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ABSTRACT 
We present a theoretical analysis of a phenomenon recently observed by high- 

resolution electron microscopy that involves rapid structural fluctuations in small 
f.c.c. particles below lOnm in size. The different energy contributions to the total 
energy of the particle and the magnitude of the potential energy barrier between 
different shapes is evaluated and compared with the available energy during 
particle-beam interactions. The results indicate that the activation energy barrier 
existing between different shapes is only a few electron volts, whilst a rough estimate 
indicates that during electron-beam irradiation the available energy may be as 
much as 100-1000eV. 

0 1. INTRODUCTION 
The thermodynamic equilibrium surface morphology of individual metal particles 

larger than lOOnm in size is well understood in terms of the Curie-Wulff construction 
(Herring 1951, Linford 1973). However, as the size of the particle decreases, the 
theoretical predictions become less clear-cut. For instance, it has been pointed out by 
Hoare and Pal (1972) that a free-floating cluster containing a small number of atoms 
need not have a fixed structure at  room temperature and can dynamically fluctuate 
between different shapes. In addition, the reduction in size introduces packing effects 
(Marks 1985 a) similar to the inclusion of complicated phenomena, such as three-body 
interactions (Wang, Falicon and Searchy 1984). Structural evaluations at smaller sizes 
based on quantum mechanical (Gordon, Cyrot-Lackman and Desjonqueres 1979) or 
pair-potential calculations (Allpress and Sanders 1970, Farges, de Feraudy, Raoult and 
Torchet 1981) have given valuable results although experimental verification is still 
lacking. 

Recent improvements in the instrumentation of high-resolution electron 
microscopes have made it possible to observe small particles directly on an atomic scale 
(see, for example, Marks (1985 b)). It has recently been reported (Iijima and Ichihashi 
1986, Smith, Petford-Long, Wallenberg and Bovin 1986) that ultrafine particles of gold 
(smaller than 50 A), sitting on an amorphous substrate such as Si or SiO, and exposed 
to irradiation by an electron beam of flux 105electronsA-2~-1, change shape 
continually at frequencies of about 10 Hz. Real-time video recordings have allowed a 
detailed visual study of these dynamic fluctuations, but the different structures 
observed have yet to be analysed in detail. The rate of fluctuation in the above 
observations depends on factors such as the contact area between the particle and the 
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606 J. Dundurs ef ul. 

substrate, the electrical conductivity of the substrate and the energy of the incident 
beam. Moreover, the fluctuations are often accompanied by translational and 
rotational motions of the particle on the substrate (S. Iijima 1984, unpublished 
conference paper, 1986, private communication, A. Petford-Long 1986, private 
communication). 

The most commonly accepted thermodynamic equilibrium form of small particles 
is the multiply twinned particle (MTP) structure, the details of which have been 
discussed by various researchers (Ogawa, Ino, Kato and Oata 1966, Ino 1967, Marks 
1984, Howie and Marks 1984). It has been shown theoretically that, in most cases, 
MTPs are more stable than single crystals (at small sizes). The simplest model for 
MTPs is a combination of single-crystal tetrahedra, twin related on their adjoining 
faces and exhibiting discrete non-crystallographic point-group symmetries. Five such 
units (with two twin boundaries per single crystal unit) when put together form a 
decahedral MTP, or Dh, with D,, symmetry, and twenty such units (with three twin 
boundaries per unit) form an icosahedral MTP, or Ic, with I ,  symmetry. When formed 
from perfect single-crystal units, neither of these shapes is space filling, and they have to 
be distorted to form space-filling bodies. The angular deficits can be considered as 7.5" 
wedge disclinations; one such disclination in a Dh and six in an lc. The distortions 
mentioned above introduce elastic strains into the bulk and also the surface of the 
particle, and these have to be considered in any realistic energy calculation. The 
thermodynamic stability of these MTPs has been analysed in terms of the modified 
Wulff construction (Marks 1984, Howie and Marks 1984) and our model here assumes 
a similar construction for the MTPs. 

