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We investigate the energetics of structural fluctuations in small particles, a phenomenon recently observed by high 
resolution electron microscopy. Using a continuum model with anisotropic surface energies and isotropic inhomogeneous 
elasticity, we estimate the activation energy for these transformations. The results indicate that the primary cause of the 
structural fluctuations is the reduction of the surface energy anisotropy as the temperature is raised, either the thermal or 
electronic temperature. 

1. Introduction 

An open question is the structure of small 
particles in the size range of 10 nm or less. Whereas 
the surface morphology of large particles ( >  100 
nm) is well established in terms of the Wulff 
construction [1,2], less is known about  smaller 
particles. Many of the more complicated particle 
structures, particularly multiply-twinned particles 
[3-7], can be understood in terms of a modified- 
Wulff  construction [6,8]. At smaller sizes and away 
f rom a simple static model of a small particle less 
is known. Reduction in the size emphasizes pack- 
ing effects [9], as may the inclusion of more com- 
plicated phenomena such as three-body interac- 
tions [10]. Empirical quantum mechanical [11] or 
pair  potential calculations [12,13] have provided 
some theoretical input, although these have yet to 
be  tested in detail against experimental data. 

One of the more interesting and earliest analyses 
of particles in the size range of a few atoms was 
that of Hoare  and Pal [14]. These authors showed 
that it is necessary to calculate both  the enthalpy 
and the entropy of a very small cluster. Indeed, a 

free-floating cluster of a particle with a small 
number  of atoms need not have a fixed structure 
(at room temperature) but  instead can be dynami- 
cally fluctuating between different shapes. In  ef- 
fect the particle as a whole is almost a liquid, 
which we will call quasi-melting. Does the same 
phenomenon occur in larger particles? 

It  has become clear from recent results [15,16] 
obtained by  high resolution electron microscopy 
that it does. Small particles in poor  thermal con- 
tact with a support  are heated by the electron 
beam and go into a state of continual fluctuation 
between different structures, quasi-melting. The 
exact nature of the heating is as yet unknown and 
may  be either thermal, e.g. to 700°C or more, or 
electronic heating, i.e. an enhanced population of 
excited electronic states leading to enhanced diffu- 
sion. The full picture from these experimental 
results, namely the exact structures of the particle 
intermediary states and the detailed mechanism of 
the shape change, is not yet known. However, one 
fact seems to be clear, namely that the particles 
are transforming between different locally stable 
modified-Wulff construction [6,8] shapes. 
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Let us briefly recap what is known about these 
modified-Wnlff shapes. Small particles of fcc 
materials, particularly gold and silver, often form 
in non-crystallographic shapes called multiply- 
twinned particles or MTP's [3-7]. Rather than 
being single crystals, these are composite struc- 
tures built up from inhomogeneously strained [7] 
single crystal units, five such units twin-related 
yielding a decahedral MTP or Dh, twenty an 
icosahedral MTP or Ic. The twin units do not 
pack to a completely shape-filling structure, and 
particles are inhomogeneously strained to close 
the angular gaps. These strains correspond to a 
wedge disclination of 7½ ° in the Dh's, six such 
disclinations in the Ic's. 

Both the Dh and the Ic as described above are 
symmetrical, with all the segments having the same 
shape. There are also possible locally stable par- 
title structures when the different segments have 
different shapes and volumes, and also for other 
particles containing twin boundaries [8].The over- 
view of small particle structure within this model 
is therefore one with many different possible par- 
ticle morphologies, each of which is a local (not 
global) minimum of the energy (at constant 
volume). Quasi-melting will occur when the par- 
tide has sufficient thermal energy to surmount the 
energy barriers separating these different local 
minima. 

