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Experimental data on the phase transformation kinetics in vanadium pentoxide due to surface oxygen loss are analyzed 
theoretically. A model for the process as a one-dimensional problem with oxygen loss from the surface and coupled interface and 
diffusion controlled growth modes is described. This model appears to match well the experimental data with reasonable numbers 
for the surface loss rate and diffusion constant. In particular, the model reproduces changes in the number of phase fronts as a 
function of electron beam flux. In addition, the analysis confirms that the effective diffusion constant is electron beam flux 
dependent. 

1. Introduction 

In a previous paper El], e~erimental data on 
the phase transition kinetics in vanadium pentox- 
ide as a function of beam flux were presented. 
We review, briefly, the main experimental results. 
For low values of the electron flux consecutive 
phase transformations occurred: 

v*o, --j v,o, --) v,o,, --) vo. 

In this case three interfaces propagated into the 
sample. For higher values of the flux two phase 
transitions were observed: 

v*o, + v,o, + vo. 

In some cases two interfaces merged during the 
experiment, and the intermediate phase disap- 
peared. For still higher values of the flux the 
original phase lost its stability, and phase separa- 
tion in the bulk took place. As a result, a mixture 
of the two phases V,O,, and VO appeared. The 
interface between V,O,, + VO and VO propa- 
gated into the sample. 

In this paper we give a theoretical description 
of the process. To study the interface propagation 
we consider a free boundary problem (eqs. (2)~(5) 

below). In accordance with the physics of the 
process the values uLt of the concentration on 
the interface cannot be considered as equilibria 
ones, and we introduce equations for them (sec- 
tion 2). The condition on the interface has a 
natural form and generalizes the well-known lim- 
iting cases of diffusion control and interface con- 
trol. The results of the numerical simulations and 
~mparison of these results with the e~e~mental 
data are presented in section 3. 

2. Model 

We begin with a brief, schematic description of 
the physical processes which take place during 
the experiment. 

I I 1 b 
0 

Fig. 1. Schematical representation of the process, 
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There is an electron flux which is perpendicu- 
lar to the surface of a sample (fig. 1). It leads to a 
loss of oxygen from the material, probably oxygen 
ions due to a process such as interatomic Auger 
decay [2,3]. The loss of oxygen in effect creates 
oxygen vacancies at the surface which can diffuse 
into the material. At some level of oxygen de- 
fiency a phase transformation to a lower oxide 
takes place at the side surface, and the interface 
appears near it. The interface propagates into the 
sample, and we have our original phase A to the 
right of it, and some new phase B to the left of 
the interface. This first phase transition can be 
followed by others. 

Following this phase transition, the appropri- 
ate combination of oxygen vacancies/interstitials 
can diffuse in both original and transformed ma- 
terial. The actual diffusion process itself may be 
purely thermal, or may be electron assisted; for 
instance, the same interatomic Auger decay pro- 
cess which ejects oxygen at the surface can move 
oxygen around within the solid. 

A complete model including oxygen vacancies, 
interstitials (and possible cation point defects), 
recombination and differing diffusion along both 
different crystallographic directions and in differ- 
ent phases would be exceedingly complicated. We 
have therefore chosen to make the following as- 
sumptions: 

(a> We will consider all the oxygen atoms to 
be equivalent, and only consider that the oxygen 
diffuses by one mechanism. 

(b) We will ignore the variations in the diffu- 
sion constants with crystallographic directions. In 
reality this may be the reason why different re- 
sults have been obtained with the electron beam 
in different directions [41. 

Cc> We will assume that the diffusion constant 
does not vary between the different phases. 

Cd) We will assume that oxygen loss only oc- 
curs from the profile edge (side surface). 
Experimentally, if new phases formed at the top 
and bottom surfaces this would have been readily 
visible. The exact reason why loss occurs primar- 
ily from the side surface is still unclear, but is 
probably due to the dipole polarization normal to 
the electron beam of energy loss with high energy 
electrons. 

To describe the process we consider a simpli- 
fied model of the process which includes diffu- 
sion of species in the bulk and the movement of 
the interface. The interface movement can be 
determined by the balance of mass and two addi- 
tional relations connected with kinetics and ther- 
modynamics of the phase transition. This gives a 
possibility to find the values of the concentration 
on the interface and the interface velocity. 