I t  is reasonable to assume that the various shapes during the fluid-like behaviour of 
small particles, which we have called quasi-melting (Marks, Ajayan and Dundurs 
1986), reside on a morphological potential energy surface (Marks 1983). Local minima 
of this surface correspond to the observed static-particle morphologies, and the final 
experimental distribution depends on a thermodynamic statistical occupancy of these 
minima. As particles grow in size, the kinetic processes assume importance and control 
the structure transformations, making the fluctuations sluggish. In evaluating the 
magnitude of the activation energy barrier, the first step is to calculate the total energy 
of the particle by combining the surface energies and the elastic strain energies using a 
modified Wulff construction and elasticity theory. A number of different approaches 
can be used for the energy calculation: pair potentials (Allpress and Sanders 1970), 
electronic energy analyses (Gordon et ul. 1979) or continuum models. We use the 
continuum model here to predict the particle morphology, although the method has 
limitations for smaller sizes (Marks 1985 a). Once the total energy is evaluated, the 
activation energy barrier is obtained as the difference between the total energy of the 
MTP and the energy of a single-crystal Wulff polyhedra shape for the particle. 

In $ 2  we present the basic model involving the fundamental unit used in the 
calculation with the different surface facets considered. Section 3 contains the detailed 
energetics including the calculation of surface energy, internal strain and surface-stress 
energies. A brief account of the temperature distribution existing inside the particle is 
also given in this section. The thermal strain energy and the interaction energy due to 
the thermal and elastic stresses are also evaluated but in the Appendix, since their 
magnitudes are negligible in comparison with the other terms and do not enter the 
final-energy analysis. In 9 4 we present the results, and in 5 5 we give a general discussion 
of the phenomena of small-particle fluctuations including a few possible energy-gain 
mechanisms during the particle-beam interaction. 
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Structural fluctuations in small particles 607 

$2. MODEL 
In the earlier work (Howie and Marks 1984, Marks 1984) on the energetics of 

MTPs, only symmetric MTPs with all the lengths on the basic tetrahedral unit being 
equal were considered. This is a clear drawback since asymmetric and compound MTP 
structures are experimentally observed (Marks 1983). We extend this earlier model and 
include asymmetric shapes for the MTPs by considering an eccentric position.for the 
disclination inside the particle. The energy is then evaluated using a continuum model 
in two parts: the surface energy of the particle and the elastic strain energies due to the 
disclination and temperature change. These two are dealt with separately. 

We shall only consider here the energetics between a single crystal, a symmetrical 
Dh, a series of asymmetric Dh structures and a bicrystal (a particle with one twin 
boundary) using only (1  1 1 )  and (100) surface facets. A three-dimensional analysis 
with all possible surface facets is an intractable problem, and published results (Marks 
1984, Iijima and Ichihashi 1986) show that a good approximation is achieved by 
considering only the ( 1  1 1 )  and (100) facets. Changes in surface facets and the motion 
of the 7.5" wedge disclination to the centre of the particle corresponds to a change in 
structure from a single crystal to a Dh, and motion to the opposite side gives a change in 
structure from a Dh to a bicrystal (as illustrated in fig. 1). Making use of the mirror- 
plane symmetry inherent in each of the segments and common to all five segments, we 
can say that segments two and five (see fig. 1) are identical, as are segments three and 
four. The general shape of the segment with different surface facets is shown in fig. 2 and 
is similar to the shape of a single crystal except that a (100) face which would appear 
along the ( 1  10) axis of the decahedral particle is missing. All lengths of segments are 
made variables, although the constraint that the segments have to match at  the 
boundaries restricts the geometric invariance to a certain degree and simplifies the 
problem to a great extent. 

Fig. 1 

B =-1 B=0 B =1 

Schematic diagram showing the relation between E ,  and the particle shape characterized by /I. 

Fig. 2 
(111) (100) 

T W H  

5 - F b  AXIS 

The basic tetrahedron unit showing the (1 11) and (100) surface facets used in the calculation. 
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608 J. Dundurs et al. 

