
ELSEVIER Ultramicroscopy 55 (1994) 165-170 

ultramicroscopy 

Partially coherent and holographic contrast transfer theory 

L . D .  M a r k s ,  R .  P l a s s  

Science and Technology Center for Superconductivity, Department of Matertals Sctence and Engineering, Northwestern University, 
Evanston, 1l 60208, USA 

Received 4 January 1993; in final form 27 April 1994 

Abstract  

A more  comple te  form of cont ras t  t ransfe r  theory is derived using a part ial  coherency approach  for bo th  e lect ron 
holography and convent ional  high resolut ion e lect ron microscopy. 

1. Introduction 

One of the current directions in high resolu- 
tion electron microscopy is to at tempt to use 
small electron sources such as a cold field emis- 
sion tip (e.g. Refs. [1,2]) to extend the envelope. 
High resolution transmission electron microscopy 
suffers from information loss and contrast rever- 
sal at higher spatial frequencies because of the 
inability to completely eliminate coherent aberra- 
tions such as the objective lens defocus and 
spherical aberration. These distortions require 
correction or the use of simulations before H R E M  
images can be fully interpreted, e.g. Ref. [3]. Two 
methods are currently used to extract higher reso- 
lution information from electron microscope im- 
ages: through-focal series (e.g. Refs. [3-5]) and 
high resolution electron holography (e.g. Refs. 
[6-12]). Through the processes of matching ex- 
perimental  images with simulations at different 
focus values or through focal reconstruction, 
through-focal series allows for accurate interpre- 
tation of the information contained in H R E M  
micrographs. Unlike H R E M  micrographs which 
only contain intensity information, a high resolu- 
tion electron hologram contains information 

about the amplitude and phase of the wave which 
is used to optically or numerically correct the 
coherent microscope aberrations. 

Although the theory of imaging in an electron 
microscope (the optics rather than the diffrac- 
tion) is apparently well established, in reality it is 
only known in detail for two cases: 
(a) For full incoherence in the condensor aper- 

ture as first analyzed by Frank [13] which has 
been developed into what is called a second- 
order contrast transfer function, e.g. Ref. [3]. 

(b) For full coherence in the condensor (for 
STEM objective) aperture for STEM imaging. 
Using reciprocity, this can be translated to 
case (a) with a fully incoherent collector aper- 
ture. 

In reality, these approximations are highly du- 
bious for any of the newer electron microscopes 
which employ small sources. The reason is that 
the approximation of full incoherence in the con- 
densor aperture is not even close to correct for 
many of these instruments. For instance, with the 
HF-2000 instrument which we are familiar with 
(cold F E G  source) the illumination used for 
H R E M  imaging can be focused down to about 1 
nm simply by changing the final condensor. 

0304-3991/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved 
SSDI 0 3 0 4 - 3 9 9 1 ( 9 4 ) 0 0 0 7 3 - V  



1 6 6  L.D Marks, R, Plass / Ultramicroscopy 55 (1994) 165-170 

In this paper we will derive a more complete 
form of the contrast transfer theory using a par- 
tial coherency approach, see for instance Born 
and Wolf [14], and give some simplified forms for 
both HREM and electron holography. A related 
paper [15] looks at one approximation to these 
equations, the coherent case, and demonstrates 
quite reasonable agreement between experimen- 
tal and calculated results; a second related paper 
[16] will look at the effect of diffraction on partial 
coherence. 

2. Partially coherent contrast (wave) transfer the- 
ory 

We will sketch here a rather complete contrast 
transfer analysis using a partial coherency ap- 
proach. We will focus on the holographic case 
from which the normal case can be derived with- 
out complication. For reference, we will adopt 
the convention of using lower case for the pre- 
field optics (the combined condensor and pre-field 
of the objective lens before the sample) and up- 
per case for the post-field optics (after the sam- 
ple), with r or R in real space and u or U in 
reciprocal space. Such an approach of splitting 
the microscope optics above and below the speci- 
men can help clarify the mathematics and is 
conceptually similar to the fashion in which a 
microscope is operated. However, in the more 
complete model detailed herein the final image is 
very much a function of both parts together in a 
non-simple fashion. The approach that we will 
use is based upon the idea of a statistical average 
of the wavefunction qJ(r) at two different points 
r I and r 2 called the mutual intensity defined by 
(e.g. Ref. [14]): 

