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The imaging equations for high resolution electron microscopy are analysed using an approach based upon expanding the 
electron wave as positionally modulated diffraction beams. A high-order semi-linear approximation is derived which includes 
the leading non-linear effects of a reciprocal space integration and can be conveniently expressed in real space. This allows a 
direct visualisation of imaging effects in real space using a conventional wave dispersion approach. Based on this, the primary 
sources of lattice fringe artifacts and errors in the 212 D technique are briefly discussed, and an experimental technique for 
guarding against them employing dark field imaging is described. 

1. Introduct ion 

Perhaps one of the most confusing areas in high 
resolution electron microscopy is understanding 
how the various aberrations of the instrument 
affect the image. Theoretical understanding is well 
advanced based upon a reciprocal space integra- 
tion [1-3], but the significance of this in the image 
plane is an awkward area; it is unreasonable to 
perform mental Fourier transforms. Contrast 
transfer theory and qualitative descriptions are 
possible in reciprocal space (e.g., ref. [4]), but the 
only existing theories for real space are the weak 
phase object and other linear approximations 
which neglect highly significant non-linear cross 
terms [5]. In this paper we deal specifically with an 
approach for imaging in real space that provides 
visual models for the process. By adopting a form 
for the electron wave after the specimen which 
includes crystalline diffraction, a highly accurate 
approximation is derived which has a simple inter- 
pretation in terms of wave dispersion. The ap- 
proximation also includes the dominant non-linear 
effects and is consequently considerably more ac- 
curate than any of the linear models for almost all 
specimens of experimental interest. Employing this 
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model the basic source of lattice fringe artifacts 
and errors in the 2½D technique (e.g., ref. [6]) are 
briefly discussed. It is pointed out that dark field 
images from the area of interest can be employed 
to assess the likelihood of artifacts in high resolu- 
tion images. 

2. Theory 

We make our starting point the standard ex- 
pression for the image intensity using a reciprocal 
space integration. If ~ ( r )  is the electron wave 
leaving the specimen with a Fourier transform 
• (u), the image I(r) can be written 

I ( r )  = F-' f - u') exp(-ix(u') 

+ i x ( u  - u '))  r(u ' ,  u - u') dZu ', (1) 

where F -1 stands for an inverse Fourier trans- 
form, with a phase shift X(U) due to lens defocus 
and spherical aberration (in reduced units) 

= z ) ) ,  (2)  

and an envelope term T(u', u-u') 

T ( u ' , u - u ' ) = e x p { - ~ 2 ~ d 2 ° [ ( u ' ) 2 - ( u - u ) 2 ] 2  

- s g [ V  X ( u ' ) -  V X(U-U ' ) ]21 ,  (3) 
! 
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where s o and d o are the rms widths of the energy 
distribution and convergence respectively. (This 
equation neglects variations in the diffraction over 
the illumination aperture, which can be a serious 
error for thicker specimens. Employing the stan- 
dard two-beam dynamical equations, we can 
estimate that eq. (1) will be valid for specimen 
thicknesses less than about the extinction distance, 
i.e. - 20 nm). Qualitative analyses of eq. (1) in the 
literature almost invariably concentrate on the in- 
tegrand with [~P(u)] a constant for all values of 
u 4= 0 (a non-linear contrast transfer function), or 
employ the weak phase object approximation to 
derive a point response function. However, these 
approaches can be misleading. It is only for a very 
small class of objects, primarily thin amorphous 
films, that ~ ( u )  extends over a large range of u 
values with roughly equal moduli; the vast major- 
ity of experimental specimens are crystalline, with 
the scattered intensity concentrated around dif- 
fraction spots. Hence the standard, qualitative 
analysis includes spatial frequencies which may 
not be present in the exit wave. To avoid this we 
choose a model for the exit wave which represents 
more closely the physical situation. We expand 
~ ( r )  as a Fourier series. 

+ ( r )  = ~q~g(r)  e x p ( - 2 ~ r i g . r ) ,  (4) 
g 

where the g vectors correspond to crystalline re- 
ciprocal lattice vectors. Provided that the coeffi- 
cients q~g(r) are not rapidly varying, they are the 
complex amplitudes calculated using, for instance, 
dynamical techniques with or without the column 
approximation (e.g., ref. [7]). Writing the Fourier 
transform of 4~g(r) as <bg(u), eq. (1) can be rewrit- 
ten as 

I ( r )  = F - '  Y'~ 8 ( u  -- g + q )  ® f - ~') 
g,q 

× e x p [ - i x ( g +  u')  + i x ( q  + u -  u')] 

× T(g  + u', q + u -  u') dZu ', (5) 

where ® represents a convolution. 
We now consider the magnitude of the terms in 

the integrand of eq. (5), in particular the magni- 
tude of the scattering terms ~g(u) and ~q(u). 

