
ELSEVIER Surface Science 381 (1997) 77 91 

s u r f a c e  s c i e n c e  

Direct solutions of the Si ( 111 ) 7 x 7 structure 

C.J. Gilmore a,,, L.D. Marks  b, D. Grozea b, C. Collazo b, E. Landree b, R.D. Twesten c~1 
a Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK 

b Department of Materials Science and Engineering, Northwestern University, Evanston, 1L 60208, USA 
c Department of Physics, University o]lllinois, Urbana, IL 61801, USA 

Received 6 September 1996; accepted for publication 26 December 1996 

Abstract 

We show that it is possible to use direct methods to solve surface structures as complicated as that of the Si( 111 ) 7 x 7. The first 
of these methods is maximum entropy combined with likelihood estimation, the second a combination of symbolic phasing methods 
and weakly interpolating modifications of the Sayre equation. These techniques are applied to two different elements of the structure 
determination, namely ab initio structure determination solely from diffraction intensity data and phase extension from a set of 
known phases derived from high resolution images. © 1997 Elsevier Science B.V. 
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1. Introduction 

A long-standing problem in surface science has 
been to determine surface structures. One classic 
example of this is the Si(111) 7 x 7 surface which 
remained completely unsolved for many years until 
a model was proposed based upon the analysis of  
the Patterson function from electron diffraction 
data [1,2]. For the related question of structure 
determination of bulk crystals, one of the standard 
techniques to employ would appear to be "direct 
methods" which are now used to solve over 60% 
of crystal structures from single crystal X-ray 
diffraction data. (For further details of  the method 
see Refs. [3-5].) In essence, these exploit probabi- 
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listic relationships arising from the fact that 
diffraction (with a kinematical approximation) 
occurs from atoms which can be considered uni- 
formly and randomly distributed in the unit cell 
or, in the related Sayre methods, that the density 
and its square have the same features. 

I f  it were possible to do the same for surface 
structures, determining these could become as rela- 
tively trivial as the solution of crystal structures 
from X-ray data. While we have recently demon- 
strated that it is possible to achieve this for a 
rather simple structure of  gold on silicon [6,7], it 
does not follow that one can achieve the same 
success for much more complicated structures such 
a s S i ( l l l ) 7 x 7 .  

To see why this should be the case, some back- 
ground on what information is available in such 
diffraction measurements, either X-ray or trans- 
mission electron diffraction, is appropriate. (With 
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symmetry averaging, transmission electron 
diffraction patterns from surfaces can be approxi- 
mated relatively well using kinematical theory; see 
e.g. Refs. [8,9], although see also later.) Because 
bulk diffraction takes place simultaneously with 
the surface diffraction, one can only reliably mea- 
sure those surface reflections which do not fall on 
the surface l x l  lattice. In the case of  electron 
diffraction one may also not be able to measure 
reflections very close to any of the bulk diffracted 
beams due to the plasmon inelastic background 
around them [10]. 

The surface of interest may be very different 
from the underlying bulk, or only a relatively small 
perturbation of the bulk structure. In the former 
case the unmeasured reflections may not be very 
substantial, in which case it should be possible to 
employ direct methods. However, in the latter case 
a large amount of the information is not available, 
so direct or Patterson methods may not work in 
any simple form. Conventional direct methods 
extrapolate and refine phases from either a small 
basis set or use a larger set with random initial 
phases, and will work only if the data set is 
complete, free from large systematic errors in the 
diffraction intensities, and if the structure is not 
too large (i.e. not more than ca. 100 150 non- 
hydrogen atoms in the asymmetric unit); if it is 
very incomplete (i.e. it does not fully span recipro- 
cal space at ca. I . l - l . 2 A  resolution) and with 
large intensity errors, such as those arising from 
dynamical scattering, double diffraction of surface 
beams by the bulk and subsurface strains [11,12] 
and measurement errors, one needs alternative 
methods that overcome these limitations. A further 
complication is knowledge of the contents of  the 
unit cell, which is rarely known at all accurately 
for surfaces, but fortunately, direct methods are 
relatively insensitive to uncertainties in cell 
contents. 

The importance of the unmeasured reflections 
merits some emphasis. To put this into perspective, 
for the case of  the Si(111) 7 x 7 surface the (7,7) 
reflections lie underneath the bulk (220) spots, and 
are the strongest ones for the surface at about 
1.5-2.0 times the intensity of any other. As a 
consequence, even with correct phasing of all the 
measured intensities, the measured surface poten- 

tial (for electrons, surface charge density with 
X-rays) will contain negative regions - the mea- 
sured potential is the difference between a bulk 
structure and the surface, not a structure in its 
own right. Furthermore, not all the atoms in the 
structure may ever be visible in the correct poten- 
tial; for instance, except for the dimers the atoms 
in the third layer of  Si( 111 ) 7 x 7 are only slightly 
displaced from their bulk positions and are essen- 
tially invisible. (They will show only as 
positive/negative dipoles.) If  the unmeasured 
reflections are small, it should be possible to deter- 
mine atomic positions and possibly even local 
charge densities relatively accurately: if they are 
not, the best that can reasonably be achieved is 
sufficient information about the primary frame- 
work from which, using classical Fourier methods, 
the whole structure can be determined. 

We will show here that despite the above compli- 
cations, it is possible to use existing direct methods 
formalisms in modified form such that even struc- 
tures as complicated as Si( 111 ) 7 x 7 can indeed 
be solved. The first of these is maximum entropy 
(ME)  coupled with likelihood evaluation, where 
the constraints of positivity and entropy in real 
space both provide phase extrapolation and at the 
same time provide a probabilistic method that 
abandons the concept of  uniform and randomly 
distributed atoms in the unit cell. The second uses 
a method of estimating the incompleteness of  the 
data set coupled with symbolic methods and 
weakly interpolating modifications to the Sayre 
equation. These methods are applied to two 
different elements of  the structure determination, 
namely ab initio structure determination solely 
from the diffraction intensity data and phase exten- 
sion from a set of  known phases derived from high 
resolution electron microscopy. 