l ' ( r , ,  r2) = (~*(r , )~O(r2))  , (1) 

where the symbol ( ) represents the appropriate 
statistical average. In the treatment that will be 
used here we are assuming quasi-monochromatic 
irradiation so temporal coherency effects will be 
omitted and only included at a later stage as an 
integration over defoci (representing lens and 
high voltage instabilities and the distribution of 
energies of the source). There is little additional 

complication with this approach (and some math- 
ematical simplifications) relative to a fully coher- 
ent analysis using the wavefunction O(r) in real 
space and q '(u) in reciprocal space, except that 
the mutual intensity in reciprocal space is related 
to that in real space by a double Fourier transfor- 
mation (rather than a single one), e.g. 

F ( , , , ,  u2) = ( q ' * ( , , , ) q ' ( u 2 ) )  

ffr< r,, r 2) exp[2rri( l i , - r  I 

- u 2 " r 2 )  ] dr ,  d r : .  (2) 

Similarly, the effects of the coherent aberration 
terms such as C s is included by two multiplicative 
phase factors, rather than one. 

We start by assuming some (spatially incoher- 
ent) source described by s(r) which emits elec- 
trons in all directions isotropically. It is very 
tempting to take this as some simple disc, al- 
though this may not be accurate enough in all 
cases and merits further experimental investiga- 
tion as will be mentioned in the discussion. Prior 
to the condensor aperture, the mutual intensity in 
reciprocal space can, with the above approxima- 
tions, be taken as: 

r(ul, u2) : fexp[2~-i r . (u ,  - u2)ls(r  ) dr. 

(3) 

(There appear to be some differences with differ- 
ent microscopes as to the exact pre-specimen 
optics, so this equation and some others may 
need to be modified for a particular instrument.) 
The effect of coherent aberrations in the con- 
denser lens and objective pre-field is to introduce 
a spatial frequency dependent phase shift func- 
tion C(u) where: 

"~ 1 4 4 C(u) = IT /~ (mz iJ " t . / "  -~- ~Os~ /.g ), (4)  

and Az i is the illumination defocus, O~ the pre- 
specimen spherical aberration, and A the wave- 
length. The condensor aperture restricts the range 
of values of u transmitted, and in the simplest 
model can be taken as a hard aperture of radius 
a defined by a function A(u) where: 

1, u < a, 
A ( u ) =  0, u > a .  (5) 
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(Some experimental data presented elsewhere [15] 
suggests that it is more realistic to incorporate a 
soft edge rather than this sharp edge.) Using a 
prime notation to denote the wave after these 
aberrations are included, the illumination condi- 
tions are describable by: 

F ' (U l ,  u2) = A ( u l ) A ( u 2 ) F ( u , ,  u2) 

× e x p [ i ( C ( u l )  - C ( u 2 ) ) ] .  (6) 

An important caveat should be mentioned 
here. We are dealing with a very general case, 
and must therefore also mention the change in 
angles associated with large defoci of the pre- 
field. Strictly speaking, if L is some distance in 
the plane of the condensor aperture,  the corre- 
sponding value of u in reciprocal space is L / ( f  
+ Az i) where f is the focal length. (Note that in 
this sign convention for defoci, Schertzer defocus 
is negative.) 

