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Abstract 

The use of Wiener filters to restore noisy HREM images is discussed, exploiting the fact that the noise spectrum can be 
rather simply estimated. Conventional Wiener, Cannon, parametric versions of these and a random-phase form are found to 

be very effective. Quantitative analysis indicates that the signal-to-noise ratio is improved by a factor of 3-7. with better 
results for larger pictures. Such filtering techniques should have rather wide applicability in electron microscopy, and could 
be applied on-line with TV systems. 

- 

1. Introduction 

In many cases in electron microscopy the experi- 
mental images are degraded by noise either from the 

counting-statistics of the imaging and/or readout 
noise if an electronic recording mode is used. Even 
with a strong signal it is useful to reduce or remove 

the noise; with a weak signal this is essential. Han- 
dling noise is a rather old topic in the image process- 
ing literature where it has been discussed exten- 

sively, e.g. Refs. [1,2], and also but to a much lesser 
extent in electron microscopy. With an image which 

is somewhat periodic in character, probably the most 
common method is to window certain regions in the 

Fourier plane. At the heart of this approach is the 
fact that the strong spacings in a somewhat periodic 

image can be readily detected in a power spectrum. 
Although this technique can be powerful, it has one 
major drawback; it is strongly biased by the choice 
of windows in the Fourier plane. (I will quote here 
the standard result that applying windows to a pure 
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noise object produces lattice fringes.) Thus Fourier 
filtering is highly subjective, and must be treated 
with extreme caution. 

Abandoning this type of Fourier filter, is there 
another approach that can be used to reduce or 
eliminate noise, exploiting the typical spectral distri- 

bution of an HREM image? If one assumes the 
existence of certain features in the object one can use 
maximum-entropy methods, but such an assumption 
may not be valid. Given that the strong spacings are 
readily apparent in the Fourier plane for a somewhat 
periodic sample, one also has available a rather good 

estimate of the noise spectrum in the regions away 
from these spacings. If this noise is taken as known 
(or estimable), it is then possible to exploit a number 
of techniques which I will collectively refer to as 
Wiener filters (see below for further details). Having 
made no assumptions about the signal, the results are 

more objective. 
In this note Wiener-filter methods are tested for 

use in HREM using two different high noise objects 
under rather extreme conditions of noise. It is 
demonstrated that very good results can be obtained 
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either with conventional Wiener, Cannon or paramet- 
ric Wiener filters, the most robust results coming 

from a random-phase version of the parametric 

Wiener filter. 

2. Background 

It is appropriate to provide a very brief back- 
ground to the various filters that will be used herein 

(more information with more rigor can be found in 
Refs. [1,2]). None of them are necessarily any better 
than the others from a viewpoint of mathematical 

rigor, instead of importance is how well they behave 
with images that are representative of experimental 

HREM results. The various filters (F, implicitly in 
the Fourier plane) can be defined as acting on the 

image I to yield an estimate S of the true signal S, 
contaminated by a certain noise n where: 

FI = S 

and 

I=&+ ?J. 

(1) 

(2) 

2.1. Conventional Wiener filter 

The conventional Wiener filter [3] is generated by 
looking for the filter which minimizes: 

W=C(FZ-S,)’ (3) 

and it is assumed that the signal and noise are 
uncorrelated. The appropriate solution is: 

(4) 
where S, is an estimate of the signal. A conventional 
choice of this is: 

(5) 

We note that since 1 FI < 1, there is no justification 
for reusing the filtered data in an iterative fashion 
back into Eq. (4). 

2.2. Conventional Cannon filter 

Although the conventional Wiener filter is often 
called the “optimum” filter, this is only true if Eq. 

(3) corresponds to the correct function to minimize, 

i.e. the errors in amplitude have a normal (Gaussian) 
distribution. It is also reasonable to consider that the 

errors in intensity are normally distributed, in which 

case one minimizes the error in the power spectrum, 

i.e. 

W = C(l F$ - IS,I’)‘. (6) 

The resulting (Cannon [4,5] or homomorphic) filter 

is the square root of the Wiener filter, and is simi- 

larly less than 1. For completeness, it should be 
mentioned that the Cannon filter is rather similar to 

the “background subtraction” method employed by 

Sattler and O’Keefe [6,7]. 