The structure of  this paper is as follows: after 
very briefly reviewing the experimental data, the 
ME method is described, followed by an explana- 
tion of the weakly interpolative modifications of  
the Sayre equation. We then discuss the results 
obtained by both classes of approach for ab initio 
solutions of the Si(111) 7 x 7 structure. Finally, 
results of  both approaches for phase extension are 
presented, followed by a final discussion. 
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2. Experimental method 

The details of the measurement of the electron 
diffraction intensities have been described pre- 
viously [9] and will not be repeated here. For the 
phase extension work, we used as the starting 
point phases from high-resolution electron micro- 
graph images which contained information (at 
close to the Schertzer defocus) to about a reso- 
lution of 2.5 A; details of which are described 
elsewhere [ 13]. 

3. Numerical methods 

3.1. The maximum entropy method 

We follow here a formalism developed by 
Bricogne [14 18]. This approach phases a set of 
unitary structure factor magnitudes [U hi °bs which 
are derived from the intensity data by standard 
normalisation procedures: 

(I Uhl°bs) 2 =kc;2(lFhl°bs)2/Cq 
N 

fy  exp ( - 2 B  sin 2 0/22), (1) 
j 1 

where B is an overall, isotropic temperature factor, 
k a scale factor (both obtained by a Wilson plot), 
J~. is the electron scattering factor for atom j, the 
summation spans the N atoms in the unit cell, 0 
is the Bragg angle for radiation of wavelength ;. 
and 

N 

a, = ~ z(eff)~, (2) 
j - 1  

where z(eff)~, is the effective atomic number of 
atom j. Each U magnitude has an associated phase 
angle q~h which is to be determined. Because of 
rules of origin and enantiomorph definition, some 
phases ~b_h can usually (but not always - it depends 
on the space or plane group) be assigned, subject 
to standard rules, as a starting point in phase 
determination. Those reflections which are phased 
comprise the basis set {H}; the much larger dis- 
joint set, the non-basis set, of unphased but experi- 
mentally measured amplitudes is { K}. There is a 
further set {U }, disjoint to both {H } and { K}, 

of the reflections which are unmeasured or other- 
wise discarded from the measured set. In surface 
diffraction this set comprises the bulk reflections 
from the 1 × 1 cell. Set {H} can also be derived 
from the Fourier transform of the relatively low 
resolution image data. In the work presented here, 
both definitions of {H} are used. 

The phased reflections are used as constraints 
in an entropy maximisation where the relative 
entropy, S, is defined as: 

- f v  q(x)log [q(x_)/m(x_)] d 3 x  (3) S =  

(where V is the unit cell volume, and m(_x) is the 
prior - in this case assumed uniform i.e. m(x)= 
l/V). The maximisation of S generates a map 
qmE(x) which satisfies the following conditions: 
(1) It is optimally unbiased i.e. it has maximum 

entropy. 
(2) Its Fourier transform reproduces the con- 

straints (i.e. the U magnitudes and their associ- 
ated phases) to within experimental error. 

(3) The Fourier transform of qmE(x) generates 
estimates of amplitudes and phases for non- 
basis set reflections in {K} and {U} via 
extrapolation. This is the process of ME 
extrapolation. 

(2) and (3 are demonstrated diagramatically 
in Fig. 1. 

At this stage when only the origin (and enantio- 
morph, if relevant) reflections have been assigned 
phases, the extrapolation is weak, and the structure 
is not solved unless it is very small. If a larger 
basis set has been employed, the extrapolation 
process at this point may well be sufficient to give 
at least a partial structure. In the former case, 
unphased reflections are added to the starting set 

/ . ' lUh~.  I'b' ~h~H 
FT (Basis set {H}) 

ME / 
[Uh~l, ~h~. * q ' m e (x_ ) "  _ FT :: IUh,x lue 0h, x , Likelihood 

~ , ,  (Extrapolated reflections, 
non basis set {K}) 

IUh~u lue ddh~u 
(Extrapolated reflections. 

unmeasured {U}) 

Fig. 1. Extrapolation via maximum entropy. 
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with permuted phases giving rise to a multisolution 
environment just as in conventional direct meth- 
ods. To do this the current basis set is chosen and 
a few reflections with large associated U magnitude 
which optimally enlarge the second neighborhood 
of the basis set are selected. (The second neighbor- 
hood is defined by reflections hl±tRg'h2 for 
hi,h2 E H, where tRg is the transpose of a rotation 
matrix obtained from the crystal space or plane 
group.) For centric reflections, which is the case 
throughout this study, both possible values of the 
phase angle are used i.e. 0,7t; alternatively, this can 
be described in terms of signs + or - respectively. 
A constrained entropy maximisation for each pos- 
sible phase permutation is now carried out. 
Judging which phase sets are the most probable is 
done using likelihood estimation, employing a 
suitable likelihood function in its diagonal form in 
which the extrapolates are decoupled and treated 
as independent [ 14~17]. 

In this case, for each centric extrapolated, non- 
basis set reflection _k the likelihood measure, in its 
diagonal approximation, can be written: 

2lUkl °b~ 
Ak-- 

7z( 2ekX + a~) 

exp 
{ - l(IUkl°bs)2+luMEI2)- - -  -- 7 -  ~ cosh (IUuI°bsIu~E]~- - 

2 2ekX+ O-k 0 \ 2~ZkX+ ~2k 2 J 

(4) 

where _k E K, a~ is the variance of  lUkl °bs, S is a 
refinable measure of unit cell contents (X~ 1/2N) 
and ek is the statistical weight. This is a Rice 
distribution comprising a Gaussian exponential 
term with a hyperbolic cosine offset. Note also 
that this expression is a measure of agreement 
between IUkl T M  and IU~EI, having a maximum 
value when I Ukl °bS = I u~EI. As in traditional likeli- 
hood analysis, a corresponding null hypothesis is 
defined for the situation of zero extrapolation, 
I u~EI = 0, which gives the Gaussian distribution of 
Wilson statistics. For centric reflections: 

_ { 1 (IUkl°bs) 2 } o 21Ukl°us exp - . (5) 
A k -  x(%X+a~) 2 2e~X+cr 2 

We now define: 

Ak 
L k = log - . (6) 

- A o 

The global log-likelihood gain (LLG)  for node n 
is then: 

