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CONTRAST TRANSFER THEORY FOR NON-LINEAR IMAGING
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We investigate an improved version of contrast transfer for non-linear imaging of crystals in High Resolution Electron
Microscopy (HREM) that includes higher-order terms of the beam convergence. An analytical solution accommodating the
second-order term of the convergence is presented. The improved form of the transmission cross-coefficient including the
third-order term of the convergence is evaluated numerically for comparison with the analytical solution, Several test cases are
examined that demonstrate that the conventional non-linear theory predicts erroneous results for both amplitude and phase

contrast at high values of beam convergence.

1. Introduction

Central to understanding the images in High
Resolution Electron Microscopy (HREM) is the
process whereby the wave leaving the specimen is
transferred to the final image. The nature of the
transmission of the exit wave to the image has
been exhaustively studied by many authors with
various approximations. To summarize the litera-
ture, we will briefly review some of the most
widely used terms in contrast transfer theory. Lin-
ear theory refers to the situation where the speci-
men acts as a weak scatterer of electrons. The
image is formed by the interference of diffracted
beams with the transmitted beam and the dif-
fracted beams are considered to be of very weak
intensity with respect to the transmitted beam.

Consequently, the wave leaving the specimen can
be expressed as:

V(u)=1-s(u)+io(u), (1)

where s(u) is the amplitude scattering, ¢(u) the
phase scattering and s, ¢ << 1, In this case we can
define a contrast transfer function linking the
Fourier transform of the final intensity to the
Fourier transform of the wave leaving the speci-
men. Non-linear theory refers to the situation
where the specimen strongly scatters electrons. In
this case the diffracted beams have sufficient in-

tensity that in addition to interference with the
transmitted beam, the diffracted beams interfere
with each other.

As presented by Frank [1] and Wade and Frank
[2], the linear contrast transfer theory can be
written in terms of the product of the unmodified
transmission cross-coefficient function and two
envelope functions due to spatial and temporal
partial coherence. Subsequent investigations by
Wade and Jenkins {3] and Jenkins and Wade [4]
developed the contrast transfer theory considering
tilted and conical bright-field illumination. A
closed-form representation of both amplitude and
phase transmission was presented by Hawkes [5];
however, only the zeros of the transmission func-
tions were investigated and the envelope terms
were not developed.

While linear contrast transfer theory is ade-
quate for the kinematical diffraction of electrons
(i.e. a thin amorphous film), extension to strongly
scattering objects (i.e. a crystalline specimen) can
lead to erroneous results, and amorphous materi-
als are in fact a special case where non-linear,
dynamical solutions reduce to linear, kinematical
forms, as recognized by Marks [6]. The more
accurate non-linear imaging was investigated by
Pulvermacher (7], Ishizuka [8] and Anstis and
O’Keefe [9] using a first-order Taylor series ap-
proximation of the beam convergence (tilt). These
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authors demonstrated that, with the improved
analysis, some periodicities in the image arise from
diffracted beam interference rather than from
structural periodicities. In principle this approach
can be extended to considering different beams
through the crystal, for instance the multislice
approach of Coene et al. [10], which is implicit in
many standard programs.

One question that remains unanswered at pre-
sent is non-linear and linear amplitude imaging
when the higher-order convergence terms are
specifically considered rather than being neglected
as in refs. [7-9], i.e. extending the approach of
refs. [3-5] to strongly diffracting crystals. This is
the subject of this paper, and our conclusion is
that these higher-order terms are important. In
particular, we present an improved form of the
transmission cross-coefficient that specifically in-
cludes the second-order term of the convergence
with the result that larger beam convergences can
be used without the deleterious effects on resolu-
tion implied by conventional non-linear theory.