9: 3. ENERGETICS 

3.1. Surface energy 
The problem is to find the surface energy of the particle for a specified volume 

fraction of each of the five segments. This was done numerically on a VAX 780 using 
MINIPACK programs by evaluating the total surface and twin-boundary energies of 
the segment, as well as its volume, and then minimizing the dimensionless energy 
parameter E ,  where 

where V is the volume of the particle and y1 the surface energy (per unit area) of a 
( 1  1 1 )  facet. During the minimization procedure, the constraint is applied that the twin 
facets common to the adjoining segments are identical. This ensures that the adjoining 
segments match at the boundaries, and the five units fit into a complete structure. We 
fix the volume fraction of one of the segments and evaluate E, as a function of this 
variable which in turn is expressed in terms of b, the fractional distance of the 
disclination from the centre. The volume fraction of 0-2 is equivalent to a value of zero 
for b, i.e. a symmetric decahedral particle, a volume fraction of 0.5 (B= 1 )  corresponds 
to a bicrystal with one twin boundary, whilst 0 (b = - 1 )  is a single crystal. Thc valuc of 
the twin-boundary energy is set at  y, =O.O1yl a mean value for f.c.c. metals (Howie 
and Marks 1984). The above calculation is repeated for three different values of the 
surface anisotropy ratio a or the ratio of the surface energy of a (100) surface to that of 
a ( 1  1 1) surface. 

3.2. Elasticity of the disclination 
The elastic fields of an off-centre wedge disclination in the circular region can be 

obtained by using the so-called slab analogy (Mindlin and Salvadori 1950). The slab 
analogy exploits the fact that the differential equations for the Airy stress function in 
plane elasticity and the transverse deflection of a thin plate loaded in bending are the 
same. The slab analogy also relates the boundary conditions in the two problems: to a 
free boundary in elasticity corresponds a clamped edge in bending. Next, noting that 
the singular part of the Airy stress function for the wedge disclination is of the type 
[wp/n(ti + l)]r2 log r (Dundurs !969), and (Pj8nD)r’ log r (where D is the flexural 
rigidity) for a plate loaded by a transverse concentrated force, it follows that the 
disclination problem can simply be solved by translating the well known Michell 
(1902) result for a clamped circular plate that is loaded by an eccentric force. The Airy 
stress function for the disclination is therefore 

Apart from the symbols shown in fig. 3, w is the angle of the wedge that is cut out of the 
material (positive w corresponds to cutting out the material and closing the gap; 
negative w corresponds to cutting the material and inserting a wedge of extra material), 
p denotes the stress modulus and, with v standing for Poisson’s ratio, ti=3-4v for 
plane strain and ti = (3 - v)/( 1 + v )  for plane stress. 
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Structural fluctuations in small particles 609 

Fig. 3 

The coordinate system used for the disclination. 

Relating rl  and r2 by the cosine law and noting that constants and terms linear in x 
and y are of no importance in the Airy stress function because they give zero stresses, an 
expanded form of (2) is seen to be 

~ ~ = [ o , u / I T ( K +  l)]{r:logrl-r:logr2-[2(l -~2)a/~]r210gr ,cos82 

- [( 1 - P2)2a2/P2] log r2 - [log B + 3 1 - P2)]r2} (3) 
which shows that 4 consists of five simple biharmonic functions. The displacement and 
stress components corresponding to this Airy stress function are 

Ux=CW/2Z(K+ 1)1{++ l)Y(e, -e,)+(JC- 1)Cxlog(r , /Pr,)-Palog(r , /r2)  

-31  -B2)xl + “1 -B2)a(x-a/B)/Br:1C2(x-a/B)+(1 -P2)al}, 

u y =  [U/24K+ I)l{(JC+ l)(X-Pa)(e, -W+(JC- l)Y[log@1/Pr2)-31 -8’13 
(4) 

+ “1 -P2)aY/Pr:1C2(x-a/P)+(1 -P2)al}, ( 5 )  

- C(1 - B2)a/Pr:l(2x - a/P - PaWl - 2y2/rf)}, (6)  

-C(1 -B2)aY/Pr:1C1 -2y2/r: -[(I -B2)a/Br:l(x-a/B)I}, (7) 

-[(I -B2)a/Br:1C2(x-a/B)(1 +2Y2/r:)-C(1 -P2)aIPI(1 -2Y2/r31}. (8) 

gxx=  C W / N K +  1)1{2~Og(~l/Pr2)-(1 -P2)+2Y2(l/r:- 1 /6)  

