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We report success in applying direct phasing methods to produce images of surface structures at the
atomic scale from intensity data collected using transmission electron diffraction.

1. Introduction

A major problem for fields as diverse as heteroge-
neous catalysis and electronic device fabrication is
the atomic scale structure of surfaces. While there
exist techniques using low energy electron diffrac-
tion (LEED) (see e.g. Ref. 1), transmission electron
diffraction®*® or x-ray diffraction (see e.g. Refs. 9,
10) to refine a structure, it is often difficult if not
impossible to solve from scratch without additional
information. This is because, as in three-dimensional
structure problems, it is easy to refine but difficult
to determine a viable initial estimate. We report
here success in applying direct phasing methods to
produce images of surface structures at the atomic
scale from intensity data collected using transmission
electron diffraction. This result has the potential to
make it relatively simple to solve surface structures
in the future.

A major advance over the last decade has been
images of surfaces from scanning tunneling micros-
copy (STM) (see e.g. Ref. 11). However, despite
the many successes there have also been failures
since STM probes the surface density of states
rather than atomic positions. An example of re-
levance later is the gold-on-silicon (111) V3 x /3
R30 surface. While commonly believed to consist
of gold trimers,!?> STM images see only a single
feature per unit cell.!®!® Thus there has been
work developing alternative imaging techniques, for

instance photoelectron holography (see e.g. Refs.
16, 17) and high resolution transmission electron
microscopy.*¢.8:18

For the related problem of three-dimensional
crystallography, it is now common to use direct
methods (see e.g. Ref. 19) to determine the initial
structure estimate. Primarily through the use of
x-ray diffraction data but more recently from trans-
mission electron diffraction,?° it is now almost rou-
tine to determine the structure of large, complicated
crystals.

Despite its proven power for three-dimensional
structure solutions, whether it can be used for
surfaces is not at all clear, In fact, there are ma-
jor differences both in the character and the quality
of the problem. For instance, in three dimensions
atoms cannot overlap but in projection for a sur-
face they can, which contradicts some of the fun-
damental assumptions of direct phasing techniques.
It is also known that for the similar problem of
phase restoration of aperiodic images, solutions ex-
ist in two dimensions but not in one;?! by analogy
the two-dimensional crystallographic phase problem
may be less well defined than in three dimensions.

There are also issues due to the character of the
experimental data. The surface lies on a substrate,
and when surface and substrate reflections overlap it
is almost impossible to differentiate the two. Con-
sequently, all reflections which belong to the 1 x 1
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lattice cannot be accurately measured. Since these
may be large, the reciprocal space sampling can be
very incomplete. Furthermore, with these reflections
omitted the sampled surface potential need not
be positive; the effective potential V,(r) for the
measured intensities is related to the true one,
V(z), by

Ve(r) =V(r) = 1/nZV(z - 1), (1)

where the sum is taken over the lattice vectors of the
1 x 1 lattice () and n is the multiplicity of the cell,
e.g. 49 for 7 x 7. [This is for kinematical electron
diffraction; for x-ray diffraction the potential would
be replaced by the electron density p(r).] This lack
of positivity violates a basic premise of traditional
direct methods (see e.g. Ref. 22). The potential is
also not only due to simple atomic scatterers, but
includes effects from subsurface strain fields which
are more important at higher angles,>® and can be
quite substantial.

A further problem is that a large, accurate data
set is required to achieve sufficient resolution in
order to differentiate the atoms. This is difficult to
achieve with current x-ray sources, although possible
with transmission electron diffraction. However, here
there are perturbations due to dynamical diffraction,
although there is evidence®?3:21 that these effects are
small with symmetrized data provided that strong
bulk diffraction is avoided.

Finally, it is rare that the number and type of
atoms contributing to the diffraction is well defined.
With a simple adsorbate structure the coverage of
the adsorbed species may be quite well known,
but the number of substrate atoms contributing
to the scattering is almost impossible to determine
a priori.

Here we will demonstrate using experimental
data that despite these problems, direct methods can
be used.

2. Experimental Methods

The data that we have used were for two surfaces:
the V3 x v/3 R30 Au-on-Si (111) surface (see e.g.
Refs. 12-14) (p3 symmetry) and the 5 x 2 Au-on-
Si (111) surface?®?” (pm symmetry in a 10 x 2 cell);
details of the experimental methods have recent-
ly been published.”® For reference, diffraction pat-

terns are shown in Fig. 1, and note that the /3 x v/3
surface is known to have a coverage of approximately
one monolayer of gold (three sites per unit cell), and
the 5 x 2 about 0.4 (four sites in the 10 x 2 cell).

Transmission electron
of (a) the V3 x /3 R30 surface and (b) the 5 x 2

surface.