There are two well-known limit cases of inter- 
face propagation: diffusion control and interface 
control (see, for example, refs. [5,61). In the first 
case the interface position y(t) as a function of 
time t changes slowly (y(t) N m, where D is 
the diffusion coefficient), the values of the con- 
centration on the interface u + and u _ are equal 
to the equilibrium values for the corresponding 
phases, and the interface velocity can be found 
from the balance of mass 

D[g~y_o-;~y+.) l tY'(U+-u-1 =o. (1) 

Here 

u+=u(Y(t) +o, t), 

au au(Y(t) k 0, q 
- = 
ax YIkO ax ’ 

dv 
y’= -g 

x is a spatial variable. The notations y + 0 and 
y - 0 mean that we take the limit values of the 
concentration and its gradient on the interface in 
the original and the new phases, respectively. 

For the second case the propagation of the 
interface is fast, the equilibrium concentrations 
cannot be reached, and, moreover, there is no 
concentration step at the interface, u + = u_. In 
this case the interface velocity can be expressed 
through the driving force of the interface. Under 
the assumption of small deviation from the equi- 
librium it has the form 

Y’(f) =k(u,-u,), 

where u, is the equilibrium value of the concen- 
tration, k is a constant. 

For the coupled diffusion and interface con- 
trolled growth both of the balance of mass and 
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kinetics equations should be considered. Aziz and 
Kaplan [71 discuss a model for solidification of a 
two-component melt. Davi and Gurtin [8] con- 
sider the interface movement in a general formu- 
lation and suppose that the concentration step on 
the interface and the interfacial mass flux are 
some given functions of the chemical potential 
and its gradient. 

In the case of the phase transition in metal 
oxides under irradiation, which we consider here, 
we should take into account the diffusion of 
oxygen in both the original and new phases, and 
consider a radiative boundary condition to de- 
scribe the loss of oxygen through the side surface. 
For the process under consideration we cannot 
use the limiting cases of diffusion control and 
interface control. The physical idea of the process 
is that the concentration step on the interface is 
equal to zero at the moment that the interface 
appears, and then the step increases. This means 
that u+ and u_ are not given constants, but 
some functions, and we should obtain additional 
equations for them. To do this we consider the 
balance of mass, taking into account the finite 
width of the interface, and the kinetics equation 
in the form which is close to that in ref. [7] and 
which gives a relation between the interface ve- 
locity and the driving force of the interface. The 
third condition on the interface determines the 
penetrability of the interface for the diffuse flux. 

Thus we consider the free boundary problem 

all 
2 

-=D$, O<x<y(t), y(t) <n-CL, 
at 

UI yio=u*, 

a24 al.4 
x = 0: - =hu, x=L: -= 

ax ax 
0, 

t=o: u=uo. 

(2) 

(3) 

(4) 

(5) 

Here u is the concentration of oxygen, 0 IX IL, 
h a constant which characterizes the loss of oxy- 
gen through the side surface and which is sup- 
posed to be proportional to the value of the 
electron flux, and u. is the initial concentration 
of oxygen. 

The balance of mass in the case of nonzero 
width of the interface has the form 

l$[su++(l -s)u_] 

=D( g~y+o-$~y_j +y'(u+-U-)? (6) 

where I is a width of the interface, s is a con- 
stant, 0 < s < 1, which characterizes the contribu- 
tion of each phase in the balance of mass. In the 
case of constant u+ and u_ or 1= 0, eq. (6) 
coincides with (1). The balance of mass on the 
interface can also be written for u, and u_ 
separately: 

dU+ 
sl- 

dt 
=L)a” 

ax y+. 
-Llf+y’sl~ 

ax y+. 
+ 0(12), 

du- 
(1 -S)Idt = -DJJ 

Y 
_o+y’(u+-u_) +Df 

au 
- y’s17 + O(12). 

a1 ly+o ’ ’ 

Here f is a diffusive flux through the interface, 
y’ > 0. Further in this paper we assume that 
y’l -c D, which is in accordance with experimen- 
tal data, and consider the case of impenetrable 
interface. In this case we have simplified the 
equations for u, and u _: 

du+ 
sl- 

dt 
=L)a” 

ax y+o’ 

du- 
(l-s)lF=-D;l _o+~‘(~+-~_). (8) 

Y 

Similar to ref. [7] we express the interface 
velocity through the driving force of the interface: 

y ’ = uo[ 1 - exp( Ap/RT)] . 