(Jxy = COP/X(K + 1)12Y{ - (x - Pa)/r: + (x - a/P)/rf 

cyy= Cw,U/n(K+ 1)1{2Wr1/Pr2)-(1 -B2)-2Y2(M- 1 /6)  

Noting that, on r = a, r2 = rJP, it is easy to confirm using the given stress components 
that the boundary of the circular cylinder is free of tractions. Moreover, using the 
branch cut 0 < O , ,  O2 < 2n, in (4) and ( 5 )  puts the displacement discontinuity on the x 
axis to the right of disclination, and from (5) 

Uy(X,O+)-uUy(X,O-)= -W(X-PBa), pa<x<a .  (9) 
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610 J. Dundurs et al. 

3.3. Strain energy of the disclination 
It is convenient to compute the strain energy of the disclination as the work done by 

the tractions acting on the displacement discontinuity given by (9): 

W D  =h w(x - Ba)o,,(x, 0) dx, 
2 60 

where his the dimension in the z direction. The details of the calculation are tedious but, 
when evaluated, ( 10) yields the surprisingly simple expression 

(1 1)  

(12) 

( 1  3) 

WD=[02pa2h/4n(ti+ 1)](1 - f 1 2 ) 2 = [ ~ & L / ( ~ +  1)](1 -/3’))” 

WD = WDh( 1 - /32)2, 

WDh = [E& L/4( 1 - v ) ]  

with V denoting the volume and ~ ~ = o / 2 n .  Thus, 

where W,, is the strain energy of a symmetrical Dh, given as 

by Howie and Marks (1984) for plane strain with the estimate ~ ~ = 0 . 0 2 0 5 .  
It might be thought that the strain energy per unit volume for the three-dimensional 

case is between those for a long cylinder (plane strain) and a thin circular disc (plane 
stress). However, the ratio of the plane strain energy to the plane stress energy is 
l / ( l  - v2) which ranges only from 1 to $. 

3.4. Surface stress energy 
We begin by computing the hoop strain e,, at the boundary for the eccentric 

disclination. It follows from (6H8) that, on r = a, we have 

oxx = [4nEDP( 1 - f12)2a2 sin2 O ] / ~ ( K  + I)rf, 

ox, = - [ 4 n ~ ~ p ( l  - /3’)’a2 cos 8 sin O]/n(ti + 1)r:, 

oYr= [4mDP( 1 - /?2)2 cos2 O ] / ~ ( K  + l)r:, 

r: =a2( 1 + 8’ - 28 cos 0) 

(T,, = ox-r sin2 9 - 2oxy cos 8 sin 8 + o,, cos2 0, 

(14) 

(15) 

(16) 

(17) 

(18) 

where now 

and E,  = w/2n. From the stress transformation formula 

we get 

o,,=[4x&DP(l - / 3 2 ) 2 / ~ ( ~ +  l ) ] ( ~ / r 1 ) ~ ,  

Hooke’s law for plane elasticity gives 

and, since o,? vanishes on r=a, 

The average of the hoop strain on the boundary is 
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Structural juctuations in smull purticles 61 I 

Substituting (17) and (21), the result is 

20, =;ED( 1 - p 2 ) .  (23) 

Using the approach of Howie and Marks (1984), the additional energy term due to 
the surface stresses can be written using the modified Wulff theory for MTPs as 

The exact value of g depends on the surface stress tensor for the material, which in turn 
depends on many factors such as surface impurities, surface relaxation, lattice 
imperfections, long- and short-range interactions between atoms (Marks 1984). For 
simplicity, we reform g into a semi-empirical constant and its value, in the present 
calculations, is taken to be of the order of unity. 