2.3. Parametric Wienerfilters 

An alternative methodology is to avoid specifying 

in such detail (i.e. Eqs. (3) or (6)) the difference 
between the image and signal. One method of deriv- 

ing this approach (see Ref. [2] for more details and 
rigor) is to look for a minimum (differentiating with 

respect to S and A) of the constrained function: 

W=[QS~+ACII-S-T#, (7) 

where Q is some linear operator acting upon the 
signal, and A is a Lagrangian multiplier ]2,8]. If we 

take Eq. (7) as equivalent to maximizing the signal- 

to-noise of the result <Q = 17/S,]) and no correlation 
between the signal and noise, one obtains the para- 

metric Wiener filter [2,8] of form: 

F= Is,i’/(l~~l’+A]#)~ (8) 

It should be noted that the Lagrangian multiplier 
forces the variance of (I - S) and 7) to be the same, 
i.e. C]l- S]’ = CInI’, and for the special case of 
A = 1 this reduces to a Wiener filter. Unlike the 

Wiener or Cannon filters it is possible to iterate on 
this form using the signal from one cycle as part of a 
further cycle; however, this does not appear to lead 
to any improvement when only noise is considered. 
It is possible to take the root of this filter as a 
“Parametric Cannon Filter’ ’ 

Since this filter will play an important role later in 
this paper, a little further explanation is appropriate. 
As mentioned earlier, the conventional Wiener filter 
is “optimum” (in a least-squares sense) with the 
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assumption that the signal and noise are uncorre- 

lated. The parametric Wiener filter solves the same 
problem in essence as the conventional Wiener filter, 

but enforces a constraint upon the noise. 
It is also appropriate to note the similarity of Eq. 

(8) and many non-linear minimization schemes such 
as Quasi-Newton and the Levenberg-Marquardt 
methods; the parameter h is adjusted to make the 

denominator, a pseudo-inverse of the second deriva- 
tive matrix, sufficiently positive. To continue the 
analogy, the conventional Wiener method would be a 

direct Newton method. Although mathematically the 
Newton method appears to be the best, it is known 

that Quasi-Newton methods are generally better in 

practice. 
It should also be noted here that Q need not be 

taken as the noise-to-signal ratio; for instance, it can 
be taken as unity to give the minimum-norm solu- 

tion. Andrews and Hunt [2] make the interesting 
comment, which will have some relevance later, that 

it could also be matched to the human physiology. 

2.4. Random-phase parametric Wiener filter 

A rather simple extension of the parametric filter 
above turns out to be more effective in numerical 

Fig. 1. The two test objects used to test the effects of the filters in (a) and Cc) with corresponding images including noise in (b) and Cd). 
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tests. This extension involves making the assumption 
that the phase of the noise is random, in which case 

one minimizes: 

W=IQsl’+h,Cif-S-rll’+h?C((-S). (9) 

The second Lagrangian multiplier is approximately 

equivalent to removing a background component. Its 
effect is to stabilize the filter (against over- or under- 
filtering), and adds a small (5%-10%) improvement 

in performance (see later), the stabilization effect 
probably being more important. 

3. Numerical methodology 

Rather than using standard test objects from the 
image processing literature, it was decided to employ 

two test objects that more closely resembled typical 
HREM problems. These are shown in Fig. 1, both 
the true image and that with a rather high level of 
noise. All the analysis was performed using Semper 

6 software, with two small changes to the code: (a) a 
standard BSD random number generator replacing 

the simpler one that came with the code, and (b) 

Fig. 2. Comparison of results for different constant multipliers of the known noise level amplitude (1st rather than 7’) using a conventional 

Wiener filter and test object 1: in (a-d) with multipliers of I, 1.5. 2 and 2.5, respectively. 
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obtaining the mean and standard deviation of images 

was performed using double precision arithmetic. 
Before presenting the results, a small clarification 

is appropriate concerning how the Lagrangian multi- 

plier constraint was satisfied in the parametric Wiener 
filters. This was done by satisfying either of the 
equations: 

( 10) 

or 

/rn*dOdr= jr/Z--S(‘dOdr. (11) 

In practice, with a good noise estimate at least at the 
visual level there was no difference between the two. 

The parameter h was determined by a Newton- 
Ralphson search using numerical derivatives, and 
converged in general exceedingly quickly (about ten 
iterations with an initial estimate of unity). For the 
random phase filter the second Lagrangian multiplier 

Fig. 3. Comparison of results for different constant multipliers of the known noise level using a conventional Cannon filter and test object 2: 

in (a-d) with multipliers of 1, 1.5, 2 and 2.5, respectively. 



48 L.D. Marks / Ultramicroscopy 62 (1996) 43-52 

was solved analytically for any given value of the 

first one. 