LLG.  = ~  L_k. (7) 
k 

The LLG will be largest when the phase assump- 
tions for the corresponding basis set lead to predic- 
tions of amplitudes of the unphased reflections 
which best agree with the observed intensity meas- 
urements for the non-basis set reflections, and in 
this context it is a powerful figure of merit. 
However, rather than just choose those phase sets 
with high associated LLG, which is a somewhat 
subjective process, tests of significance are used. 
The LLGs are analysed for phase indications using 
the t-test [19] which defines the level of significance 
of the difference between two means. The simplest 
example involves the detection of the main effect 
associated with the sign of a single centric phase. 
The LLG average,/~+, and its associated variance 
V + is computed for those sets in which the sign 
of this permuted phase under test is +.  The 
calculation is then repeated for those sets in which 
the same sign is - to give the corresponding I~-, 
and variance V . The t-statistic is then: 

t=l/~ + -/~ I/ffV-T+ V-.  (8) 

The use of the t-test enables a sign choice to be 
derived with an associated significance level. This 
sort of calculation is repeated for all the single 
phase indications, and is then extended to combi- 
nations of two and three phases. In general, only 
relationships with associated significance levels 
<2% are used, but this has to be relaxed with 
sparse diffraction data sets such as we have here. 
Each of the m phase relationships, i, so generated 
is given an associated weight wi: 

wi=(1 - -  II(Si) ~, (9) 
Io(si) / 

where 11 and I0 are the appropriate Bessel functions 
and si is the significance level of the ith relationship 
from the t-test. This weighting function reflects the 
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need for a scheme in which the absolute values of 
the significance levels are not given undue emphasis 
since they are themselves subject to errors arising 
from the nature of the likelihood function used 
and the lack of error estimates for the LLGs 
themselves. 

Each node n is now given a score, s,: 

s , = L L G ,  ~ w~, (10) 
j - 1  

where the summation spans only those phase rela- 
tionships where there is agreement between the 
basis set phases and the t-test derived phase rela- 
tionships. The scores are sorted and only the top 
8-16 nodes are kept; the rest are discarded. New 
reflections are now permuted and a corresponding 
new set of ME solutions is generated. In this way 
we build a phasing tree in which each phase choice 
is represented as a node, and has a score, or figure 
of merit, based on its log likelihood gain. The root 
node of the tree is defined by the origin defining 
reflections, The first set of phase permutations 
defines the second level. Those which do not pass 
the analysis of likelihood are discarded, then fur- 
ther phase permutations are used to generate the 
third level, and this continues until a recognisable 
structure or structural fragment appears. 

qME(x) is a probability distribution, and not a 
potential map in the traditional sense (although 
its peaks do correspond to atom positions). The 
trial potential maps generated in this approach are 
called centroid maps, and are computed as Sim 
filtered U maps [14-17]. In this situation the basis 
set reflections (amplitudes and phases) contribute 
to the map with full weight whereas the extrapo- 
lated reflections { K} are given weights computed 
via: 

IU_kl °bs tanh(XD exp (kbME), (11) 

with: 

X k = (N/ek) ] U k ]°bs ] uME 1, (12) 

Phase angles are those extrapolated from qNE(x). 
Unmeasured reflections may be included in these 
maps if required by using unit weights, and with 
both phase angles and U magnitudes extrapolated 
from qME(x_). 

Finally, to allow for measurement errors, we do 

not aim for a perfect fit between ]U hl °bs and 
]u~E]; rather, a reduced Z 2 statistic is used: 

Z 2 = -  ~ (I U_hl°bs -- IuMED2, 
H h e l l  

(13) 

where n is the total number of degrees of freedom 
which, in the centrosymmetric space group case 
which we have here, is the number of reflections. 
Overfitting can produce maps with spurious detail, 
whereas underfitting has the opposite effect as well 
as reducing the corresponding LLGs. In general, 
we aim at a target value of 1.0 for X 2, but for some 
data sets it is more appropriate to stop at the 
point of maximum likelihood which is the case 
here. It worth noting at this juncture that the ME 
formalism, unlike traditional direct methods, is 
capable of using the standard deviations of the 
intensity measurements. 

The above method has been described for the 
centrosymmetric case, but is equally valid for non- 
centrosymmetric plane and space groups. There 
are three major differences between the centrosym- 
metric and non-centrosymmetric cases: 

( 1 ) Quadrant permutation is used for permuting 
acentric phases (those which have no phase restric- 
tions). In this case each unknown phase used for 
building the phasing tree takes four possible values: 
_+ 7r/4, _+ 3~/4. 

(2) The likelihood functions are modified such 
that Eq. (4) employs the zero-order Bessel func- 
tion I0 instead of the cosh function and with a 
slightly modified argument [ 14, 15]. 

(3) Generally, there is a need to define an 
enantiomorph, but the relevant theory has long 
been defined in classical direct methods, and can 
readily pass over into the ME environment [4].The 
computations are more time consuming because 
the phase trees are larger, but the same principles 
are used; indeed, in trials, the technique has solved 
non-centrosymmetric problems of all types. 
Equally the formalism is applicable without alter- 
ation to two-dimensional data sets: the underlying 
statistics are equally valid, and the procedures 
similar, although, in general, 2-D data is more 
difficult to phase accurately than 3-D. 

The MICE computer program is a practical 
implementation of a part of the Bricogne formal- 
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ism [ 16,17]. Surveys of the method and its practical 
applications can be found in [20-23]. The use of 
this procedure for the ab initio structure determi- 
nation of crystals consisting of organic molecules 
from electron diffraction data has also been 
described [24]. 

3.2. The Sayre equation 

It is convenient to employ a slight change in 
nomenclature. The Sayre-based methods use the 
unitary structure factors U(g), where g is a rec!pro- 
cal lattice vector of the reconstructed surface, 
which are numerically more convenient, corrected 
by a window function W(u), i.e. : 

U(g)= W(g)F(g)/f(g) (14) 

where f(g) is the atomic scattering factor. The 
window, which is similar in function to Walsh and 
other windows for power-spectrum estimation, was 
chosen to satisfy approximately: 

W~g) = ~ Wq¢-  k) W(k) (15) 
k 

only for the range of measured g values. In prac- 
tice, the form: 

W(g) = exp ( -  0.5g2/gZax) (16) 

with gmax the largest value used reduced the error 
to a few percent. In effect, this window reduces 
ringing in the potential due to truncation of the 
Fourier series. 