3.5. Temperature distribution 
We assume that the electron beam deposits heat throughout the volume of the 

particle, that heat is lost only to the substrate and that a steady state has been reached. 
The temperature T then satisfies the differential equation 

a 2  Tiax2 + aZT/ay2 = - s(x, y ) /k  (25) 

where s(x,y) is the source density (energy deposited by the electron beam per unit 
volume and unit time) and k denotes thermal conductivity. The particular solution of 
(25) for a constant source density s(x, y) = so is 

T=(so/4k) (x2  +y’)= -(so/4k)r2.  (26) 

It is possible to give a simple closed solution which corresponds to an insulated 
boundary of the particle, with the heat removed by a sink of strength nu’so per unit 
thickness and placed at  x =  a, y=O (fig. 4(a)):  

T =  To-(soaZ/k)[r2/4a2-log(rl/a)],  (27) 

where To is the temperature at  the centre. This solution suffers from the defect, however, 
that it is not possible to evaluate the general temperature level because T+ - co at the 
sink. 

Fig. 4 

e J - -  - - qo tedH x 
a 

(4 (b)  
Schematic diagram of the particle sitting on the substrate, used in the calculation of the 

temperature distribution in the particle. 
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612 J. Dundurs et al. 

Hence we must construct a solution for heat being removed on a small finite interval 
of the boundary (fig. 4(b)). The temperature distribution is taken as 

ou 
T(r, 0 )  = - S r '  + A, + Anr" cos n9 

4k n =  1 

which satisfies (25). The radial component of the heat flux is q,= - kdT/dr, and from 
(28) 

sou 3o 

2 n = l  
qr(a9 0)  = - - k 1 Anna" - cos no. 

That part of the boundary corresponding to y < 8 < 2x - y is taken as insulated (qr = 0). 
There are two options for the boundary conditions on the interval - y < 8 < y where 
heat is removed. One can specify a temperature distribution, say T=O, on the 
distribution of the radial heat flux. The first choice leads to a mixed boundary value 
problem; the solution is complicated because of the singularities at  9 = k y .  Hence we 
specify heat flux on - y < 8 < y and for simplicity take qr = q, = constant. Expanding 
these boundary conditions in a Fourier cosine series on - K < 8 < K, and using the side 
condition 2yaq, = xa2s0 from a heat balance, we obtain 

Matching the coefficients in (29) and (30) yields 

An = -(so sin ny)/kyn2an-',  n = 1,2,. . . . (31) 

To find the constant A, in (24) we might set T(a,0)=0 or P-yT(u,9)d8=0. The first 
choice gives a simpler expression and, using it, the final result is 

4k 

Taking y=& corresponding to about 3.6", the temperature at the centre of the 
particle is 

To x 4.0s,a2/k. (33) 
The temperature averaged over the volume of the particle is T0/2. The maximum 
temperature of the particle for this value of y is 

T(a, f 7c) x 4.5s,a2/k. (34) 

When approximate values of so and k for a 2 5 A  gold particle are put into 
expressions (33) and (34), we find that the difference in the average and the maximum 
temperatures is only of the order of 10-60C and hence negligible. This suggests that the 
temperature gradients in the particle are extremely small and that the particle is not 
significantly heated in the process of electron-beam irradiation. This would not be the 
case if one encountered an anomalous value for the thermal conductivity of the 
particle-substrate interface, a condition which appears to be highly unlikely. The 
situation is further clarified by the computation of the thermal stresses and the 
additional energy terms, as in the Appendix. 
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Structural juctuations in small particles 

5.45; 
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5.40 1 

5.35 I 

5.30 

94. RESULTS 
As explained in the Appendix, the total strain energy is 

w= WD+ wT+ w', 

; -;5.45 J 

a=ll : 

: 5.40 

I 3 

a=1.05 4 5.35 

I 15.30 

613 

I 
I 

5.25 1 

I 
I I ~ ~ V I I I I  I I I I I  I I I I - I I I  U U ~ ! S - ~ V I ~  I I ~ I I I I I I I I  I I I I I I I  

-1-0 -0.6 -0.2 0-2 0.6 1.0 
5.20 

(35) 

15.25 

5.20 

where WD given by (12) is the strain energy of the disclination stresses, WT that of the 
thermal stresses and W' the interaction energy between the two fields given by (A 11) 
and (A 15), respectively. The most notable feature of the three terms in W is their 
dependence on size: WD x a2h x V, W' x a4h x a2V and WT x a6h x a4 I/: Since we are 
dealing here with particles with a in the range lCLlWA, the last two terms in (35) are 
negligible in comparison with the first, and hence WD is the only numerically important 
term in the result. 