Here u. is the maximum speed of the phase 
growth, Ap the free energy difference responsi- 
ble for the interface motion, R the gas constant, 
T the temperature which is supposed to be con- 
stant in these considerations. Assuming that the 
system is not far from the equilibrium we can 
consider the linearized form of the equation 

y’=k[u,-(su++(l-s)u_)], (9) 
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where 

k =q,(a, +a,), 

u, = (a+,+ +v,)/(a, +a,), 

4 and Ll, are the equilibrium values of the 
concentration for the original and the new phases, 

a+:, u,> a+: 9 %J) 
u, = - 

au, ’ (T2= - au_ ’ 
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CT1 + u2 ’ 
a(u+, u-) = - RT. 

We assume, finally, that the contribution of the 
phases in the free energy difference is the same 
as in the balance of mass. This means that the 
value of s in eqs. (7), (8) is equal to that in eq. 
(9). 

To complete the formulation of the problem 
we should put a condition on the interface ap- 
pearance. We denote by yO a critical nucleus size 
and suppose that the interface appears if 

u I x=yo = u,, 

for some t = t ,. We have 

Y(ll> =y,, u +(ri> = u,,. 

In the case of two interface propagation, the 
condition of the second interface appearance is 
similar: 

u I IA=*,, = uq> 

where u,* < ue,, and 

z(tz) =zo, "*(t2) =uez. 

Here u,, and ueZ are thermodynamical mean 
values for the first and the second phase transi- 
tions, respectively, 2,) is a critical nucleus size for 
the third phase, U, and L’_ the values of the 
concentration on the second interface, and z(t) 
its location. We put also a condition on the 

Fig. 2. (a) The location of the interface in time, (l-3) Numeri- 

cal results: (1) h = 0.011, D = 11.8; (2) h = 0.011, D = 5.9; (3) 

h = 0.004, D = 5.9. (4, 5) Experimental results: (4) F = 5.5 
A/cm’; (5) F = 2.0 A/cm’. (b) The values of the concentra- 

tion to the right (1) and to the left (2) of the interface. Cc) 
Distribution of the concentration after the appearance of the 

interface. 
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intermediate phase disappearance. We suppose 
that it occurs if the size of this phase is less than 
a critical one, z(t) -y(t) < y,). 

The model we consider here does not describe 
the phase separation which was observed experi- 
mentally for the high fluxes, which requires a 
more complicated model. In this paper we con- 
sider only the phase transition due to the move- 
ment of the interface y(t). Moreover, we con- 
sider the case when the interface is planar. In 
reality, it is not the case for the high fluxes when 
the transition from V,O,, + VO into VO occurs. 
Nevertheless, since the particles are sufficiently 
small and the interface is close to a plane one [l], 
we can expect that a one-dimensional model de- 
scribes the process. 

3. Numerical solution and comparison with 
experimental results 

A finite-difference method using the Thomas 
algorithm (see, for example, ref. [9]) was used for 
the numerical computations of eqs. (21-61, (7)- 
(9). We used an implicit scheme, and iterated to 
calculate the location of the interface and the 
distribution of the concentration. The accuracy of 
the computations was verified by decreasing the 
space and time steps. 

We considered the values of parameters which 
correspond, approximately, to the phase transfor- 
mation in vanadium oxides: u0 = 50 nmP3, U, = 25 
nmP3, y0 = 4 nm, I = 2 nm, s = 0.5. The proce- 
dure was to vary the values of k, h, and D so as 
to obtain the best approximation to the experi- 
mental results. First of all we chose h and D to 
obtain the time of the interface appearance which 
corresponds to the experimental data. Then we 
take the value of k to obtain the appropriate 
value of the interface velocity. 