The zero Fourier coefficient was estimated as 
equal to the sum of the squares of the experimental 
intensities, which empirically is rather close to the 
true value. (Note that unlike the bulk case, one 
can rarely if ever know how many atoms are in 
the unit cell.) New phases for the were extrapolated 
from the calculated phases Uc(g) by equating them, 
which is equivalent to the classical tangent formula 
approach [25]. How good a fit was obtained was 
determined by a figure of merit (FOM):  

R = ~ If(g)/[a(g) W(g)][U(g) - ~ Uc (g)][~ / 
g 

{ f(g) U(g)/[a(g) W(g)]} 2 (17) 
g 

where ~ is a scaling constant and or(g) the error 
for a given reflection. This is equivalent to deter- 

mining the most likely value of the potential 
assuming normal errors in the experimental meas- 
urements. (We experimented with modifications of 
this form, e.g. ignoring the experimental errors or 
taking the moduli rather than the square. Including 
the errors did make a small but noticeable effect; 
with it the FOM is much more sensitive to the 
weaker intensities than without it. The importance 
of including the errors will be discussed later.) 

All the calculations were performed using fast 
Fourier transforms, which, provided that appro- 
priate care is taken to avoid aliasing, are faster 
than convolutions. One form is the classic Sayre 
equation, i.e. with r in real space: 

Uc(r) = U(r) 2. (18) 

However, this form has no interpolative power. 
For a complete data set where the U(r) is a set of 
delta functions for the correct solution, one can 
also use: 

Uc(r) = U(r) 3 (19) 

= exp[const* U(r)] (20) 

= U(r)l U(r)l. (21 ) 

The first two of these contain triple products which 
have interpolations of the unmeasured intensities. 
The last is related to a Gerchberg restoration 
scheme (e.g. Ref. [26]), in the following sense. The 
measured U(r) can be written as: 

U(r) = T(r) - S(r) (22) 

where T(r) is the complete unitary potential and 
S(r) the missing part. The modulus of U(r) is a 
partial restoration such that the potential is every- 
where positive, and is approximately: 

[ U(r)] ~ T(r) + S(r). (23) 

Hence: 

U(r)l U(r)l ~ T(r) 2 - S(r) 2. (24) 

An alternative is to project I U(r)t back to the 
Fourier domain and only include the unmeasured 
amplitudes, but, in practice, Eq. (21) seems to be 
just as effective and rather faster. 

Eqs. (19) and (20) and Eq. (21) as well as the 
Sayre equation itself were used in this study. Just 
as in the ME case, a three-dimensional formalism 
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has been presented here, but it has an equal validy 
in the 2-D environment, although phasing becomes 
more difficult, because there are fewer terms on 
the right-hand side of the Syre equation in what- 
ever form it is presented. It should also be noted 
that while the forms of these equations can inter- 
polate the unknown values, there is no guarantee 
that they are stable. We will return to this point 
below. 

4. Ab initio solutions 

The diffraction data listed were normalised using 
MITHRIL  [27,28] to give the unitary structure 
magnitudes (I Uh I °bs) and their associated standard 
deviations using electron scattering factors; the 
overall isotropic temperature factor B was calcu- 
lated to be -0.58/~x 2 which is physically impos- 
sible. This is common with incomplete data sets 
of this type; it arises from data incompleteness, 
the multiple scattering effects in the data (primarily 
double diffraction by the silicon substrate), subsur- 
face strains [ 11, 12] and from measurement errors. 
Accordingly an overall temperature factor of zero 
was imposed for the ME calculations, while a 
value of 1.5-2.0 times that for bulk Si was used 
for the Sayre methods (the results were not sensi- 
tive to the exact value). The plane group used was 
P6mm. The number of independent input reflec- 
tions was 193. The U magnitudes, their associated 
standard deviations and their resolution in A are 
tabulated in Table 1. 

4.1. Method I: maximum entropy 

Ab initio phasing was rather difficult. Using the 
full data set and despite many attempts, no truly 
workable maps could be generated: they all 
required knowledge of the answer to be correctly 
interpreted. It was then decided to work in reso- 
lution ranges. The intensity data extend to ca. 
0.6 A, and very high resolution data of this sort 
can have large systematic errors associated with it, 
and, of course, the bulk reflections have been 
removed. Under these circumstances it is often 
best to work with a sub-set of reflections at rela- 
tively low resolution, and phase these first, thus 

generating a structural envelope which is then used 
to phase higher resolution data. 

Accordingly, the following procedure was used: 
(1) The full data set was normalised as before. 
(2) In this plane group with the bulk reflections 

removed, there are no available reflections for 
origin definition. This poses no particular prob- 
lems: a set of six reflections at maximum resolution 
of 2 A was selected on the grounds of optimal 
second neighborhood definition. To do this it is 
assumed that all the reflections are present in the 
basis set, and those least connected to this set by 
their second neighborhood are removed one by 
one until the required number of reflections is left. 
The reflections chosen were 9 6 ( 8 , - 4 ) ,  58(6,0), 
6 0 ( 7 , -  1 ), 3 9 ( 9 , - 2 ) ,  26(8,0) and 43 ( 8 , -  1 ). The 
phases were given permuted values in a full facto- 
rial design, thus generating a first level of 26= 64 
nodes. Coincidentally, all these reflections had 
phase angles available from image data (although 
this phase data were not used here). 

Each node was subjected to constrained entropy 
maximisation, and the set of 64 nodes analysed as 
described previously using t-tests and scores. The 
iterative entropy maximisation routines were 
stopped at points of maximum LLG for each 
node. This corresponded to X 2 values lying between 
2.0 and 14.9. The phasing tree thus generated is 
summarised in Table 2. The node with the highest 
score was number 43 which also had a zero basis 
set phase error when measured against the image 
derived phases. A centroid potential map for node 
43, however, did not reveal the complete structure, 
and so a second level of the phasing tree was 
constructed by: 
(1) Increasing the basis set resolution to 1 A. 
(2) Taking the top ranked eight nodes from level 

1 of the tree. 
(3) Permuting the phases of reflections 6( 14, - 1 ), 

7 ( 1 5 , - 4 ) ,  9 ( 1 0 , - 3 ) ,  12(14 , -4 ) ,  19(14 , -2 ) ,  
2 2 ( 1 4 , - 5 )  and 2 3 (1 4 , -3 ) ,  thus generating 
8 x 27 = 1024 new nodes. 

