- 
tion which is not covered by the above analysis. In 
many crystals certain diffracted beams are both 
kinematically and dynamically forbidden on the 
zone axis, but become dynamically allowed off the 
axis. (They would show Gjonnes-Moodie lines in 
a convergent beam pattern.) The integration over 
diffraction conditions will lead to these spacings 
appearing in the image, whilst they would be com- 
pletely absent in a simple reciprocal space integra- 
tion. We note that similar effects can also occur at 
an extinction contour. 

sJz(&I =$&I, (14) 

where Ia,] - l/2, and CYJ can be positive or nega- 
tive. 

We now carry out the analytical imaging pro- 
cess using the approximate form of J/(r, u). For 
convenience we will separate the series terms in 

$(r, u), 

Ir/(r,u)=C$,(r) exp[-2ni(u.r-hol,U2z)], 
i 

(15) 

The last two paragraphs have assumed that the 
crystal has a center of symmetry and is correctly 
aligned. We note that the above arguments, that 
the first-order amplitude and wave terms are small, 
may well break down if these conditions are not 
met. 

Continuing the analysis, the important per- 
turbations (with the qualifications detailed above) 

are s:(u) and S,*(U),,, since these lead to large 
changes if z is large. Neglecting the other terms we 
can approximate: 

and separate the image intensity due to different 
cross-terms between the Bloch waves: 

I(r) =cL?J+ (16) 
lm 

Writing Sfor a Fourier transform operator, with 

\k,(u) =9$,(r)? (17) 

and performing the standard incoherent integral 
for convergence and chromatic terms (e.g. refs. 
[13-161) we find 

I,&)=~“-’ 
/ 

*T(w) !Pm(u- w) 

XTZ”(w,u-w,z) 
Ir/(r,u)=CC,‘(u) exp -2ri z/X+~.r 

i i [ 

Id. (13) 

xexp{ -i[x(u- ~7) -x(w)l) 
xE(w,u- w) d*w, (18) 

where E( w, u - w) is the standard non-linear en- 
velope term which includes both convergence and 
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energy spread terms, and Tpy (w, 0 - w, z) is a 
thickness-dependent envelope correction term. This 
latter term includes the effects of changes in the 
diffraction across the illumination aperture, and 
takes the form 

T“‘““( w, u - w, z) /m 

= (1 +A*)-I’* exp -r2q2 iLIt+ I]), 1 [ 
(19) 

where 

A = 2aXz( (Y, - (~~)a*, 

q=a[VX(w)-VX(v-w)]> 

(20) 

(21) 

and the convergence spread has the form 
(7&) I’* exp( - ~*/a*); i.e., the convergence 

contribution to E( w, 2) - w) is exp( -r*q*). Plots 
of the real part of the correction term as a function 
of A for several different values of B = exp( - r*q*) 
are shown in fig. 1 (the imaginary component is 
negligibly small). Also shown on the axis of the 
figure are the corresponding thicknesses in nm, 
assuming a convergence half-height of 1 mRad at 
200 kV and (a, - cy,) = 1. 

The form of the correction function is a little 

CORRECTION 
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Fig. 1. Plots of the real part of the correction term for different 
values of B, the damping, as described in the text. Note that 

the largest nett effect is for undamped (B = 1.0) terms. 

surprising. Spacings for which there is minimal 
convergence damping become more strongly 
damped as the thickness increases. Heavily damped 
spacings behave in the opposite sense, and are 
reinforced at larger thicknesses. In many respects 
the correction term extends the resolution of the 
microscope a little. Clearly, the effects are im- 
portant for thicker specimens, from the analysis, 
beyond about 50 nm. 

3. Discussion 

The analysis herein has permitted some insight 
into how convergence (and crystal tilt) can affect a 
HREM image for a thicker specimen. The effect 
changes the damping of fringe terms between dis- 
persion surface branches with a different curva- 
ture, and can be expected to affect the images for 
thicknesses larger than - 50 nm. The modification 
will be larger around any form of crystalline de- 
fect, coming from the gradient operator. We note 
that this is an effect beyond that of a non-linear 
envelope term, and it is a moot point to note that 
some of the “commercial” programs do not even 
include non-linear envelope terms. However, it is 
not the only thick specimen term, and phonon and 
plasmon scattering may need to be considered as 
well. 

It is useful to consider the general trends with 
materials and incident electron energy. Using the 
solid-state interpretation of eqs. (6)-(7) [10,12], the 
variation of s,(u) can be considered in terms of the 
band structure of a two-dimensional potential. The 
more tightly bound the potential is, the smaller is 
the variation and hence the convergence effects. 
For a given material, the binding strength increases 
with the size of the projected unit cell. With a 
given structure, the binding depends upon both 
the strength and tightness of the atomic scattering. 
For instance, gold yields a tighter binding than 
aluminum. In general, the stronger the diffraction, 
the tighter is the potential. Finally, the binding 
strength increases with the electron energy, favor- 
ing the use of high voltage machines (a relativistic 
effect). 

As a final point, it should be remembered that 
the role of diffraction changes upon the conver- 
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gence can be experimentally estimated from a 
selected area diffraction pattern of the area of 
interest (not from a microdiffraction or convergent 
beam pattern), with no changes in the illumination 
conditions, of course. 

4. Conclusions 

Variations in the dynamical diffraction due to 
the tilt across the convergence aperture can be 
expected to require proper treatment beyond that 
of a non-linear transfer function for typical thick- 
nesses of more than 50 nm, or around any crystal 
defects where the wavefunction is rapidly varying. 
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