To continue, in general (but see discussion), 
the diffraction process is linear, and, for an inci- 
dent plane wave of 6(u), can be represented after 
the specimen by a coherent wave 0 ( R )  of form: 

0(R)  = ~&~,(u) exp[2~-i(u + g ) . R ] ,  (7) 

where for a crystal g is a reciprocal lattice vector; 
for the more general case the sum can be ex- 
tended to a full integration. Therefore,  the post- 
specimen mutual intensity can be written as: 

/~(U 1 - g, U2 - h ) = F ' ( u , ,  u2)ch*( u,)qbh( u2) 

(8) 

and the axes for u and U are the same. (We are 
conventionally using U below the sample.) We 
note here that the dependence of the diffraction 
upon the incident beam direction is commonly 
omitted. This is valid for very thin samples, but 
not for samples of approximately 10 nm or thicker 
(dependent  upon the convergence semi-angle) 
[3,16]. The post-specimen aberrations arise in the 
form of a phase shift x(U)  given by: 

1 g~ )t4I]-4 x ( U )  = rr/A(AzA2U 2 + ~ , ,  ~ ) (9) 

and Az is the post-field defocus, C s the post- 
specimen spherical aberration to give (again using 
a prime notation): 

e ' ( e l , / ] 2 )  = F (UI ,  V2) e x p [ i ( x ( e l )  - x ( U 2 ) ) ] .  

(10) 

For reference, the image intensity for conven- 
tional H R E M  is: 

I ( R )  = f f F ' ( U 1 ,  U2) e x p [ - 2 7 f i R "  (U 1 - U2) ] 

) < d U  1 d U  2 . ( 1 1 )  

(It is possible to take the Fourier transform of 
I (R)  in Eq. (11) above which corresponds to the 
effective source commonly used with conven- 
tional LaB 6 sources. However, we should caution 
that this can drop some of the terms which are 
important here.) 

For holography, the waves now pass through a 
M611enstedt type electron biprism [17] mounted 
in the selected area aperture plane. The biprism 
is assumed to have a convergent operation (the 
waves are deflected toward each other), a clean, 
thin conducting filament placed symmetrically be- 
tween the plates, and stable electrical and me- 
chanical operation for ideal imaging. The biprism 
is also assumed to have a sufficient positive volt- 
age applied to the filament that the interference 
field is much larger than the first Fresnel fringe 
spacing. Under  these conditions, with an incident 
wave 0 (R)  after emerging from the biprism we 
can write the modified wave 0 ' ( R )  as [18]: 

~'( R)  = qJ( R - D) e x p ( T r i a x ) H ( x )  

+ ¢ ( R  + D )  e x p ( - ~ r i a x ) H ( - x ) ,  

(12) 

where H(x)  is the Heaviside function ( H ( x ) =  1 
for x > 0, H(x)  = 0 for x < 0) and the biprism is 
located at x = 0 and D is along the x-axis. Let- 
ting F'(R~, R 2) be the double Fourier transform 
of F'(U 1, U2), after the biprism (with a double 
prime notation) 

f f " ( R  1 , R 2 )  

= F ' ( R I + D ,  R 2 + D  ), x l ,  x2<O; 

= I " ( R 1 - D ,  R 2 - D  ), xt ,  x 2 > 0 ;  

= F ' ( R , - D ,  R 2 + D  ) exp[--Trioz(x l + x 2 ) ] ,  

x l > 0 ,  x 2 < 0 ;  

= F'(  R 1 + O, R 2 - O) exp[~- i a (x  I + X 2 ) ] ,  

x l < 0 , x 2 > 0 .  (13) 
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The final intensity is obtained by setting (very 
carefully) R = R~ = R 2 on the left of this equation 
(e.g. R = R  l - D  = R  2 + D  for x I > 0, x 2 < 0). Let 
us consider that the crystal is located in the half 
plane x > 0. The first two terms in this equation 
correspond to, respectively, the conventional im- 
age of the vacuum wave and a high resolution 
image of the crystal. The last two will be the two 
sidebands of interest here. Considering the case 
when x I > 0, x 2 < 0, we have: 

F"( R, R) = Y',exp[- 21ri(g.R +e~x)]P(g), 
,~,, 

(14) 

where P(g) can be considered as the contrast 
(wave) transfer term and is given by: 

P ( g ) =  f f A ( u , ) A ( u z ) ( f s ( r )  

x e x p [ Z ~ - i r ' ( u , - u 2 )  ] dr)&g(u2) 