Fig. 2a (curves 3 and 5) shows the location of 
the interface versus time obtained numerically 
and experimentally (for the value of the electron 
flux F = 2.0 A/cm*). Here k = 0.0015 nm4/s, 
h = 0.004 nm-‘, D = 5.9 nm2/s. A significant 
point is that these numbers are quite reasonable, 
which provides some confidence in the model. 
We note that the initial oxygen loss rate (Dhu,) 

of about one atom/rim* * s is also reasonable. As 
usual, an approximation of experimental data can 
be obtained not only for these values of parame- 
ters but for some range of values. For example, 
we can change the value of h in a few times, but 
we cannot change the order of the value. Consid- 
erable increase of h and corresponding decrease 
of D changes the behavior of solution; the inter- 
face velocity does not tend to a constant in the 
given time interval, but decreases rather quickly. 
Contrary, decreasing of h implies increasing of 
D. The dependence of D on h is rather strong, 
and the diffusion coefficient becomes unreason- 
ably large for small values of h. 

We note that the experimental curve has a 
more prolonged induction period (for which the 
interface velocity increases) than the numerical 
one. This can be caused by a particular penetra- 
bility of the interface for the diffusive flux and by 
the dependence of the penetrability on time. 

When the induction period is over, the inter- 
face velocity becomes close to a constant. Such 
behavior of the interface velocity corresponds to 
the dependence of U, and U_ on time (fig. 2b). 
At the moment t = t, when the interface appears 
u+=u_=u,, and the interface velocity is equal 
to zero. Then U+ increases, u_ decreases, and 
they tend to some constant value, as does y’(t). 

The distribution of the concentration versus 
time after the appearance of the interface is 
shown in fig. 2c. We note that the distribution of 
the concentration to the right of the interface is 
close to a constant one, and the concentration 
profile to the left of the interface close to linear. 

The values of the parameters which give an 
approximation to the experimental results de- 
pend on the electron flux. We suppose that h is 
related to the value of the flux. The experimental 
curves 4 and 5 on fig. 2a correspond to the values 
of flux F, = 5.5 A/cm2 and F2 = 2.0 A/cm*, 
respectively. It was pointed out above that the 
approximation of curve 5 was obtained for h, = 

0.004 nm-i, D, = 5.9 nm*/s. Thus, to obtain the 
approximation of curve 4 we should take h, = 

0.011 nm-’ (fig. 2a, curve 2). We see that this 
does not describe the experimental data. Chang- 
ing k cannot give a better approximation since 
the time of the interface appearance does not 
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depend on it. So the only way to improve the 
approximation in the frameworks of our model is 
to increase the diffusion coefficient. Curve 1 in 
fig. 2a is obtained for hi = 0.011 nm-’ and D, = 
11.8 nm’/s. Thus we can conclude that the diffu- 
sion coefficient depends on the electron flux. 
Depending on temperature, the diffusion coeffi- 
cient may not depend on the value of flux, de- 
pend on it linearly, or depend on it as a square 
root [lo]. In our case /m = 1.7, D,/D, = 2.0. 
This means, probably, that the last case takes 
place, and the diffusion is determined by irradia- 
tion produced defects. 

We consider now the results of numerical 
analysis of the problem (2)-(51, (7)-(9) for the 
case when two interfaces propagate into the sam- 
ple one after another. Fig. 3 shows the location of 
the interfaces for the following values of the 
parameters: D = 5.9 nm2/s, h = 0.0036 nm-‘, u,, 
= 25 nmV3, y,, = z0 = 1 nm. We note that the 
value of h corresponds to the value of the elec- 
tron flux F = 1.8 A/cm2 for which the propaga- 
tion of two interfaces was observed experimen- 
tally. The values y0 and z0 are not very impor- 
tant for a description of the qualitative behavior 
of solutions, and we chose them to illustrate this 
behavior more clearly. 

We see that the first interface appears and 
propagates into the sample. We known that the 
value of the concentration to the left of the 
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Fig. 3. Two interface propagation: the location of the inter- 
face in time. (I) First interface, (II) second interface. 
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Fig. 4. Two interface propagation: distribution of the concen- 
tration. 

interface decreases rather quickly (see fig. 2b). 
The condition for the second interface to appear 
is satisfied in this case for a smaller value of time, 
so the first phase transformation accelerates the 
beginning of the second one. When the second 
interface appears, the distance between them is 
more than yO. In the beginning the velocity of the 
first interface is greater that the velocity of the 
second one, but then it decreases as well as the 
distance between the interfaces. The calculations 
are finished when this distance is equal to yO, 
and the second phase disappears. 