2. Conventional non-linear theory

If we consider the plane wave leaving the exit
surface of the specimen ¥(r) in real space as
having a Fourier transform ¥(u) in reciprocal

space, the image intensity can be represented in
real space as

I(r) = FT“/\P(u) ¥*(u-v)

XT(u, u~v, 4z) d%, ()

where FT~! is the inverse Fourier transform over
u, u and o the spatial frequency vectors with
moduli ¥ and v as in fig. 1 and are defined in the
2D planes perpendicular to the optic axis, ¥*(u)
the complex conjugate of ¥(w), and T(u, u— o,
Az) the transmission cross-coefficient (1] due to
the phase shift of spatial frequencies and the lens
defocus. For the purposes of this paper, we will
consider only the transmission cross-coefficient
represented by the phase shift and envelope terms

1=

Fig. 1. Orientation of spatial frequency vectors. Note that

¢=u—q and that 6,, 6;, 6, are internal angles such that

6, + 6, + 6, = r radians. Also note the orthogonal coordinate
system for the convergence x and y.

in eq. (2). Written out in detail the transmission
cross-coefficient is

T(u, q, Az)-ffa(u,q) exp[ —ix(u) +ix(q)]
XF(f) S(w)dfdw, (3)

where g = u — v, a(u, q) is the aperture function,
x(#) and x(q) are the phase shifts in reduced
units, and F(f) and S(w) the one- and two-di-
mensional distributions of the focal spread and
convergence, respectively. We are implicitly ne-
glecting variations in the diffracting condition with
changes in the beam angle. The aperture function
is non-zero only if both u and g lie within the
aperture and is assumed to be unity hereafter (i.e.
no objective aperture). The astigmatism is also
assumed to be corrected.

In conventional non-linear theory, given by
Spence {11] and Reimer [12], the phase shift of
individual spatial frequencies is approximated by
a Taylor series expansion, i.e.

x(u, f, w)
= (17/2)[2(Az+f)|u— w4 ju— w|4]
=x(u,0,0) + wewx(u, 0, 0) + 7fu?, 4)

where Az is the lens defocus, f the focal spread,
the beam tilt or convergence, and vx the gradient
of x. To simplify the expressions, x(u, 0, 0) wil]
be expressed as x(u). While eq. (3) is exact, the
expansion in eq. (4) relies on two assumptions: the
amount of convergence is so small that only the
first-order Taylor series term need be considered,
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and the cross-terms between the focal spread, f,
and the convergence, w, can be neglected [2].

Assuming that the focal spread and conver-
gence have Gaussian distributions, the transmis-
sion cross-coefficient becomes

T(u,q, Az)
= [ fexp{ilx(a) - x(u)

+we(Vx (1) - vx(q)]
+af(u—q*)| ) F(f) S(w)dfdw,  (5)

with
F(f)=(B/)exp(-Bf?), (6)
S(w) = (a/7) exp(—aw?), (7)

where B8 and « are related to the rms widths of the
focal spread and the convergence, respectively.
Integrating eq. (5) results in the conventional
non-linear transmission cross-coefficient

exp{i[x(g) - x ()]}
Xexp(— | vx(u) - vx(g)1%/4a)
Xt:xp[ —m?(u? - 42)2/431 , (8)

where the exponential terms have the usual signifi-
cance.

3. Improved theory

The improved version of the transmission
cross-coefficient includes the higher-order terms
of w. Thus, instead of the Taylor series approxi-
mation, the full expansion
x(u, f, w)

= (m/2){2(Az + f)[u? = 2uw+w?]

+[0?+ 26w+ wh = 4y w(u? + w?)

+4|u-w|?]} (9)
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is used. A similar equation can be used for x(q, f,
w). Eq. (5) now becomes

T(u, q, Az)=ffexp{(i7r/2){2(Az +f)
x[q2+2w-(u—q)—u2]
+[g*— 2w (u? - g2) - u*
+aw+(u’u—g%)
—4(lu-w|2=|g-w|?)
+4w2w'(u—q)]}}

X(B/m) exp(~Bf?) df (a/m)
Xexp(—aw?) dw. (10)

If we first consider the integration over f, the
envelope term for the focal spread is:

exp{ —(7%/4B)| q* - 2uPq* + u*

—aw-(u—q)(u2 - g*) + 41w (u—q)?]}.
(11)

As in conventional non-linear theory, the cross-
terms between the focal spread and the conver-
gence can be considered small. This assumption
was verified by Wade and Frank {2] for the case of
linear imaging and can be extended to non-linear

imaging without significant error. Eq. (11) then
becomes

exp{—[wz(qz—u2)2/4B]>. (12)