Fig. 1. diffraction patterns
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3. Implementation of Direct Phasing

We initially worked with the v/3 x v/3 surface with a
blind test where the data obtained at Northwestern
were passed to the Hauptman-Woodward Institute,
the only other information provided being that the
unit cell contained three gold atoms and three or
more silicons. A Wilson plot?® was made to evaluate
the overall temperature factor, but no evidence was
found for a temperature falloff (i.e. B = 0.0 A2),
indicating the presence of subsurface strains.?°

To calculate normalized structure factors |E(g)|,
the data resolution was limited to 1.00 A~1(sind/}),
vielding, for the first data set examined, 51 unique
reflections. These were arranged in order of the de-
creasing |E(g)| value for the calculation of %,
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three-phase invariant sums,?? so the most optimal se-
quence of phase determination could be ascertained
via a test of convergence.’® It was seen that the
phases of the largest |E(g)| reflections, (2,1) and
(1,2), could be linked to phase 49/51 unique terms.

Since there are no permitted origin-defining re-
flections for this plane group,®! i.e. all hk reflections
are phase invariants, the phase determination was
carried out via the Sayre-Hughes equation®?:33 with
an estimate of the E(Q) term set at /N, where N
is the number of atoms in the unit cell. Algebraic
phase values were given to the (2,1) and (1,2) re-
flections and these were permuted through four
quadrants of phase space (45°, —45°, 135°, —135°)
to generate multiple trial solutions of seven

Fig. 2. The two possible solutions, (a) with the correct stoichiometry and (b) with only 1/3 of a monolayer, with
contours superimposed in the central region. In both cases negative regions have been clipped, and black is the zero
level. The poorly resolved silicon sites are arrowed.
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Fig. 2.

reflections after one cycle of the phase convolution.
From the resultant 16 trials, trial potential maps
were generated and the density levels were monitored
as an approximate indication of map “peakiness.”34
This was used as a figure of merit,*® and two possible
solutions were found (see Fig. 2).

Consequently a more detailed analysis was per-
formed at Northwestern for both this surface and the
5 x 2. Good results were obtained using a minimum
least squares solution of the Sayre equation. To be
specific, a solution was sought that minimized

R? = T|F(g) - aF.(9)*/Z|F(g)*, (2)
where F(g) are experimental structure factors for the

reflection g, @ is chosen to minimize this equation
[thereby reducing sensitivity to errors in F(0)], and

(Continued)

F.(g) the calculated structure factors from

Fe(g9) = {f(9)/W(9)}ZU(g - R)UR)W (g —R)W (),

(3)
with U(g) the unitary structure factors and the “win-
dow function” W(g) chosen to approximately satisfy

W(g) = const x EW (g — h)W(h), (4)

with the last sum taken over the intensities
(measured and unmeasured) up to the cutoff. (As
a consistency check we also monitored the related
R factor using only the moduli of the structure
factors. The results herein were also not sensitive
to whether unitary or normalized structure factors
were used.) The window function, which is compa-
rable to weighting functions used in codes such as
MULTAN, merits a little discussion. Numerically, a
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simple Gaussian decay of W(g) = exp[—(g9/gmax)’]
was used, and serves the same purpose as windows
applied to real data when one is estimating power
spectra, i.e. it reduces ringing due to the data trunca-
tion (see e.g. Ref. 36); with it the RMS fractional er-
ror for Eq. (4) was about 1%, compared to 23% for a
constant value of W(g). Note that data truncation is
a more severe effect in two dimensions than in three,
and that the window will partially compensate for
the decay in the atomic scattering factors. (Results
without the windowing were noisier and noticeably
inferior.)

Data sets to a particular cutoff in reciprocal
space were produced and symmetrized, and only
those beams larger than the maximum error of the
measurement and the deviation between equiv-
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alent reflections were used. (This screens for beams
strongly affected by dynamical scattering.) The
Debye-Waller terms were estimated at one to two
times the bulk values, which appears, from the
data available to date, to be approximately cor-
rect. The raw data were normalized such that
the sum of measured intensities was 1, and F(Q)
taken as 1 prior to conversion to unitary structure
factors.

For a rough estimation of likely solutions the
two strong beams [(2,1) and (1,2)] were scanned in
steps of 3° for the v/3 x /3 structure. The tangent
formula was used iteratively, terminating when the
R factor increased. The final solutions were obtained

through a full minimization using the routine dmnf
from NETLIB.%"

Fig. 3. Plot of the R factor with superimposed contours generated by scanning the (2,1) and (1,2) in 3° steps, with
contours superimposed, with black corresponding to regions of a better R factor. The correct structure near 120,120°
is preferred to the solution with 120, 240°, corresponding to Figs. 2(a) and 2(b) respectively.
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Figure 3 shows a plot of the R factor for a
rough scan of the V3 x /3 surface with 3° steps
in angles. There are only two possible solutions: one
low R factor solution exists, and a second higher R
factor solution; the formed has the correct stoichiom-
etry while the latter does not. One independent gold
atoms as well as two possible disordered silicon po-
sitions are present, which is consistent with a more
sophisticated dynamical refinement.”