Each node was subjected to constrained entropy 
maximisation as before, and the scores analysed 
as for level 1. Three nodes had scores that were 
considerably in excess of any others. Centroid 
maps with extrapolation down to 0.6 A were gener- 
ated for all three. The unmeasured reflections { U }, 
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Table 1 
The intensity data in the form serial number,  h, k, ]U~I bs] 
its esd in brackets and the resolution, d, in 

with 

No. h k U(esd) d(A) No. h k U(esd ) d(A,) 

1 2 4  - l0 0.240(44) 0.79 
2 31 - 1 4  0.234(88) 0.61 
3 13 0 0.228(12) 1.27 
4 21 - 6  0.216(23) 0.88 
5 27 - 6  0.214(33) 0.67 
6 14 - 1  0.205(11) 1.22 
7 15 - 4  0.202(10) 1.22 
8 17 - 7  0.201(18) 1.11 
9* 10 - 3  0.200(6) 1.85 

10 31 - 1 3  0.199(56) 0.61 
11 24 - 7  0.195(47) 0.77 
12 14 - 4  0.193(7) 1.32 
13 23 - 9  0.193(16) 0.82 
14 29 - 11 0.187(53) 0.65 
15 31 - 11 0.175(53) 0.60 
16 22 - 8  0.173(14) 0.85 
17 21 - 3  0.173(38) 0.84 
18 21 - 4  0.173(23) 0.85 
19 14 - 2  0.167(16) 1.26 
20 17 0 0.165(29) 0.97 
21 21 - 5  0.163(18) 0.87 
22 14 5 0.161(8) 1.34 
23 14 - 3  0.159(23) 1.29 
24 21 - 2  0.153(17) 0.82 
25 21 - 10 0.150(22) 0.90 
26* 8 0 0.149(11) 2.06 
27 22 - 4  0.147(37) 0.81 
28 29 - 7  0.145(46) 0.63 
29 22 - 11 0.145(16) 0.86 
30 27 - 7  0.143(21) 0.68 
31 27 - 13 0.140(24) 0.70 
32 20 7 0.138(18) 0.94 
33 17 - 6  0.131(26) 1.10 
34 26 5 0.131(25) 0.69 
35 25 4 0.130(24) 0.71 
36 12 0 0.130(7) 1.37 
37 25 - 7  0.128(52) 0.74 
38 28 - 8  0.127(26) 0.66 
39* 9 - 2  0.127(5) 2.01 
40 27 10 0.126(34) 0.70 
41 18 - 4  0.126(30) 1.01 
42 24 - 5  0.121(20) 0.75 
43* 8 - 1  0.121(6) 2.18 
44 15 0 0.120(15) 1.10 
45 30 - 14 0.119(26) 0.63 
46 22 - 7  0.118(12) 0.85 
47 24 - 6  0.117(21) 0.76 
48 26 - 13 0.117(7) 0.73 
49 18 0 0.117(37) 0.91 
50 23 - 11 0.117(19) 0.83 
51 29 8 0.116(77) 0.63 

52 26 12 0.115(33) 0.73 
53 24 - 4  0.115(25) 0.74 
54 27 - 1 1  0.112(24) 0.70 
55 28 - 13 0.112(35) 0.68 
56 20 2 0.111(22) 0.86 
57 28 - 1 0  0.110(23) 0.67 
58* 6 0 0.109(2) 2.74 
59 25 12 0.109(17) 0.76 
60* 7 - 1  0.108(7) 2.51 
61 18 - 8 0.105(22) 1.05 
62 16 - 5  0.105(12) 1.16 
63 17 - 4  0.103(18) 1.07 
64 24 - 1 1  0.102(24) 0.79 
65 20 - 6  0.101(19) 0.93 
66 16 - 4  0.101(12) 1.14 
67 17 5 0.098(11) 1.09 
68 24 - 8  0.098(34) 0.78 
69* 9 0 0.097(4) 1.83 
70 20 - 1 0.097(13) 0.84 
71 30 9 0.097(38) 0.62 
72* 11 0 0.097(16) 1.50 
73 24 - 1 2  0.096(23) 0.79 
74 15 - 5  0.094(11) 1.24 
75* 11 - 3  0.093(7) 1.67 
76 16 0 0.092(11) 1.03 
77 28 - 1 1  0.092(19) 0.67 
78 21 - 8  0.090(23) 0.90 
79 25 - 1 0  0.088(28) 0.76 
80 24 - 9  0.087(30) 0.78 
81 27 - 1 2  0.087(16) 0.70 
82 28 - 1 2  0.086(28) 0.68 
83 19 - 1  0.085(24) 0.89 
84 18 - 7  0.084(46) 1.05 
85* 12 - 6  0.084(8) 1.58 
86 25 - 1 1  0.082(38) 0.76 
87 18 9 0.081(14) 1.06 
88* 11 - 5  0.080(9) 1.73 
89 28 - 9  0.078(21) 0.66 
90 13 - 4  0.077(7) 1.43 
91 17 - 3  0.077(12) 1.05 
92 23 - 7 0.077(t2) 0.81 
93 25 - 6  0.076(22) 0.73 
94 26 11 0.076(17) 0.73 
95 16 7 0.075(12) 1.19 
96* 8 - 4  0.074(2) 2.38 
97 20 - 3  0.073(15) 0.88 
98 20 - 9  0.073(14) 0.95 
99 15 - 1 0.073(12) 1.13 

100 13 - 3 0.071(5) 1.40 
101 26 - 6  0.071(29) 0.70 
102 16 - 6  0.069(16) 1.18 
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Table 1 (continued) 
The intensity data in the form serial number, h, k, IU~bsl 
its esd in brackets and the resolution, d, in 

with 

No. h k U(esd) d(A) No. tl k U(esd) d(A) 

103 
104 
105 
106 
107 
108 
109 
10 
tl 
12 
13 
14" 
15 
16 
17 
18 
19 

120* 
121 
122 
123 
124 
125 
126" 
127 
128 
129 
130 
131 
132 
133 
134" 
135 
136 
137 
138" 
139 
140" 
141 
142 
143 
144 
145" 
146 
147 
148 