This leaves the remaining term in eq. (5) in the
form

(a/7) [exp{iw[vx(u) ~ Vx(q)] — aw?
—mi|w(u?~g) +2(Jusw|* = g+ w|?)
—ZWZW'(u—q)]} dw. (13)

Using the geometry of fig. 1, we can simplify eq.
(13) by choosing an orthogonal coordinate system
of w based on the vector v. We write x for the
component parallel to v and y for the component
perpendicular to v. The integration over w can
then be broken into two integrals over x (parallel)
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Fig. 2. The orientations of the three test cases. Interference

with the transmitted beam in (a); u=0, 6,=7/2. Inter-

ference with g,o, in orthogonal orientation in (b); ¥ = 8100+

8, = n/2. laterference with g,0o in parallel orientation in (c);
U= 81000 Oy =1

and y (perpendicular). Consequently, eq. (13) be-
comes

(a/) [exp{ix[vx(u) - vx(q)]

- x*[a+im(u*(1 +2 cos?6,)

-q*(1+42 c05293))] } dx

x [exp(iy+[vx(x) - vx(a)]

—y*a+in(u(1+2 sin?6,)

-q*(1+2 sin’@,))]} dy. (14)
In eq. (14) the cubic term in w from eq. (13) has
been neglected in order to obtain an analytical

solution. The solution is straightforward using the
Fourier transform of a vector quantity:

J(m/N) exp(~n2|M|?/N)
=fexp(27riK°M—K2N)dK, (15)

where M is a vector in K space and N is a scalar
quantity. Performing the integration in eq. (14)

and combining with eq. (12) results in the follow-
ing analytical solution for T(u, g, Az2):

T(u,q, Az)

= exp ~ix(u) +ix(q)]
xexp{~[72(g* - u?)’ 48]}
XCXP{ ~[vx(u) cos ©,— vx(q) cos 6,]?
/4 a+im(u?(1+2 cos?8;)
_t(1 +2c05%6,))])
Xexp{ -{vx(u) sin ©,+ vx(q) sin 93]2
/8 a+im(u?(1+25in?0,)
-q*(1+2 sin’@,))]}
Xa/({[a +in(u?(1+ 2 cos?@,)
~q*(1 + 2 cos?0,))]

x [a+im(u?(1 +25in’0,)

~g(1+25w6,))]))"”. (16)

While the envelope term for the focal spread is
identical to that of conventional non-linear theory,
the envelope term for the convergence is quite
different. For instance, the envelope term is now
complex and this makes the total envelope less
effective in damping higher spatial frequencies.
Consequently, higher values of the beam conver.
gence do not have the deleterious effect on resoly.
tion expected from conventional non-linear the-
ory.

4. Numerical analysis

In eq. (14) the cubic term of w was considered
to be small enough to be neglected. This wag
necessary in order to obtain analytical solution of
the convergence envelope terms. However, the fu])
solution can be evaluated by iterative numericaj
methods. For the present case, Simpson’s rule wag
used assuming the convergence distribution hag
the Gaussian form as specified. The distribution
was evaluated over +5a in steps of @/20. (The
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solution converged properly for these parameters.)
The importance of evaluating the full solution can
not be overlooked. We have found that the im-
proved solution is much more sensitive to the
convergence than the conventional non-linear the-
ory. Therefore, a knowledge of the response of the
full solution is a good check on the validity of the
improved solution.

5. Discussion of results

A comparison between the conventional non-
linear theory, the improved theory, and the full
solution of the transmission cross-coefficient was
undertaken using three test cases (see fig. 2). The
first test was the amplitude and phase contrast
response to interference of spatial frequencies with
the transmitted beam (linear imaging). The second
test involved interference between spatial frequen-
cies in orthogonal orientations (non-linear imag-
ing). The third test involved interference between
spatial frequencies along parallel orientations (also
non-linear imaging). The aberration parameters
chosen represent typical conditions on the Hitachi
H-9000 in the HREM Facility at Northwestern
University, i.e. 300 keV electrons with 70 A mms
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focal spread, C,=0.9 mm, Az = —500 A (under-
focused), and the system was a hypothetical cubic
crystal with 4 A spacings (g6 = 0.25 A™1).