The 5 x 2 surface was not as simple, and a branch-
ing strategy was used. Using the strongest beam
[the (13,2) and its equivalents] to fix the origin, we
scanned first the (1,2) and (3,2) looking for minima
in the R factor [Eq. (3)], thereby determining the
approximate phase relationship:

(3,2) = (1,2)*3 +. (5)

Using this as an algebraic equation for the (3,2)
phase, and in a similar fashion building iteratively,
we determined that

(11,2) = -2*(1,2) +wor 0, (6)
(14,0) = (1,2) +7or 0, (7)
(16,0) = 3*(1,2) + mor 0. (8)

With this number of beams defined it was possible to
fix the (1,2) as having a value near to 2mrn/6 where
values larger than = were inverses, plus translation-
ally equivalent sites. Data to 1.5 A did not clearly
resolve the gold, while those to 1 A did. Full least
squares refinements of the phases were attempted,
but were unstable due to noise in the data.

Of the 32 possible solutions, about half could
be immediately discarded as having a low kurtosis,?

Fig. 4. Pseudocolor maps (red high and blue low) of the surface, all of which show a total of four gold sites and a
very similar arrangements of silicon sites. (The intensity level of the gold has been truncated so that silicon is visible.)
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as could some others which were not close to the
correct stoichiometry. The remaining ones were all
variations around a simple structure, as shown in
Iig. 4. The gold atoms are shown clearly (red),
and also some possible sites for the silicon (green).
While not a full structure solution, there is certainly
enough to determine the basic elements from which
a x? refinement or heavy atom holography® could
start. Note that the disorder in some of the silicon
sites vertically cannot be ruled out; within the 10x 2
cell the true structure has a disordered translational
symmetry element (0.5, +0.25). This structure is
not as well established as that of the v/3 x /3, so
the results herein provide the first corroborating
evidence.

4. Discussion

In both cases it is apparent that good results which
are very consistent with the structure of the sur-
faces are obtained. This implies that direct methods
can be applied to general surface-crystallographic
problems, particularly as data collection techniques
improve. The /3 x /3 case is rather simple, with
the gold locations well defined by the strong (2,1)
and (1,2) beams. The silicon atoms are less well
defined due to the lack of the 1 x 1 lattice point
data, since they are only slightly displaced from bulk
sites. The 5 x 2 case is a more stringent test, since it
defeated earlier attempts to solve the structure using
a Patterson function approach.?® From HREM data
we know that the {2,0) is very strong, but was oc-
cluded in the diffraction patterns by diffuse intensity
around the transmitted beam. Furthermore, since
(13,2} is very strong and (3,2} the second-strongest
beams, it follows the (0,4} is also very strong as
well as (10,0) and (15,2}, all of which are coinci-
dent with bulk beams. This data set is thus rather
incomplete, as well as having a much more compli-
cated structure. The unit cell is also larger, and
since the depth of strains scales with the in-plane
size of the reconstruction, these perturbations will
be larger.

We would be overstating the case to claim that
in all cases simple approaches will lead to directly
interpretable “images” of the surface such as we
found for the two systems studied here. However,
one does not need a complete image; only sufficient
information to deduce reasonable starting points and
exclude others. If only parts of the structure are
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resolved, this still may be more than adequate for
“heavy atom holography”® or Karle recycling.’® (As
with any direct method the acid test is the ¥? from a
final refinement.) More complicated structures such
as the Si(111) 7x 7 surface, which contains 102 atoms
in a pseudo p6m unit cell (stricty, p3ml), are more
challenging. We have numerically confirmed using
simulated diffraction data that the true phases are
a local minimum of the Sayre equation, but more
work is required to explore in detail all the possible
solutions.

One interesting point is whether techniques based
upon the Sayre equation and the tangent formula are
the best. Negative regions in the effective surface
potential [V.(r)] become positive when the square
is taken. Provided that there is little to no overlap
between these peaks and the atomic sites, they
will contribute only to the unmeasured intensities.
There is' no reason why one cannot consider the
cube, to preserve the signs, or an exponential of
the real space potential to generate new phases.
(This is effectively equivalent to using the general-
ized tangent formula proposed by Karle.>®) Numer-
ical tests indicate that these give almost identical
results, often smoother in angular scans {i.e. better-
conditioned). Note that for certain surfaces the
Sayre equation will define no new reflections whilst
these alternatives would — for instance Si(001) 2 x 1,
where only reflections satisfying A = 2n + 1 are mea-
sured. There may also be strategies for taking into
account the subsurface strain effects, although this
requires more work.

There is also no reason why the substrate should
be ignored, at least for electron diffraction. If one
arranges to study only the bottom surface, a better
approximation to the exit wave would be

$(r) = T(r) explioV(r)] = T@)[L +ioV(r) -],
{9

where T'(r) is the wave just before the surface of
interest. Since T(r) can be measured and calcu-
lated rather well, it can be incorporated into the
formulation of the problem. [Note that for the re-
lated problem of heavy atom holography,® inclusion
of T(r) gives substantially better results.]

While it is certain that more work needs to be
done, the future looks promising for direct method
solutions of surface-crystallographic problems.
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