The important question is the magnitude of this 
energy barrier, and we present preliminary results 
here. A full analysis of the (n-dimensional) par- 
ticle potential energy surface including all the 
possible different facets on the particle surface is 
unrealistic. What we can solve is the energy bar- 
tiers between a single crystal, the symmetrical Dh, 
two asymmetrical Dh's and a particle with one 
twin boundary (see fig. 1) for the case of only 
{100} and {111} surface facets. Motion from a 

b=-I  b=O b=l 
Fig. 1. Schematic diagram of the reaction path analysed herein 
between a single crystal (b = - 1 ) ,  a decahedral MTP (b = 0) 

and a particle containing one twin boundary (b = 1). 

single crystal to a Dh corresponds to changes in 
the surface facets and motion of a 7{ ° wedge 
disclination to the center of a particle, that from a 
Dh to a particle with one twin boundary motion 
of the disclination out of the opposing side. To 
calculate the energetics we need to know both the 
total surface energy and the internal strain energy 
as a function of the disclination position. In the 
following section we calculate these energy contri- 
butions in a continuum model with anisotropic 
surface energies and isotropic inhomogeneous 
elasticity. 

2. Model 

The energetics in a continuum model can be 
split into two parts, the surface energy of the 
particle and the internal strain energy. We will 
handle these separately. 

2.1. Surface energy 

The problem here is the surface energy of the 
particle for a specified volume fraction for each of 
the five segments. A complete solution taking into 
account all the different faces that are possible is 
intractable, so we must simplify. Fortunately both 
earlier work [6] and the published results on the 
particle shape as it changes [15,16] imply that a 
good approximation is to consider only {111} and 
{100} faces. Furthermore we can also use some 
symmetry, a mirror plane common to all the five 
segments and a mirror plane for the different 
segments. Labelling the segments one to five, the 
latter indicates that segments two and five are 
identical, as are segments three and four. 

The general shape for each segment (consider- 
ing only {111} and {100} facets) is shown in fig. 
2. It has a strong resemblance to the shape of a 
single crystal, except that it is missing one (100) 
face which would appear along the common (110) 
axis of the decahedral particle. All the lengths on 
this segment are variables. The procedure is then 
to evaluate the total surface and twin boundary 
energy of the segment as well as its volume, and 
then minimize the dimensionless parameter [6] 
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potential surface energy softens. This is to be 
expected as MTP's are unstable for an isotropic 
surface energy [7]. Note that one of the primary 
effects of raising the temperature is to reduce the 
anisotropy (which goes to zero at the melting 
point). 

2.2. Elasticity 

5-FOLD AXIS 

Fig. 2. General shape of each segment. All the dimensions were 
allowed to vary, with the constraint included that the twin 

boundaries between adjacent segments matched. 

,w = f dS / 'Y l l l  V2/3,  

where V is the volume and "tnx the (111) surface 
energy including, numerically, the constraints that 
the twin facets common to two segments have 
identical shapes. The latter ensures that the differ- 
ent segments "f i t"  into a complete structure. To 
adjust the relative volumes of the five segments we 
choose to fix the volume fraction of the third 
(equivalent to the fourth) segment, and investigate 
'w as a function of this parameter; when this 
fraction is 0.2 we have a symmetrical Dh and 
when it is 0.5 we have a bi-crystal with one twin 
boundary. This volume fraction can then be writ- 
ten in terms of the parameter b, the fractional 
distance of the disclination from the center (see 
fig. 4). 

The results for c w plotted against b for three 
different values of a = "Y100/'YII1 are shown in fig. 
3. For  all the curves the twin boundary energy ~/t 
has been set at "It = 0.01"tin, a mean value for foe 
metals. Note  the strong minimum, as expected, for 
b = 0, a symmetrical Dh. As the ratio a is reduced, 
the variation in c w drops and very small minima 
or saddle points develop for b - - 0 . 6 ,  0.4 for 
ot = 1. These correspond to asymmetrical Dh's. On 
the basis of the c~, calculations alone, their stabil- 
ity is marginal, but  as we will see later, this 
changes when the strain energy is added. 