4. Numerical results 

Only the key features of the results will be pre- 

sented here, for reasons of space. First, both the 
conventional Wiener and Cannon filters performed 
rather well (see Figs. 2 and 3 for specific examples 

of the Wiener filter) although better results were 
obtained if the noise was overestimated. (Unfor- 

tunately the optimum noise overestimation level var- 
ied with different test samples.) Large overestimates 
of the noise tended to produce ringing around the 
particle-like test object, although the contrast level 
was somewhat better. (Depending upon the final use 
of the image, there is some merit to overfiltering the 

data.) 
The parametric Wiener filter consistently per- 

formed well, see Fig. 4b, the optimum performance 
being for the correct value of the noise. Based upon 

numerical calculations of me signal-to-noise en- 
hancement which are shown in more detail below, it 

Fig. 4. Results with the known noise level for test object 2: (a) the parametric Wiener filter with the random-phase constraint, (b) the 

parametric Wiener filter, (c) the parametric Cannon filter with the random-phase constraint and (d) the parametric Cannon filter. 
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was slightly better than the parametric Cannon filter 
(Fig. 4d), and almost the same as the random-phase 
filters (Fig. 4a and Fig. 4~). (It is rather difficult 
visually to see substantial differences, and the eye 
does not necessarily agree with the computer as to 
which filter is best.) An important point to note is 
that for the parametric filters one can use the known 
noise spectrum rather than attempting by trial and 
error to determine an appropriate overfilter level for 
a conventional Wiener filter. This is an important 
advantage with an experimental object where the 
correct result is by definition unknown. 

To provide a more quantitative measure, Fig. 5 
compares the five different filters in terms of the 
enhancement of the signal-to-noise (S/N) ratio ver- 
sus the ratio of the true noise level to that assumed in 
the filter operation (i.e. multiplying the noise level 
by a constant). As mentioned above, the conven- 
tional Wiener and Cannon filter perform better when 
the noise level is overestimated, while the parametric 
filters work with the correct noise estimation. Fig. 6 
shows the enhancement of the S/N for the second 
test object as a function of the input S/N and the 
picture size. There is a very strong size dependence, 
with images smaller than 256 X 256 not showing any 

5.00 : 

4.00 : 
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Multiplier 

Fig. 5. Quantitative comparisons of the S/N enhancement (y-axis) 
versus a scaler multiplication of the noise level assumed for the 

filtering (x-axis) for the different filters: (a) Conventional Wiener, 

(b) Cannon, (c) parametric Wiener and (d) parametric Cannon. 

The random phase versions of (c) and (d) lie very slightly above 

the data shown, indistinguishable on this graph. 

8.00 

i 
S/N lo 

Fig. 6. S/N enhancement (y-axis) versus different initial S/N 

ratios (x-axis) for different initial picture sizes using the paramet- 

ric Wiener filter: (a) 128X 128, (b) 256X256, (c) 512X512 and 

(d) 1024 x 1024. 

substantial improvement. This is understandable since 
with larger sizes in the Fourier plane the signal level 
increases linearly with the number of pixels, whilst 
the noise (per pixel) scales as the square-root of the 
number of pixels. A point of relevance for use of the 
filter for experimental images is that the S/N of the 
optimally filtered images with respect to the (noise 
containing) images was essentially the same as the 
true S/N. This fact can be used to determine the 
S/N of experimental data. 

An example applying the technique to real experi- 
mental data is shown in Fig. 7. This image highlights 
the fundamental difference between Fourier window 
filtering and Wiener filtering, and a little further 
explanation is appropriate. The image is for 0.4 
monolayers of gold on Si (111) taken in the off-zone 
imaging mode [9]. The unit cell of the surface phase 
is 5 X 2 [ 10,111, which is best described in terms of a 
rectangular 10 X 2 cell (in bulk notation A = 
($22)/30, B = (022)/4), but only diffracted beams 
(hk) where h = 2 n + m, k = 2m appear clearly in 
the power spectra due to a translational symmetry 
element of 0.5 f 0.25. A Fourier window filter using 
only the clearly resolved spots is equivalent to en- 
forcing a centered rectangular 10 X 1 unit cell. Alter- 
natively, if the windows form a 10 X 2 cell then 
windowing the noise will lead to possibly spurious 
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features. The Wiener filtering approach overcomes 
these problems since no assumptions are made about 
the signal, only about the noise. We have extensively 
used these filters both for high noise levels and low 

ones with many experimental images (e.g. Refs. 
[ 12,131) and the results in Fig. 7 are quite typical. 

5. Discussion 

The results obtained appear to be very encourag- 

ing, both qualitatively and quantitatively, and unlike 

other types of Fourier filtering, quite objective. (For 

reference, a Semper version of these filters is avail- 
able at http://risc 1 .numis.nwu.edu/ ftp/ pub/ 
filters.) It is appropriate here to mention a few 
additional points, extensions, some possibilities that 

were explored and found not to be useful and some 
issues on using such filters in practice. 