The results from the previous sections are represented diagrammatically in the 
following plots. 

(1) The surface energy E ,  is plotted against j for three different values of the 
surface anisotropy ratio a in fig. 5. For all values of a, there is a strong minimum 
for j = 0, or the case of the symmetrical Dh, whereas there are also shallow local 
minima for /?= +03 and -0-5, indicating local stability for asymmetric 
shapes. As the value of CI drops, the variation in E, softens which supports the 
fact that MTPs are more stable for anisotropic surface energies (Howie and 
Marks 1984). A rise in temperature causes a decrease in surface anisotropy 
(since it goes to zero at the melting point) which then suggests, at this point, that 
the instability of small particles during electron-beam heating could be due to a 
thermal heating effect, if such a heating actually occurs in the particle. The 
addition of the strain energy term in the energetics, and the estimates of the 
temperature gradients existing disprove this, as will be seen later, thus 

Fig. 5 
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Fig. 6 

10 175 

w 

0 173 

0.171 

0.1 69 

The dependence of the total energy on the particle shape after the strain energy terms are added 
( R  = 25 A). 

predicting that the instability in structure is not caused by heating but is 
induced by other electronic phenomena. 

(2) The different strain energy terms, evaluated in Q 3 and the Appendix, are added 
to E ,  and the total energy plotted against B in fig. 6. Although the strong 
minimum for a symmetric Dh still persists, the magnitude of the variations 
between p= - 1 to B= 1 drops considerably. This indicates that, as we use a 
more realistic model including all the energy terms, the potential energy surface 
becomes very flat and the minimum for the symmetric Dh structure loses its 
significance to some extent. The local minimum is far larger than the energy 
difference between a Dh and single crystal, for example, and it is far more 
important to consider the potential energy surface than the simple energy 
differences. Also the difference in variations in E ,  with a, as seen in the previous 
plot, becomes negligible and the temperature dependence of the phenomena 
becomes questionable. It should be noted that, among the strain energy terms, 
only the internal strain energy due to the disclination and the surface strain 
energy are important, and the other terms are negligible in magnitude when 
appropriate values are substituted for the constants in (35). 

The solution for the temperature distribution indicates that the gradients 
existing in the particle are extremely small, and the particle is at almost 
constant temperature as it sits on the substrate. For gold on a Si/SiO, 
substrate, i t  follows from ( 3 3 )  and (34) that the difference in the magnitude of the 
average and maximum temperature in the particle is of the order of 10-60C. 
This, coupled with the result in (2) above, shows that temperature-dependent 
(thermal) phenomena for the instability of small particles can be ruled out. 

( 3 )  The total energy of the particle can be written in terms of an equivalent radius 
of the particle, which is the radius of a spherical particle having the same 
volume. The difference in energies between a single-crystal Wulff polyhedron 
and the various shapes characterized by Pis plotted in electron volts against p 
for a 25 8, particle and 9 = 1.1 in fig. 7. The most important and fascinating 
observation here is the fact that the magnitude of the maximum activation 
barrier corresponding to the jump between the energetically most 
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Structural ,fluctuations in small particles 615 

Fig. 7 

The activation energy barriers existing between a single crystal and different particle 
morphologies plotted against particle shape ( R  = 25 R; a= 1.1). 

Fig. 8 

c) 

0 
W 
a 

Plot of the activation energy barrier against the particle radius with the energy for melting shown 
by the broken curve (a = 1.1). 

unfavourable shapes is only 10-15 eV. This indicates that a particle in the size 
range of 25 %, can change its structure between any of the shapes that we have 
considered, provided that energy of the order of 10-15 eV is available from the 
solid-beam interaction. 

(4) The activation energy Each or the energy needed for transformation from a 
single crystal to any of the symmetric or asymmetric shapes is plotted against 
the particle radius in fig. 8. It shows that, as the particle size increases, the 
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616 J. Dundurs el al. 

activation barrier grows rapidly. In the same plot, we also show the classical 
energy of melting of a small particle, corrected for melting temperatures at 
smaller sizes (Couchman and Ryan 1978), which is seen to be several orders of 
magnitude larger. The relation is not simple and depends on various 
experimental factors, such as the nature of the substrate, the gases adsorbed on 
the surface of the particle and the kinetics of growth, but in any case the result 
supports the experimental observation that, for larger particle sizes, the 
fluctuations are much slower, so that the idea of a simple static-particle 
structure starts to reappear again. 