Extrapolating from these results, we can say 
that as the surface energy anisotropy drops, the 

A full three-dimensional solution for the elastic 
strain energy is an intractable problem. We there- 
fore simplify to a two-dimensional analysis as in 
previous work [7]. The problem now is to find the 
energy of an eccentric disclination in a circular 
cylinder as shown in fig. 4. The solution turns out 
to be surprisingly simple. The problem of a dis- 
clination in a circular cylinder with a free boundary 
is related to the problem of the vertical displace- 
ment of a circular plate damped  at the boundary 
and loaded by a transverse point load; the trans- 
verse deflection of the latter is identical except for 
a multiplier to the Airy stress function for the 
disclination problem [17,18]. In terms of the coor- 
dinate system shown in fig. 4, the Airy stress 
function is 

U =  2(T---v) r21°g  b-~r2 + - " 

Integrating over the disc, the strain energy per 
unit volume, W, is 

W--  WDh(1 - b2) 2, (2) 

where WDh is the strain energy per unit volume of 
a symmetrical Dh [7]: 

WDh =/~c2V/4(1 -- v), (3) 

with /x = shear modulus, V =  particle volume, c D 
= 0.0205, and v = Poisson's ratio. 

We have not included a circular cut around the 
disclination (as in previous work [7]) since the 
strain energy density is integrable. It might be 
thought that the strain energy per unit volume for 
the three-dimensional case is between those for 
the long circular cylinder (plane strain) and a thin 
circular disc (plane stress). However, the ratio of 
the plane strain energy to the plane stress energy 
is 1/(1 - v 2) which ranges only from 1 to 4 /3 .  
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Fig. 3. Variation of c w versus b for three different values of a. 

3. Total energy 

The total energy, qualitatively, is 

E = "Ylll~w V 2 / 3  -1- V W  

= "YxllV2/3 [ , w  -t- C ( I  - -  b2 )2 ]  , 

where 

c = -  1,1. 

(4) 

(5) 

(6) 

:, 1 

Fig. 4. Coordinate system for the off-axis disclination problem. 

This is plotted in fig. 5 as a function of b, for 
fixed values of C. 

Some general features are of interest. Adding 
the strain energy softens the curves but does not 
destroy the local minimum for a Dh. Even when 
the total energy of a Dh is greater than that of a 
single crystal, the Dh remains locally stable. Sec- 
ondly, note the effect of the strain on the local 
minima for the asymmetric Dh's, particularly for 
b - 0 . 6 ,  - 0 . 7  for a = l ;  minima develop de- 
pending upon the magnitude of C, which will vary 
with the particle size. This indicates that the meta- 
stability of these particles depends upon both the 
strain and surface energy terms, rather than just 
the surface energy as previously believed [8]. 

4. Discussion 

We have presented here preliminary results for 
the variations of the total energy as a function of 
the particle shape. The physical sense of the re- 
suits is apparent, despite the limitations of the 
model. The important effect is that the energy 
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Fig. 5. Plot of the combined surface and bulk strain energies for the values of C and a shown. 
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variation softens as the anisotropy of the surface 
energy drops. This indicates that the cause of the 
quasi-melting of small particles is probably the 
increased temperature. At the melting point the 
surface energy is completely isotropic, so any 
surface energy favouring of MTP's will vanish. As 
mentioned earlier, this temperature may be simply 
beam heating, or enhanced atomic diffusivity due 
to electronic excitations which could mimic an 
increase in temperature. As yet we do not have 
sufficient experimental data to pin down the exact 
source. 

There are a number of phenomena which are 
also part of this problem and which we have not 
covered here. The energy contribution of the 
surface stress is important [7], as will be the ther- 
mal stresses in the particles. These will be dis- 
cussed in detail elsewhere [19]. Both effects will 
tend to reduce the energy variations, being larger 
for the more strained symmetrical Dh's. In ad- 
dition, the thermal stresses and the stress con- 
centration around features such as the re-entrant 
surfaces may be important in nucleating disloca- 
tions as a means of changing the particle mor- 
phology. 

5 .  C o n c l u s i o n s  

Calculations of the potential energy surface for 
the transformations of small particles indicates 
that the activation energy barrier will soften as the 
temperature is raised due to primarily the reduc- 
tion in the surface energy anisotropy. The temper- 
ature increase may be either thermal or electronic 
in nature. 
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