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It is experimentally established that one can use linear imaging theory with implied kinematical diffraction theory to
understand the high resolution image of an amorphous material of thickness 10-20 nm. It is also established that an
equivalent thickness of a crystalline material cannot be understood by these models, but instead requires non-linear imaging
theory and dynamical diffraction. It is shown here that an amorphous material is a special case where the non-linear and
dynamical diffraction solutions reduce to simpler linear and kinematical forms.

1. Introduction 2. Theory

For simplicity we will consider separately the
diffraction and imaging questions, although it is
the combination of the two which leads to the
simplifications.

Our intention here is to show that for an
amorphous material most of the second- and
higher-order scattering is much smaller than it is
for a crystalline material, and that the scattering
can be well described by a kinematical model.
Here we will use a scattering series approach to
the general diffraction problem. Considering
Schrodinger's equation

(2)

(1)

we will look for a solution of form

I/I(r) = fq,(k, z) exp(2'1Tik'r) dk,

2.1. Diffraction from an amorphous material

It is experimentally well established that one
can use linear imaging theory, primarily the
weak-phase object approach (which also assumes
weak kinematical scattering), to understand the
image of a thin amorphous film, for instance
amorphous carbon. It is also established that
neither linear imaging theory nor kinematical
scattering theory can be applied to explain the
image of an equally thick crystalline material. This
leads to an apparent discrepancy which is clearly
confusing at the very least to students of high
resolution electron microscopy, and furthermore
leads to some conceptual traps; for instance, if
Scherzer defocus is "best" for imaging an
amorphous film, one would suspect that it is also
'best' for imaging a crystalline material.

The intent of this paper is to clarify this ap
parent contradiction. It is shown that for the
particular case of an amorphous material the full
dynamical diffraction solutions convert to an es
sentially kinematical form and that a non-linear
imaging analysis similarly converts to a linear where the incoming- beam is along the z direction
form. Thus an amorphous material is an under- and the different values of k correspond to wave-
standable exception to the general rule. vectors on the Ewald sphere. Substituting I/;(r) in
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the form of eq. (2) into eq. (I) and neglecting the
second derivative of 4> with respect to z as small,
we obtain after integrating over the x, y plane the
standard equation

d4>(k, z)/dz= -(47Time/h2kz )

X L:exp[27Ti(k'-k).%)

XV(k-k') cP(k', z] dk', (3)

where V{k) is the Fourier transform of V(r) and
we are considering that the crystal is a slab in the
range 0 < z < t. In standard texts on diffraction
theory, eq. (3) is solved as a set of coupled dif
ferential equations. An alternative method is to
use a series expansion as in scattering theory.
With the (standard) approximation that the term
k in front of the integral can be taken as aZ

constant for all k values of interest, we can solve
in the form

(4)
n

where

4>n(k, z) = -(47Time/h2k z )

X (fOO exp[27Ti(k' - k) . %']
Jo -00

X V(k - k') 4>n-l(k', z') dk' dz',
(5)

and cPo{k, z) is a delta function which is non-zero
when k is the incident beam wavevector and
independent of z. The first-order solution is the
kinematical solution, whilst higher-order terms are
multiple scattering contributions. What we will
now show is that for an amorphous specimen
these higher-order terms are anomalously small.
Let us consider the second-order term, which when
written out in full is

4>2(k, z) = -{47Tme/h2kz )2

X (Zdz,(Z'dz"f
oo

exp{27Ti[(k'-k)
Jo Jo -00

'%' + (ko- k')· %"]}
XV(ko-k') V(k-k') dk', (6)

where we are taking k o as the wavevector of the
incident plane wave. For an amorphous material
we can take V{k) to have essentially constant
absolute value and completely random phases, i.e.
V( r) is simply noise. Two features of V(k) can
now be used to show that the second-order terms
are anomalously small. First if we ignore the phase
variations and take V{k) = C as constant,

4>2(k, z)

= _ (4'1TmeC/h 2k z )2

Z 1Z
' fOO ,X (dz' dz" exp{27Ti[(k -k)·z'

Jo 0 - 00

+ (ko- k') . %"]} 4>o(ko, z") dk' (7)

- -(4'1TmeC/h2k z ) z~(k-ko)4>o(ko, z).

(8)

This asymptotic relationship holds well for quite
small values of z, for instance 10 nm, even without
the integration over k', and is the same in spirit as
the arguments used to derive the Golden Rule for
inelastic scattering. As such it depends upon hav
ing a flat, continuous spectrum of values of V(k)
which an amorphous material has and a crystal
has not. (It is not necessary to have a completely
flat V(k), just a slowly varying high density of
values.) This argument is reinforced when we in
clude the random phases (it then becomes essen_
tially the "Random Phase" method of deriving
inelastic scattering intensities) since we will have
additional destructive interference. It is informa_
tive to note that eq. (8) indicates that the
amorphous specimen is acting as essentially a
classical scatterer; the only surviving second-order
term corresponds to the attenuation of the inci
dent beam. Similar arguments can be applied to
higher-order scattering terms with the same gen
eral conclusions; the kinematical result is there_
fore very strong.

h follows, therefore, that to a far better ap
proximation than for a crystalline material, it is
quite valid to consider an amorphous sample as a
purely kinematical scatterer.

2.2. Imaging theory

We now consider the second-order imaging f
an amorphous specimen. Let us first consider (f~r
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comparison) a simple crystalline specimen for
which the wavefunction after the specimen tJ;(r) is
a simple sum of diffracted beams, Le.

To obtain an upper bound to the second-order
contribution in the final image we allow all the
second-order contrast transfer terms to be unity.
The second-order contribution of frequency g, I g

is then

unity, the second-order contribution to the final
image (S(r)) is

S(r) = a2n(r)2 (12)

== 0.5a2 (1- nCr)), (13)

where we are allowing phase randomization to
permit changing from n(r)2 to nCr). Compared to
the crystalline case, if nCr) is 0.05 then the upper
bound to the second-order terms will be only
0.00025, which is negligible. This can be shown
very simply by numerical integration of the full
non-linear imaging theory for simulated carbon
films; these are not included here since the
widespread use of linear contrast transfer func
tions and optical diffraction patterns experimen
tally makes a stronger case than any numerical
calculation can.

An amorphous specimen acts anomalously as a
kinematical scatterer which can be understood
using linear weak phase object imaging theory not
because it is inherently a kinematical or a weak
phase object, but instead because the dynamical
diffraction and second-order imaging terms are
anomalously small.

3. Conclusions

(9)

(10)Ig= LCP;-hCPh'
h

This sum can be fairly significant, particularly for
a large unit cell material if there are no large
variations in the phases. For instance, if each of
the epg is equal to 0.05 and we have ten possible
combinations, the fractional second-order contri
bution to the image will be 0.025. This can be
compared to a typical image contrast of 0.1. It is
accurate to say that the second-order terms are
constructively interfering.

Now consider the case of an amorphous speci
men. Here th:. CPg coefficients will have random
phases (since V(k) has random phases) and there
fore destructively rather than constructively inter
fere. To show this qualitatively we can write the
wave after the specimen as

tJ;(r) == LCPg exp(27l'ig· r).
g

tJ;{r) = 1- ian{r), (11)

where nCr) is a noise function which can take
random values between plus and minus one. Set
ting the second-order transfer function again to
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