0 5. DISCUSSION 
The agreement between the theoretical results that we have obtained here and the 

experimental observations appears to be promising. The potential energy surface that 
we considered appears flat, and the height of the activation energy barriers existing 
between different shapes is only a few electronvolts (about 10 eV for a 25 A particle) or 
orders of magnitude smaller than the energy required to melt the particle. The question 
now is how much energy is generated during the particle-beam interaction, and how 
much of it is available to the particle to cross the above barriers and to jump between 
different shapes. 

We attempted an order-of-magnitude calculation to find the energy gained during 
the process for a 25 8, particle assuming an electron flux density of los ,&-'s-'. First, 
assuming the energy deposition to be a thermal process and assuming classical 
mechanics for heat conduction, one arrives at an order of magnitude of 100 eV of energy 
generated during the interaction (the calculation also assumes a substrate temperature 
of 100 C, an upper bound value reported recently by Iijima and Ichihashi (1986)). 
However, one can also think of the energy as being transferred by electronic excitation 
phenomenon. Here using an electronic temperature (Buxbaum and Marks 1986), which 
is the temperature to which the specimen has to be heated in order to produce the same 
population density of a particular electronic excitation, an energy value of the order of 
lOOOeV is obtained. Now, this calculated energy is the intrinsic energy of the system 
including the atomic vibrations (thermal) and the vibrations of the lattice (phonon 
excitation), and only a small fraction of this is available to the particle for 
transformations. However, it should be emphasized that the particle needs only a small 
fraction of this energy, and this can clearly be considered as available. 

Another important question is what the mechanism is by which the particle gains 
energy during its encounter with the electron beam. At first, it may seem to be a 
temperature-dependent effect due to simple beam heating but, as the elastic terms were 
added to the energy which made the surface anisotropy effect less strong and as the 
temperature gradients were found to be minimal inside the particle, this has ceased to 
be a valid reason. A second and a recent prediction is a temporal surface-charging 
phenomenon (Iijima and Ichihashi 1986, Howie 1986). The idca is that a core-electron 
excitation (Auger cascade) or secondary-electron transfer phenomena can impose 
Coulombic forces which can change the shapes of particles through internal atomic 
rearrangements. The particle or the contact area of the substrate can deviate 
temporarily from electronic neutrality, and this can lead to translational and rotational 
motions of the particle. This can be accepted as a reasonable mechanism if the particles 
change shape only when charged, and there is no evidence at present to believe that this 
is the case. Knock-on damage and surface desorption are other possibilities, but the fact 
that the phenomena were first observed in gold using 100 kV electrons, which is below 
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Structural jluctuations in small particles 617 

the damage threshold for knock-on in gold, indicates that it is not the correct 
mechanism. Another possibility is activation by the energy available after a core 
excitation (Williams 1987). However, as this yields far more energy than is required, we 
do not feel any need to invoke a process with a low scattering cross-section. 

A reasonable answer at this point seems to be an electronic excitation phenomenon, 
leading to surface or bulk diffusion (Bourgoin and Corbett 1972, Knotek 1984). A 
Bourgoin-Corbett diffusion for the particles as a whole is a possibility. It has been 
experimentally observed that the fluctuations become sluggish if an electrically 
conducting substrate is used (S. Tijima 1986, private communication). This supports the 
mechanism of electronic excitation since the excited states can more readily dissipate 
into a conductive substrate, making the transformations slow. The actual inelastic 
scattering process is probably a surface or bulk plasmon mode, decaying by some as yet 
unclear process driving the Bourgoin-Corbett channel. As in electron-stimulated 
desorption processes, we can expect a very low conversion efficiency which is consistent 
with the relatively slow motion rates. 