The distribution of the concentration is close 
to a linear one on the interval 0 5 x 5 z(t), and it 
is close to a constant for x 2 y(t), The function 
U(X, t> does not depend on x practically in the 
interval z(t) <X <y(t), but increases as a func- 
tion of time (fig. 4). It leads to a decrease of the 
first interface velocity, and we can say that the 
second interface slows down the first interface. 
For the second interface, increasing the concen- 
tration to the right is compensated by decreasing 
the concentration to the left due to diffusion and 
mass loss on the boundary, and the second inter- 
face velocity decreases slowly. 

If we increase h from the value of 0.0036 to 
the value of 0.004 nm- * then only one interface 
appears. Numerical simulations show that in this 
case the first interface appears, and it propagates 
into the sample similar to the variant with the 
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lower value of h. But the condition of the second 
interface appearance is satisfied rather quickly 
due to the increasing of h, and the distance 
between the interfaces is small. This leads to the 
disappearance of the second phase, and we have 
only one phase transformation. The value of uez 
is chosen to obtain qualitative agreement with 
experimental results: the transition of two inter- 
face propagation to one interface propagation 
under increasing electron flux. 

We emphasize that the numerical simulations 
show the same results as the experimental data: 
the second interface slows down to the first one, 
they merge, and the intermediate phase disap- 
pears. This confirms that the process is not pure 
diffusion controlled. Indeed, if this was the case 
the interfaces cannot merge: when the second 
interface comes nearer to the first one, the con- 
centration gradient between them increases, and 
it accelerates the first interface while decelerat- 
ing the second. 

4. Discussion 

We will discuss first the numerical results 
herein, and then give a more general discussion 
of both this and companion paper [ll. 

4.1. Numerical analysis 

Obviously we have only used a simplified model 
herein, and as stated earlier there are approxima- 
tions. However, it would appear that this model 
reproduces, without major ad-hoc assumptions, 
both the character of the experimental data at 
one flux and the changes in the phase transition 
routes as a function of flux. The experimental 
results show the presence of three interfaces for 
low values of flux. We believe that the model 
should be extendable to this case also. 

It is appropriate here to make some comments 
about the conventional usage of “diffusion” and 
“interface” controlled growth modes. Consider- 
ing eqs. (7)-(9) there are two limiting cases: 

(a) For a small concentration step the rate 
limiting term is the kinetic constant k. 

(b) With a large concentration step the rate 
limiting term is the diffusion constant. 

These two cases correspond to the limits of inter- 
face and diffusion controlled growth, respectively. 
If the interface velocity tends to some positive 
constant then the process is considered to be 
interface controlled. However the results pre- 
sented above show that a constant velocity of the 
interface does not necessarily imply the absence 
of a concentration step, which is required for 
interface control. The regimes observed have the 
features of both interface and diffusion con- 
trolled processes. 

4.2. General 

With the confidence provided by the success of 
these numerical simulations, it appears now to be 
possible to present a general model of DIET 
(desorption induced by electronic transition) in 
oxides at least as far as the issue of materials 
changes. Much of the information is available in 
more tentative form in earlier papers [11,12]. 

The pump for the process is loss of oxygen 
from the surface. There are many models for this 
process which have been proposed [13,14], which 
one(s) are appropriate as yet being unclear. 

Oxygen loss at the surface leads to point de- 
fects which diffuse into material. Based upon the 
analysis herein the effective diffusion constant is 
electron beam flux dependent. We believe that 
the same Knotek-Feibelman interatomic Auger 
process occurring in the bulk is enhancing the 
diffusion constant. Point defect migration domi- 
nate, and diffusive (not displacive) phase transi- 
tions taken place to higher symmetry, lower ox- 
ides; lower oxides which do not have the appro- 
priate symmetry do not arise [151. The kinetics of 
these phase transformations depends upon the 
pumping rate and the (electron enhanced) diffu- 
sion constant. Experimental variations in the ki- 
netics both with orientation (anisotropies in both 
the diffusion constant and the interface mobility) 
and the electron flux change the phase transition 
routes. 

Although a wide range of experimental phe- 
nomena have been observed 116-201, all of it 
appears to fit within the well accepted materials 
behavior models. 
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