Provided that the real space terms ep~(r) and epq(r) 
are not rapidly varying, they consist of large central 
peaks for u = 0 surrounded by weaker diffuse term 
for u e 0. The cross terms between the g and q 
beams can therefore be quantitatively ordered 

i~(0)  ~q(0)l > i~(0)  ~;(u ' ) l  

= i~ (u ' )  ~*(0)1 > iq,~(u') cb~(u-u')l, (6) 

with 

U'vaO,  u q :  u ' .  

This suggests that an accurate approximation is 
one which takes into account the relative order of 
these terms. We therefore expand the non-linear 
envelope term in a quasi-linear fashion so that it is 
exact for the three largest terms in eq. (6), i.e. 

T ( g + u ' , q + u - u ' )  

= V ' ( g + u ' , q )  T ' ( q + u - u ' , g ) ,  (V) 

where 

T ' ( g + u , q )  

( ~r 2d 2 
= e x p l - Y - ~ - ( g + u ) 2 i ( g + u ) Z - q 2 ]  

- ~ * ~ v  x(g + ~) 

"[V x ( g + u ) -  V x ( q ) ] } .  (8) 

(This approach is philosophically similar to a weak 
object approximation, extended to include strong 
diffraction into certain beams.) The approxima- 
tion can be refined one further stage by taking 
some account of the terms in the envelope func- 
tion that have been neglected by including the 
first-order residual contributions in u'  and u - u'. 
This leads to an effective envelope T ~ff (g  + u, q) 
of form 

Teff(g 4- u, q) 

= T'(g + u, q)exp{ - 2w 2d02g • uq 2 

-~r3S2oV X(q) ' [ugZ  + 2 ( g ' u ) g ] } .  (9) 

In the process of eqs. (6)-(9), we have separated 
the non-linear envelope term into effective en- 
velope terms local to the g and q beams. The 
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method has been to take initially an analytical 
approximation justified by the magnitude of the 
terms in the integrand of eq. (5), and then add a 
first-order correction. Provided that either the en- 
velope term is only slowly varying, or the 
diffuse-diffuse terms are small, the errors involved 
are small. 

Defining now an amplitude transfer function 
.4g,q(U) as 

. d g . q ( u ) = T e r f ( g + u , q ) e x p [ - i x ( g + u ) ] ,  (10) 

eq. (5) can be written in a semi-linear form 

l(r)= F-1E 8(u-g + q)®( qbg(u) t~g.q(lg)) 
g,q 

®(,,(.) 
which can also be written in real space as 

I ( r )  = • e x p [ -  2~ri(g - q ) ' r ]  [ % ( r )  ® &q(r) 1 
g,q 

M [ ( , q ( r ) ® A g , q ( r ) ] * ,  ( 1 2 )  

where the inverse Fourier transform of Ag.q(u), i.e. 
A~.q(r), will be referred to here as the amplitude 
response function. The final result in eqs. (11) and 
(12) includes the most significant non-linear imag- 
ing effects, is analytically accurate for the leading 
terms with a first-order correction for the higher 
terms, and has a very convenient and simple form 
in both real and reciprocal space. 

The form of the semi-linear equation is analyti- 
cally simple and can be tested numerically for any 
particular case without difficulty. Inaccuracies will 
arise if q~(r) is rapidly varying, but the approxi- 
mation will always be more accurate than the 
standard linear approximations (e.g. weak object 
or weak phase object) because far fewer assump- 
tions are made. (Linear approximations are inac- 
curate for all ~g(u ' )O~(u-  u'), u', u ~ O, whilst 
the semi-linear equations are inaccurate only for 
the weakest diffuse-diffuse type terms.) As an 
illustration, a simple test object of the form 

1 + exp( - 21rig. r ) ,  r ~ R (13) 
~b(r) = 0, r > R  

is imaged in fig. 1 where R = 1.25 nm, the lattice 
spacing is 0.235 nm (gold (111)), for Gaussian 