Although we are able to explain the dynamic behaviour of small particles on the 
basis of energetics, there are obvious limitations to our model. First of all, we have 
considered an absolutely static model with no mention of the growth kinetics. The 
thermodynamics becomes important only when equilibrium conditions are established 
after growth but, considering the fact that we are looking at a time scale in which the 
particles change shape without addition 'or removal of atoms, our results carry 
importance. The addition of any other facets such as ( 1  10) on the surface of the particle 
would ease the constraint on the twin boundaries, indicating that what we have found 
for the energy is an upper bound value. The model may break down at smaller sizes 
when continuum assumptions become invalid, but below a certain size there may not 
be enough room for the MTPs to form. Finally the energy gain mechanisms that we 
considered are far from comprehensive and there is still no unequivocal evidence to 
believe that a particular mechanism is wholly responsible for the phenomena. A 
detailed study remains to be done on this area. 

A P P E N D I X  
To compute the thermal stresses, we first note that, except for the single term 

-(s, /4k)r2 in (32), the rest of the temperature distribution is a harmonic function (it 
satisfies Laplace's equation V2T=0). It is known, however, that a harmonic 
temperature distribution gives the stresses 

o,, = o , ~  = o,,,, = 0, o~~ = - EU T, (A 1 )  

in a simply connected cylinder with a free surface but constrained to be in plane strain 
(Timoshenko and Goodier 1970, p. 471). Therefore the stress components of interest 
can be computed easily using the formulae for a radially symmetric temperature 
distribution (Timoshenko and Goodier 1970, p. 445): 

s UE 
crr =*(?- I - v  a2 1; Tr dr -$ jl Tr dr) = -*(a2 - r2)  (A 2, 

s aE 
egg=--- - Trdr+-, Trdr -T = - L ( a 2 - 3 3 r 2 )  (A3) :'v(i2 ji r1 1; ) 16k(l-v) 
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618 J. Dundurs et al. 

where E denotes Young’s modulus. The expression for o,, is more complicated because 
the harmonic part of the temperature distribution enters, but it is of no immediate 
interest. 

The strain energy of the thermal stresses is 

W T = + l  oijeij-aTGij)dV, i , j= 1,2,3 
V 

where eij denotes the total strain, so that the quantity inside the parentheses in (A 4) is 
the elastic strain. Since eij=$diuj+ djui) and oij= oji, 

WT = + oijdiuj- a Tdij)  d V 
V 

and, using the equilibrium condition Ziaij = 0, 
r r 

WT=+ J d,(aijuj)dV-$z ToiidV. 
V J v  

Next, transforming the first integral to a surface integral by Gauss’s theorem, 
r r 

wT=+ J nioijujdS-+a J ToiidV. 
S V 

However, the surface integral vanishes. The side surface of the cylinder is free of 
tractions and nioij = 0. On the ends of the cylinder, cr31 = a32 = 0 and u3 = 0. Therefore, 

c 

This result can be simplified further because, for plane strain (Timoshenko and 
Goodier 1970, p. 444), 

+o, , ) -ExT.  (A 9) 

Thus finally 

W T = - + a ( l + v )  T(of;+a&)dV+$Ea2 T2dV, (A 10) 
l V  lv 

where we have added the superscripts T on the stress components to emphasize that 
they are the thermal stresses. 

Substituting into (A 10) the temperature from (32) and the stresses from (A 2) and 
(A 3), the strain energy of the thermal stresses is 

Next we think of cutting the cylinder and introducing the disclination. This 
operation is done with the thermal stresses present. The cut is made on pa < x d a, y = 0 
(see fig. 3), and the disclination is induced by applying statically to the sides of the cut 
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Structural fluctuations in small particles 619 

the tractions that correspond to the disclination stress field. The work done on the body 
during this operation is 

where the superscripts D and T are used to distinguish the disclination and thermal 
deformation fields, and the displacement discontinuity in the square brackets is given 
by (9). The first term in (A 12) is the strain energy WD of the disclination given by (12). 

The second term is recognized as the interaction energy of the two fields 

W'= o h  (X - Bu)u,T,(x, 0) dx. S 
It is clear from (A 3) that 

a;,,(x,O)= [s0crE/16k(l -v)](3x2 -a2) .  (A 14) 

Substituting(A 14) into (A 13) and simplifying yields the other surprisingly simple result 
that 

The total strain energy is the sum of WD, W' and WT 
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