× exp{i(C( u, ) - C(u2) ) + i ( x ( u , )  

- X ( U  2 + g ) )  + 2"n'i[u, ( R  +D) 

-u 2" (R-D) ] }  du, du2, (15) 
where we also need (later) to include an integra- 
tion over defocus values for the chromatic aberra- 
tions. So far we have made no approximations, 
except with the descriptions of the source and 
biprism. We will start by neglecting the variation 
with angle of the diffraction process, which is 
legitimate for a very thin crystal, and setting this 
term to unity. Next, we consider two different 
cases. First, we note that in general the illumina- 
tion will be well defocussed so that C(u) is rapidly 
varying, appropriate for a stationary phase ap- 
proximation. For u~ the condition for a stationary 
phase is: 

" O / O U l [ 2 ~ ' ( r + R + D ) - u , + C ( u , )  +X(Ul)] =0, 
(16) 

with a similar condition for u 2. These reduce (for 
large pre-field defocus) to: 

U 1 : U 2 : ( r  + a + D ) / A A z  i . (17) 
Assuming that the illumination is centered on the 
region of interest, the condensor aperture drops 

out of the equations as does most of the pre-field 
effects and we have (neglecting terms which to 
first order simply scale the intensity levels): 

P ( g )  = ffa(u - ( r  + R + D ) / A A z i ) s ( r  ) 

X e x p [ i ( x ( u )  - X ( u  + g ) )  

+ 4 ~ - i u - D ]  du dr  (18) 

= fs(AAz~u - R - D )  
d 

× e,,p[i(x(u) - x ( u  +g)) 

+ 4 ~ i u - D ]  du,  (19) 

or, alternatively, 

e ( g )  = AA z , f  ~( ~ z , ~ )  exp[i(X(v + w) 

- Z ( v + g + w ) )  +4'n'i(v+w)'D] dr, 
(20) 

where 

w = (R + D)/AAz  i_ (21) 

We will break for a moment to discuss, in 
particular, Eqs. (18)-(21). What we have here is 
local tilt of (R + D) /AAz  i across the field of view 
and the integration over the source size is effec- 
tively leading to an integration over tilt in an 
incoherent fashion. This makes sense from a ray- 
optical viewpoint, see Fig. 1, and in fact the 
stationary phase approximation is a ray-optical 
approach. When the probe is focused (Az i --0) 
the integration is effectively over all the tilts so 
we re-establish the standard incoherently filled 
aperture result [3]. 

Using a first-order expansion for the integra- 
tion over u, then 

P(g) = e x p ( - i x ( g ) ) E ( g ) ,  (22) 

where the envelope term E(g) is given by: 

= fs (AAz iu  - R - D )  E( g )  

× e x p [ 2 ~ - i u - ( ½ ~ V x ( g  ) + 2D)]  du,  

(23) 
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S o u r c e  " I m a g e "  
A 

f \ 

• . " Probe 

Fig. 1_ R a y - o p t i c a l  i n t e r p r e t a t i o n  o f  the  c o n v e r g e n c e  wi th  

s o m e w h a t  c o h e r e n t  i l luminat ion•  W e  c a n  th ink  o f  the  i l lumi- 
n a t i o n  as l e a d i n g  to a set  of  " i m a g e s "  o f  source ,  e a c h  at  a 

d i f f e r en t  ang le  as s k e t c h e d  in t he  f igure .  

(Note that all these envelope terms need to be 
multiplied by the standard linear (for holography) 
or second-order chromatic envelopes.) 