Fig. 1. A comparison of (from left to right) the weak object 
approximation, a reciprocal space integration and the semi-lin- 
ear approximation. Below are the simulated images for the 
conditions described in the text, above which are line traces 
across the centre of the images. Only in the line traces can 
differences between the semi-linear approximation and the 
reciprocal space integration be detected, whilst the weak object 
approximation is inadequate, failing to reproduce the image 
asymmetry. 

defocus and typical conditions of the Cambridge 
High Resolution High Voltage Electron Micro- 
scope, i.e. electrons of 500 kV, C s = 2.7 mm, chro- 
matic half-width of 16 nm and a convergence 
semi-angle of 0.5 mrad. The weak object ap- 
proximation is inadequate, giving a much too 
favourable prediction, whilst the non-linear result 
is exceptionally close to that of the reciprocal 
space in integration. 

3. Visualising the imaging process 

With the simple semi-linear form in real space, 
it is possible to visualise imaging in relatively 
simple terms and not to rely upon a contrast 
transfer in reciprocal space whose effects in real 
space are not obvious. The main feature is that it 
is possible to analyse how the position of informa- 
tion is transferred; for a perfect image Ag,q(r) 
would reduce to delta function, whereas in general 
the convolution will produce some form of 
weighted average in real space. It is important to 
point out that we are dealing with dispersive equa- 
tions which are well known for wave systems. 
Considering the amplitude transfer function in 
equation (10), there is a non-linear phase shift 
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x ( g  + u) and a damping term T~ft(g + u). In real 
space this leads to damped, propagating waves 
with the image at any defocus reflecting a cross- 
section of the wave dispersion. A very simple, 
visual analogy for the variations with defocus is 
useful. Dropping a stone vertically into a pool of 
water produces surface waves which spread out 
from the point of impact, decaying in amplitude as 
they do so. This is the same qualitative behaviour 
as the central beam in Ao.o(r ) where time is equiv- 
alent to defocus. Alternatively, if the stone falls 
not vertically but at an inclined angle, this is 
roughly the form of Af.q(r). 

Considering these dispersive equations in more 
detail, the modulation term q~u(r) can be treated as 
a wave packet directed along the g diffraction 
vector. Carrying out the standard dispersive ex- 
pansion for the phase term gives, according to eq. 
(2), 

)2 
x ( g  + - )  = x ( g )  + 2~g. .D~ + ~.-D~ + 2 ~ ( U ' -  

+ 2 ~ ( g ' u ) u  2 + ½~u 4, (14) 

where 

D~ = D -  g2. (15) 

In addition to a phase shift x(g)  for the wave 
packet, there is a terminating series of higher-order 
dispersive terms. The leading of these is 2~'g-uD~, 
which is the "Grou p  shift", i.e. the integrated 
value of the Group velocity. This produces in real 
space a nett shift of the information of gDx, which 
is the well known Abbe or ray-diagram translation 
for a diffracted beam. Going to higher order there 
is a defocus term involving D~ rather than D, a 
third-order astigmatism of 2q r (g ' u )  2, a term re- 
sembling Siedel Coma and finally a spherical aber- 
ration. We note that both the translation and the 
defocus vanish for Dg = 0, which is the standard 
"'overlap defocus" where convergence effects are 
minimised. As a general rule this defocus is stronger 
than simply what is good for minimising conver- 
gence effects - it minimises positional errors. 

The general trend with defocus will therefore be 
a nett translation coupled with directional distor- 
tions of the wave packet 0g(r). However, a little 
caution should be exercised here since the precise 
variations will depend upon the extent of (bf(u) 

(i.e. the rate of variation of ~pg(r)). If Of(u) is 
strongly localised around u = 0 (slow variations in 
the image) it is reasonable to neglect the 
higher-order terms in eq. (14), i.e. the comma-like 
and spherical aberration contributions. Here the 
image effects are a translation and an astigmatic 
defocus. If (b (u )  is not strongly localised, it is not 
justifiable to neglect the higher-order terms: eq. 
(14) is a terminating series and not a Taylor series 
with decaying terms. (In the limit as ~f(r )  be- 
comes a delta function there is no nett translation.) 
Although the general behaviour is as described 
above, specific effects will depend upon the rate of 
variation of the wavepacket. 