In terms of extensions, all the methods can be 
applied for inversion of an image wave given some 

form of contrast transfer function; in fact the simple 
Wiener case is well known [14] and its application 

for linear HREM images has been discussed recently 

Fig. 7. The central region (256 X 5 12) or a 1024 X 1024 experimental HREM image of the 5 X 2 Au on Si (111) surface, on the left the 

original and on the right after filtering, with a power spectrum of the original at the top (high-pass filtered to remove low frequencies). Only 

noise is clear in the original image, but the power-spectrum shows strong spacings well separated from the noise in the Fourier plane. 
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[15]. The parametric Wiener methods perform at 

least as well, since they make the least assumptions 
about the character of the signal; this will be dis- 
cussed in more detail elsewhere [ 161. 

One extension that can be used in some cases is to 
bias the parametric filter to favor certain frequencies, 
i.e. introduce a Fourier windowing component. For 

instance, one can minimize: 

(12) 

where B is some bias function which, for instance, is 
large in regions where there is signal of interest and 
small elsewhere. 

It may be useful to employ different forms of the 
operator Q in Eq. (7), for instance unity to give a 
minimum norm solution [2] or r which is equivalent 

to minimizing the “energy” of the image [2]. We 
noticed in many cases that the visually “best” filter 

was not always the filter with the optimum S/N 
enhancement in a strict numerical sense. The human 

visual system tends to act as a low-pass filter system 
(for further information see texts on psychophysics), 
and matching Q or the filter level to the human eye 
as suggested by Andrews and Hunt [2] has advan- 
tages. 

For real experimental images, a number of tech- 
niques were explored to determine the noise, in all 
cases a radial average of the noise. (One can readily 
use a noise picture which has anisotropy in the 

filters.) In principle the best technique for this might 
be a Wiener filter of the power spectrum; unfortu- 

nately in tests this did not always work since the 

absolute values are rather critical. In practice we are 
currently performing a small Gaussian convolution 

(for the noise estimation) prior to taking a radial 
average that misses the strong signal peaks, and 
either using this data straight, masking out the low 
frequency end or one of a linear, exponential, gauss- 

ian or manual fits to the noise. It can help to remove 
edge effect by, for instance, Walsh windows or 
removal of slowly varying components of the image. 
From many different experimental cases that have 
been examined to date the parametric-filters particu- 
larly the random-phase version appears to be the 
best. Their advantage is that they are optimized for 

the experimental noise level, as against some un- 

known overfilter level. A disadvantage is their sensi- 
tivity to over- or underfiltering. The random-phase 
version appears to be more robust, i.e. to work a 

little better in practice than the straight filters. The 
best method that we are aware of to test the validity 
of filtered image is a Monte-Carlo simulation involv- 

ing re-introduction of similar noise and then repeat- 
ing the filtering; alternatively a model calculated 

image can be used and processed in this way for 

comparison with the experimental results. 
It should also be noted that there is a tendency for 

these filters to produce artifacts for small spatial 

frequencies, i.e. large spacings in the image. In part 
this is because this region of Fourier space is poorly 
sampled. As a consequence it is advisable (as in 

many filtering operations) to remove slowly varying 
components and ensure that there are not large dis- 
continuities at the edges (because of periodic contin- 

uation effects). 
A few comments are appropriate about the effect 

of these filters on spreading information in the image 
plane. The location of features in an image correlates 

to extended information in the Fourier plane, some 
of which may be rather weak. There will always be 

some loss of this weaker signal, primarily that which 
lies near the noise level in the Fourier plane, and 
therefore some corruption of the image. In the sense 
that the filters remove the weak long-range tails (in 

reciprocal space) of strong peaks they will tend to 
delocalize the information. (It is not possible to make 
a stronger or more quantitative statement than this 

since delocalization depends upon the signal-to-noise 
level and the shape transform of the object.) If the 
signal is very weak or too high a noise level is 

estimated then the final results will be effectively 
lattice averaged. It should be mentioned that they 
will not in many cases remove sharp, strong features 

such as scratches. 
A final point that deserves mention is that the 

simpler Wiener filters, and even the parametric one 
are rather simple to implement and no more compli- 
cated than some of the existing real-time power 
spectrum display routines for HREM images. It 
should not be at all difficult to implement these at 
the microscope at rates of maybe a few Hz, although 
it may be a few years before the technology is 
available for real-time Wiener filtering at TV rates. 
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6. Conclusions 

Wiener filters, particularly the parametric Wiener 

filters, appear to be very powerful for HARM images 
since it is rather simple to obtain a good estimate of 

the noise spectrum. They avoid the subjectivity of 

Fourier window filters and appear to be both qualita- 
tively and quantitatively rather reliable with an en- 

hancement of the signal-to-noise ratio by a factor of 
3-l. 
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