18 
19 
l0 
21 
23 
23 
20 
19 
20 
26 
13 
10 
27 
29 
19 
30 
20 
10 
23 
25 
12 
22 
26 
11 
17 
13 
18 
18 
23 
20 
26 
9 
29 
18 
19 
3 
13 
12 
27 
25 
25 
19 
12 
26 
29 
22 

- 1  0.069(25) 
- 6  0.068(8) 
- 1  0.066(4) 
- 9  0.065(13) 
- 6  0.O65(24) 
- 4  0.064(19) 
- 5  0.064(14) 

8 0.064(12) 
- 8  0.063(14) 
- 8  0.063(18) 
- 1  0.063(6) 
- 2  0.063(6) 
- 9  0.062(59) 

- 1 2  0.060(50) 
- 7  0.060(18 

-13  0.060(71 
-- l0 0.059(13 

0 0.059(18 
--3 0.058(30 
--9 0.058(24 
-1  0.057(6) 

- 10 0.057(17 
-- 10 0.057(33 

2 O.056(8 
- 8  0.056(12) 
- 2  O.O55(6) 
- 6  0.055(11) 
--3 0.054(21) 
--5 0.053(19 
- 4  0.053(12 
- 9  0.052(20 
- 4  0.O52(5 

- 1 0  0.052(47 
--5 0.051(9 

0 0.051(14 
0 0.051(2 

--5 0.O5O(7) 
--4 0.050(13) 
- 8  0.050(62) 

8 0.049(64) 
- 5  0.048(30) 
- 9  0.048(12) 
- 5  0.048(6) 
- 7  0.048(38) 
- 9  0.045(100) 
- 3  0.043(20) 

0.94 149 19 5 0.041(11) 0.97 
0.98 150 30 - 10 0.040(121) 0.62 
1.73 151 29 -13  0.040(105) 0.65 
0.90 152" ll - 1 0.039(13) 1.56 
0.80 153 22 - 9  0.039(19) 0.86 
0.77 154" 5 0 0.039(2) 3.29 
0.91 155" 9 - 3  0.037(5) 2.07 
1.00 156 19 - 4  0.037(17) 0.95 
0.94 157 22 - 6  0.037(55) 0.84 
0.71 158 22 - 5  0.036(32) 0.82 
1.31 159 18 - 2  0.036(14) 0.96 
1.80 160" 4 - 1 0.036(3) 4.57 
0.69 161 23 -10  0.035(37) 0.82 
0.65 162 16 - 2  0.034(8) 1.09 
0.99 163" 7 - 2  0.034(3) 2.64 
0.63 164 19 - 3  0.033(15) 0.93 
0.95 165 23 - 8  0.032(38) 0.81 
1.65 166 16 - 3  0.032(15) 1.12 
0.76 167 17 - 2  0.032(17) 1.02 
0.75 168" 8 3 0.03l(5) 2.35 
1.43 169 22 - 2  0.031(48) 0.78 
0.86 170 16 8 0.030(10) 1.19 
0.72 171 19 - 2  0.029(29) 0.91 
1.62 172" 11 - 4  0.028(7) 1.71 
1.12 173 17 - 1 0.028(18) 1.00 
1.36 174" 10 - 4  0.027(7) 1.89 
1.04 175 15 - 3  0.027(10) 1.20 
0.99 176" 4 - 2  0.026(1) 4.75 
0.79 177 16 - 1 0.025(30) 1.06 
0.90 178 30 - 1 5  0.025(138) 0.63 
0.72 179" 12 - 3  0.023(9) 1.52 
2.11 180" 9 - 1 0.022(4) 1.93 
0.65 18t 15 - 6  0.021(47) 1.26 
1.02 182 15 - 2  0.021(16) 1.17 
0.87 183 12 2 0.020(23) 1.48 
5.49 184" 10 - 5  0.020(5) 1.90 
1.45 185" 4 0 0.020(5) 4.12 
1.56 186" 6 - 3  0.016(3) 3.17 
0.69 187" 6 - 1  0.015(18) 2.96 
0.74 188" 7 - 3  0.015(18) 2.71 
0.72 189" 5 - 2  0.012(12) 3.78 
1.00 190" 3 - 1  0.011(88) 6.22 
1.58 191" 8 - 2  0.009(41) 2.28 
0.71 192" 6 - 2  0.008(31) 3.11 
0.64 193" 5 - 1  0.008(15) 3.59 
0.8O 

*Signifies a reflection for which phase information is available via the Fourier transform of a suitable electron microscope image. 
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Table 2 
The first level o f  the maximum entropy-likelihood phasing tree 
at 2 ,i~ a 

Node Entropy Z' LLG Node Entropy X LLG 

1 -0.351 0.00085 1.42 33 -0.348 0.00283 
2 -0.327 0.00247 0.16 34 -0.307 0.00198 
3 -0.250 0.00217 -0 .17  35 -0.241 0.00268 
4 -0.228 0.00265 -0 .58 36 0.228 0.00179 
5 -0.275 0.00209 0.03 37 0.276 0.00160 
6 -0.245 0.00144 1.03 38 -0.242 0.00232 
7 -0.260 0.00194 0.28 39 -0.287 0.00115 
8 -0.233 0.00144 1.22 40 -0.231 0.00240 
9 -0.249 0.00239 -0 .16  41 -0.239 0.00164 

10 -0.257 0.00153 0.96 42 0.254 0.00212 
11 -0.264 0.00221 0.17 43 -0.286 0.00107 
12 -0.252 0.00139 1.25 44 -0.252 0.00215 
13 -0.299 0.00114 0.35 45 -0.274 0.00226 
14 -0.292 0.00254 0.61 46 -0.283 0.00215 
15 -0.267 0.00083 0.74 47 -0.261 0.00256 
16 -0.224 0.00239 -0 .08  48 0.212 0.00185 
17 -0.326 0.00108 1.67 49 -0.324 0.00213 
18 -0.314 0.00213 0.11 50 -0.309 0.00126 
19 -0.236 0.00123 1.21 51 -0.229 0.00241 
20 0.230 0.00227 0.03 52 -0.221 0.00193 
21 -0.237 0.00255 -0 .13 53 0.244 0.00173 
22 -0.234 0.00186 0.47 54 0.229 0.00219 
23 -0.246 0.00248 -0 .18 55 -0.246 0.00140 
24 -0.234 0.00179 0.53 56 -0.218 0.00230 
25 -0.224 0.00239 -0 .22  57 -0.252 0.00156 
26 -0.243 0.00185 0.53 58 -0.228 0.00247 
27 -0.241 0.00253 -0 .27  59 -0.248 0.00158 
28 -0.244 0.00167 0.61 60 -0.250 0.00241 
29 -0.295 0.00209 -0 .19  61 -0.269 0.00228 
30 -0.255 0.00208 -0 .17  62 -0.254 0.00120 
31 -0.218 0.00111 1.45 63 0.225 0.00226 
32 -0.217 0.00185 0.17 64 -0.223 0.00053 