4. Discussion and lattice fringe artifacts 

We have detailed here a form of the imaging 
equations in electron microscopy which allows di- 
rect access to effects in real space rather than a 
contrast transfer in reciprocal space whose conse- 
quences are not obvious. The main result is that in 
an electron microscope we lose an accurate picture 
of where in the object information is present, i.e. 
positional and not just contrast effects. It is useful 
to detail briefly here the relationship to artifacts in 
the spacing of lattice fringes. 

We can write the complex modulations in an 
amplitude and phase form, i.e. 

0 . ( r )  = R . ( r )  e x p [ - 2 7 f i e f ( r ) ] .  (16) 

With a frequency modulation term 0f(r), the 
local spacing (lattice parameter) is then 

g +  V Of(r) .  (17) 

If there are no phase effects associated with dif- 
fraction through the specimen, eq. (17) represents 
the true lattice spacing of the specimen, but this is 
unlikely, lnhomogeneous strains, thickness or mass 
variations couple to phase shifts by virtue of dy- 
namical diffraction [7]. As a simple example, with 
a wedge thickness the beam split [8,9] and a shift 
in the fringe spacing occurs [10]. The phase shift in 
a two-beam approximation can be expressed as 

Oq( r )  = o~m" r, (18) 
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Fig. 2. High resolution image of a small silver particle at a large 
defocus showing lattice fringes well away from the particle. 

where m is the thickness gradient and a is a 
parameter whose value depends upon the diffrac- 
tion conditions [11,12]. The apparent lattice spac- 
ing is g + am, that is, wrong. We note in passing 
that the 2½D technique (e.g., ref. [6]), which mea- 
sures V0g(r), will be susceptible to systematic 
errors from dynamical diffraction effects, and this 
has been recently confirmed experimentally [13]. 

Expanding the final image equation (12) in an 
amplitude and phase form, we may write 

[~pg(r)®Ag,q(r)] [dpq(r)®Aq,g(r)]* 

= Rg.q e x p [ -  2~riOg.q(r)]. (19) 

It is apparent that artifacts arise from both the 
g and q beam modulations, so in standard high 
resolution bright field we must also worry about 
artifacts from the central beam, i.e. q = 0. One or 
two features of eq. (19) merit particular mention 
here, although as a general rule the effects are 
likely to be rather complicated. Firstly there is the 
simple group shift which leads to large positional 
errors as illustrated by the metal particle in fig. 2 
where fringe structure is evident well away from 
the particle. Secondly, lattice variations can arise 
even if dpg(r) and dpq(r) a r e  completely real, that is 
amplitude contrast but no real lattice changes or 
phase variations from dynamical diffraction. Fi- 
nally, if the amplitude is constant (i.e. the mod- 
ulus) but the phase of q~(r) is varying, imaging 
does not affect the linear lattice or phase variation 

but does affect the curvature of the lattice (second 
derivative), excepting the positional shift. (The 
convolutions in eq. (12) can be considered as 
weighted averages.) We note that unless there is a 
fixed point of reference, for example a grain 
boundary, the positional error can be neglected so 
the linear effects are accurately imaged. However, 
there is no reason to assume a priori that these are 
not dynamical artifacts of the form described 
above. 

Given that lattice fringe artifacts can so readily 
occur, it is important to point out that phase and 
amplitude variations in the scattering are im- 
plicitly coupled in dynamical diffraction, and that 
Ag.q(r) is similar to Ag.o(r ). This suggests that 
dark field images can be used as a safety check; 
with a large objective aperture of diameter equal 
to the spot separation, the off-axis dark field image 
intensity is 

I( r) = ]epg( r) ® Ag,g(r)l 2, (20) 

whilst for tilted beam dark field with g down the 
optic axis 

I(r)=lep~(r)®Ao,o(r)12~l%(r)] 2. (21) 

(We assume here that O~(u) in reciprocal space 
decays sufficiently rapidly that the aperture cut-off 
can be neglected.) Hence the presence of artifacts 
which require detailed image simulations before 
they can be interpreted can be directly, experimen- 
tally checked by looking at the dark field images 
with tilted illumination to check on dynamical 
effects, and off-axis dark field for imaging effects. 
As a further refinement, it would be useful to 
record images at more than one specimen orienta- 
tion, for example after a tilt of about 1 °. Particu- 
larly for the 2½D technique, this should guard 
against systematic errors by changing the diffrac- 
tion conditions and consequently changing the 
magnitude of the shift in eqs. (17) and (18). 
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