The value of the rms width of the convergence
was varied to elucidate the relative effects on the
different theories. At low values of the conver-
gence (1 mrad) the improved and full solutions
reduce to the results of the conventional non-lin-
ear theory. However, at high values of rms conver-
gence (3 mrad) the improved and full solutions
result in an extension of the envelope. This result
implies that larger values of convergence can be
used (i.e. larger condensor apertures) and improve
the ultimate resolution and image quality of the
microscope. Fig. 3 reveals the response for the
first test case (interference with transmitted beam).
The rms convergence value of 3 mrad dramatically
alters the response. In this case, the conventional
theory predicts erroneous results for both the am-
plitude and phase contrast. Indeed, the conven-
tional theory predicts substantial amplitude con-
trast reversal whereas the improved and full solu-
tions do not. The extension of the envelope for the
improved and full solutions is now highly evident.
Thus, the improved and full solutions pass higher

spatial frequencies and improve the ultimate reso-
lution.
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Fig. 3. Interference of spatial frequencies with the transmitted beam for conventional theory (short dashes), improved transmission
function (long dashes), and the full solution (solid line). The amplitude contrast is represented in (a); phase contrast in (b). In all
cases the following parameters were used: rms focal spread of 70 A, rms convergence of 3 mrad, electron energy of 300 keV, C, of 0.9

mm, at an underfocus of —S00 A. '
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Fig. 4. Non-linear interference with g, (0.25 A~} along orthogonal orientations for the conventional theory (short dashes), the

improved transmission function (long dashes), and the full solution (solid line). The amplitude contrast is represented in (a); phase

contrast in (b). Note that zero phase contrast occurs for the spatial frequency corresponding to g,oo as expected. In all cases the

following parameters were used: rms focal spread of 70 A, rms convergence o! 3 mrad, clectron energy of 300 keV, C, of 0.9 mm, at
an underfocus of —~500 A,

The second test case (non-linear interference proved theories. It is important at this time to
with g,,0=025 A~! along orthogonal orienta- point out that the improved solution is an ap.
tions) is presented in fig. 4. Increasing the conver- proximation of the effect of the convergence,
gence to 3 mrad reveals a dramatic difference Comparison to the full solution reveals that the

between the conventional non-linear and the im- improved solution underestimates the response of
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the transmission cross-coefficient while still being
more accurate than conventional non-linear the-
ory. An important feature in fig. 4 is the response
at the spatial frequency corresponding to g4
0.25 A™"). Here the phase contrast is zero for all
three theories. This is to be expected as these
spatial frequencies have undergone the same phase
shift x in the microscope. Consequently, only
amplitude contrast is available for imaging.

The third test case (non-linear interference with
8100 = 0.25 A" along parallel orientations) is pre-
sented in fig. 5. As in the previous test cases,
increasing the convergence has a dramatic effect.
The conventional theory predicts substantially dif-
ferent behavior from the improved and full solu-
tions. The envelope has been extended to predict
higher ultimate resolution of the microscope. As
in the second test case, the phase contrast corre-
sponding to g,o is zero for all three theories.
Again, the improved solution is an approximation
of the convergence effect and the full solution
represents the true response.

6. Conclusions

Conventional non-linear contrast transfer the-
ory employs Taylor series approximations to gain
an insight of the imaging process in the electron
microscope. We have found that the higher-order
terms of the convergence are highly significant
and should not be neglected. The improved
non-linear transmission cross-coefficient pre-
sented here reveals the inadequacy of conven-
tional non-linear theory. The improved transmis-
sion cross-coefficient is an analytical solution con-
sidering second-order terms of the convergence.
We have found that conventional theory predicts
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erroneous results compared to the improved and
full solutions for both amplitude and phase con-
trast at high values of convergence. In particular
we have found that large convergences in the
improved solution do not have the deleterious
effects on resolution as implied by conventional
non-linear theory. The drawback of the improved
solution is that it may be overly sensitive to the
convergence relative to the full solution of the
transmission cross-coefficient. Despite this draw-
back, the improved and full solutions are still

more accurate than the conventional non-linear
theory.
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