-0.91 
0.58 
0.28 

- 0.09 
0.81 

-0 .03 
1.31 
0.07 
0.77 
0.16 
1.78 
0.23 

- 0.40 
-0 .74  
-0 .93 

0.28 
0.15 

- 1.07 
0.85 
0.31 
0.56 

-0 .19  
0.99 

-0 .23 
0.57 

- 0.40 
0.67 
0.13 

-0 .69 
-0 .80  

0.01 
- 1.34 

aThe columns are the node number, the entropy, the refined Z' parameter and the log-likelihood gain associated with that node 

including the bulk data, were not included; their 
presence made very little difference to the final 
map. 

The best map is shown in Fig. 2a; the map 
quality is high: there is a missing dimer atom, but 
it is weakly indicated by the trefoil shape of the 
adjacent adatom; there is an annulus around the 
origin and peak heights are a little uneven, but it 
is a straightforward matter to complete this struc- 
ture by conventional Fourier methods. As men- 
tioned earlier, one should not expect to see all the 
atoms when the strongest reflections are missing 
from the data set, indeed classical direct methods 

applied to single crystal diffraction data rarely 
reveal the entire structure. The remaining two 
maps were very similar, and one of them is shown 
in Fig. 2(b).  The large peaks are in the correct 
place, but there is spurious detail and the electron 
density is concentrated in one region of the cell. 
Nonetheless, the structure can be completed from 
these maps. For reference, Fig. 3 shows the 
accepted structure of the reconstructed surface. 

The maps are projections from two-dimensional 
data, and carry no information about atomic posi- 
tions normal to the surface. In principle this could 
be generated by incorporating information along 
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Fig. 2. (a) The best centroid potential map from the ME ab 
initio phase determination. (b)  A typical solution with high 
likelihood and score, but with higher phase errors than Fig. 2a. 
Both maps extrapolate to 0.6 ,~,, and are capable, with the appli- 
cation of Fourier methods, of yielding the complete structure. 

the tel-rods for X-ray diffraction. In general, one 
can infer the approximate positions from modeling 
arguments. In fact, the information provided by 
two-dimensional diffraction is precisely that which 
is difficult to extract from a standard LEED I (V) 
analysis which is, in contrast, very good at fitting 
distances normal to the surface, but very bad at 
fitting parallel distances. 

However, any attempts to extend direct phasing 
below 1 ,~, using ME methods and the phasing tree 
already generated were wholly unsuccessful as 
evidenced by falling LLGs, which is always a sign 
of problems, and potential maps that contained a 
great deal of spurious detail. In addition to both 
statistical and systematic errors in the data, as the 
resolution is increased the number of  undetermined 
intensities also increases, playing a major role in 
accumulating phase errors. Nonetheless the ME 

Fig. 3. The structure of the Si( 111 ) 7 x 7 surface. 

method has successfully, and quite routinely, 
solved a complex surface structure. 

The calculation itself took less than 30 min on 
a laboratory network of UNIX workstations in 
which the nodes were passed from a central server 
to a total of 15 available processors. This is a great 
benefit of  the computational side of the ME for- 
malism it lends itself readily to this simple coarse- 
grained form of parallelisation. 

4.2. Method H: symbolic analysis with weakly 
interpolative methods 

Since ME works, one might think that conven- 
tional direct methods might also give the solution. 
However, applying various different combinatorial 
methods with as many as 20 different basis set 
reflections (using a genetic algorithm [29,30]) at 
different resolutions, we could not obtain the same 
solution; visually, the best solutions, as ranked by 
the figure of merit, were often unphysical. This is 
probably a consequence of incomplete data, the 
missing bulk reflections and the very regular (non 
random) nature of the structure - all problems to 
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which the ME method is less susceptible. Although 
the known solution was often one of the better (in 
terms of the FOM) results, there was no way of 
objectively picking it out. This was true not just 
for the Sayre equation, but also for the other 
methods in Eqs. (19)-(21).  The key is that these 
methods do not adequately interpolate the 
unknown intensities which, as will be shown below, 
are strong. 

There is another approach, based on traditional 
methods, at the heart of which is an inductive test 
that can be applied to determine whether the data 
set is complete, or very incomplete based around 
triplets and the related sigma-I relationships [4]. 
Let us suppose that the data is very incomplete, 
and there are strong surface reflections buried 
under the 1 x 1 bulk reflections. Denoting the 1 x 1 
family as f ,  it follows that there must exist a good 
number of strong surface reflections p and q such 
that there is a triplet of the form p+q=f 
Conversely, if the unmeasured 1 × 1 intensities 
have only a small surface contribution, it follows 
that there will be few if any such relationships. 
Thus one can deduce whether the family of 1 x 1 
reflections is weak or strong. 

As an example, for the Au on S i ( l l l )  surface 
[6,31] the strongest reflections are the (2, 1) and 
(1, 2) in the space group p31m (see Figure 1 in 
Ref. [31 ]). This implies that ( 1, 1 ) may be substan- 
tial, but the bulk reflection (3, 0) { =bulk  (220)} 
is not. From the general structure of the diffraction 
pattern, there are relatively few combinations 
which can lead to (1, 1), so by inference the data 
is relatively complete. 

Applying this to the Si(111) 7 × 7 surface, by 
inspection the (7, 7) reflections {=bulk  (220)} 
must be strong. A weaker case can also be made 
that the (7, 0) reflections should be fairly strong. 
Furthermore, most of these are simple triplet rela- 
tionships between two different symmetry related 
reflections, for instance (7, 1 ), (7, 2) and (7, 3). 
Within the space group p6mm each of these can 
only have a phase of ~ or 0(=2~),  which implies 
that the phase of  (7, 7) is 2rr. This is an example 
of the sigma-1 relationship which also used in 
conventional direct methods [4]. 