The second limiting case we can consider is 
when the convergence aperture is small, the illu- 
mination is very incoherent and the pre-field is 
focused. (With coherent illumination, i.e. a small 
source size, and focused illumination the illumi- 
nated region is too small to be relevant here.) In 
this case we can reduce: 

p(g)  = f A ( . )  exp[i(x(u ) - X(U - g ) )  

+ 4 r r i u  D ]  du,  (28) 

which gives the same result as above excepting 
the omission of the positional dependent  term 
and /3 needs to be changed to the radius of the 
condenser aperture. (This result was previously 
given by Coene [19].) This gives the same result as 
in Eq. (26) above for a second-order analysis with 
the omission of the R dependent  term on the 
right, matching the original work with an incoher- 
ently filled condensor aperture [3]. 

and taking a simple approximation for the source 
such as a (normalized) disc of radius /3: 

E ( g )  = Jl(~/31½~rVx(g)  + 2D I ) /  

 131' 2 r r V x ( g )  + 2DI  

xexp [2~- i (R  - 0 )  - 1 2 0 ) ]  ( g ) + , 

(24) 

For reference, in this limit the conventional im- 
age contrast transfer can be written as: 

I ( r )  = ~ , e x p ( - Z T r i g - R ) P ( g ) ,  (25) 
g 

where 

P(  g ) = Y'~ ~b~_hfb h e x p [ i ( x ( g - h ) - x ( h ) ) ]  

x E (  g - h ,  h) e x p [ i R . ( V x ( g - h  ) 

- V x ( h ) ) ]  (26) 

with 

E ( g - h ,  h)  

= 2 J t [ ( / 3 / 2 )  l V x ( g - h )  - V x ( h  ) I ] /  

/31Vx(  g - h)  - V x ( h )  I. (27) 

3. Discussion 

The form that we have derived herein is quite 
general and relevant to small source electron 
microscopes where there is substantial non-iso- 
planarity of the imaging. The form also seems to 
handle moderately well the effects of defocusing 
the electron beam above the sample, which can 
only be roughly included with the conventional, 
fully incoherent condensor aperture approach. 
For the two limits that we have looked at, the 
holographic case has essentially the same resolu- 
tion limits as conventional high resolution since it 
has the same type of envelope function; however, 
holography has an intrinsic lower signal-to-noise 
ratio since only part  of the total recorded wave 
contains holographic information. We will leave 
to the future which approach will turn out to be 
more experimentally useful. 

There are several phenomena  which are ap- 
propriate to discuss since, at least to these au- 
thors, they raise some questions. First, there is 
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the issue of the exact description of the source. 
With a small, physical size of the source, it be- 
comes unclear whether every point in the source 
should be considered as a separate, incoherent 
emitter; the mean free path of the conduction 
electrons at room temperature is about 1 nm_ 
More detailed analyses of the source optics (ex- 
cluding coherency in the emission) have been 
published, e.g. Refs. [20-24], and the simple 
source form used here is quite questionable. For 
instance, a recent analysis of the transverse co- 
herence of a nanotip has suggested that it is 
perfectly coherent [23]. (Remember that the 
source form comes in as an effective incoherent 
convergence for relatively defocused illumina- 
tion.) 

The other point that merits attention is the 
implicit approximation that the diffraction pro- 
cess is linear in character. The fact that this is an 
approximation may be a little surprising, but is 
rigorously correct [16] The point is that incoher- 
ent scattering (e.g. thermal diffuse and inelastic) 
does not appear to separate in a reasonable fash- 
ion in certain cases. However, this appears only 
to be the case for small, partially coherent probes 
and provided that we are dealing with collimated 
illumination such as for H R E M  this does not 
seem to be an issue. 

A third point to note is that the illumination 
optics for various microscopes are somewhat dif- 
ferent. For instance, on the HF-2000 the conden- 
sor aperture is before the final condensor lens; in 
our conventional HREM (H-9000) it is after the 
condensor. From an experimental viewpoint it is 
not at all clear to us whether either illumination 
system is really optimized (or has enough lenses) 
for HREM imaging with partially coherent illumi- 
nation. 

Finally, it should be noted that the approxima- 
tions that we have given are only approximations, 
and the full forms such as Eq. (11) in the text 
should be used to described the imaging process. 
At least numerically this is not much harder than 
the conventional approaches used; multi-dimen- 
sional fast Fourier transform programs are avail- 

able. To what extent one has to go to these 
extremes is an issue for future research. 
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