Developing the symbolic method further, one 
can then imply that the phases, ~b, of  strong beams 

connected by (7, 7) must be the same, which gives: 

~b(6, 1)=q~(8, 0), (25) 

~(7, 1)=q~(0, 6), (26) 

all of  which are strong reflections. Finally, the 
strong reflection (0, 13) is connected by symmetry 
equivalents of (6, 1) and (7, 3), similar to (7, 7), 
and also by the combination of (7, 7) and (6, 1). 
Since the symmetry equivalents give a phase of 2re, 
and we already know that (7, 7) has a phase of 
27r, we can infer that: 

~b(6, 1)=~b(8, 0)=q~(0, 13)=27r. (27) 

This now provides almost enough information 
to produce a potential map that solves the struc- 
ture. Scanning over 2 l° permutations of the strong- 
est ten unphased reflections using the Sayre 
equation and Eqs. (19)-(21) ,  the FOM's were 
sorted and the best solutions based on the lowest 
FOM were analyzed at different resolution levels. 
Originally we excluded the measurement error term 
in Eq.(17);  in this case the conventional 
Sayre/tangent formula did not work at any reso- 
lution, while the others did when the resolution 
was limited to 2.8 A. With the measurement error 
included, the best solutions for all the models at a 
resolution of 2.8 A was of high quality, as shown 
in Fig. 4. However, only the best Sayre solution 
was good - the next three solutions were not, while 
all the top solutions of the other approaches were 
very similar. At higher resolutions, the Sayre 

\ 

~ 4, 

\ 

\ 

Fig. 4. The best ab initio solution of the S i ( l l l )  7 x 7 surface 
using Sayre and related methods. The data resolution is 2.8 ~,. 
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method was unviable whereas the other 
approaches still gave rather good results. The 
resulting maps are not as clean as the ME derived 
ones: they have lower resolution and less detail, 
but they represent a viable model of the surface 
structure at 2.8 A. 

2.42. The calculation took less than 1 rain on a 
SUN Sparc-20 workstation. 

The resulting centroid potential map is shown 
in Fig. 6a with a resolution of 0.6 A. The whole 
structure is clearly delineated. 

5. Phase extension 

5. I. Method  I: max imum entropy 

A total of 41 unique phases were available from 
image Fourier transform studies of high resolution 
images [13]. We excluded the (7 ,0)  reflection 
which were available from the images but not in 
the diffraction data. The maximum resolution of 
these reflections was ca. 1.5 A.. They are marked 
with an asterisk (*) in Table 1. Most of them have 
very weak associated U magnitudes. A U map 
calculated before any entropy maximisation is 
shown in Fig. 5. The general features of the surface 
structure are present although these is some spuri- 
ous detail and some peaks are absent or coalesced. 
There is insufficient detail to consider the structure 
characterised at the atomic level, especially when 
the (7, 0) reflection is omitted. Accordingly, the 
41 reflections were used as a basis set and subjected 
to entropy maximisation without recourse to any 
tree-building phasing methods. The iterative 
entropy maximisation algorithm was stopped at 
the point of maximum likelihood. The LLG was 

Y 

Fig. 5. A U map based on 41 image-derived phased reflections• 
The maximum resolution is 1.5 A. 
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Fig. 6. (a) A centroid potential map derived from entropy maxi- 
misation of the image basis set used in Fig. 5 (b) A potential 
map derived from the Sayre equation using the same basis set 
as (a). (c) A potential map also derived under the same circum- 
stances using Eq. (19). The data resolution for all these maps 
is 0.6 A. 
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5.2. Method lI." the Sayre equation and 
interpolative methods 

As might be expected from the previous section, 
phase extension will work for this system with any 
of the interpolative methods, but not with the 
classic Sayre equation. As the starting point we 
used the same values as in the previous section. 
The use of the Sayre equation, and Eq. (19) from 
the same basis set as the previous section, resulted 
in the maps shown in Figs. 6(b) and 6(c), respec- 
tively. Virtually the entire structure is now clearly 
shown at close to atomic resolution; there are 
some small spurious peaks and some possible 
disorder (see Section 6). Least well resolved are 
the atoms in the third layer. Conventional Fourier 
methods can easily complete this structure. 
Extrapolation is much stronger than in the ab 
initio case, but the maps, however, are not as clean 
as their ME counterpart in Fig. 6a. 

Carvalho et al. [32] have recently reported a 
ME reconstruction of the Si(111 ) 7 x 7 surface 
using both the electron diffraction data set used 
here and a smaller grazing-incidence X-ray one. 
In this case they used the atomic coordinates from 
the refined structure to give phase angles for all 
the non-bulk reflections which were then used as 
a basis set in a modified entropy maximisation. 
This is not a model-free reconstruction since the 
model is implicit in the phases; they are using ME 
methods to attempt to produce more detail in the 
potential maps, and thus examine deviations from 
the assumed model. This is different from the 
procedures used here where the basis sets are much 
smaller, the phases are not model derived, and 
thus the maps are truly model free. 

Finally, Rius et al. have described an alternative 
direct methods approach based on a modified 
tangent formula derived from Patterson function 
arguments [33] which could be useful as a tool for 
solving surface structure; it needs to be tested with 
the Si( 111 ) data. 

6. Discussion 

We have shown that one can, with due care, 
apply direct methods to solve surface structures. 

The ab initio solutions encourage the view that 
this type of technique can be applied in general, 
although we need to define a standardised pro- 
cedure, and this will require the study of many 
surface diffraction data sets. As is standard with 
direct methods, peaks in the potential maps may 
not have peaks exactly in the correct locations, 
and the relative heights may be wrong - however, 
as stressed earlier, there should be sufficient infor- 
mation to decode the rest of the structure by more 
conventional techniques. Phase extension shows 
that one can restore the potential rather well out 
to the available information limit of the measure- 
ments in a wholly routine manner. 

It is worth commenting that we have deliberately 
looked at the worse possible case for the Si(111) 
7 × 7 surface in the ab initio case, not using any 
other information than that available in the 
diffraction pattern. In many cases some informa- 
tion may be available from scanning tunneling 
microscopy (STM).  For instance, since STM 
images of this surface clearly show adatoms, this 
information could have been incorporated into the 
original starting set - it would have fixed the phase 
of the (3,0) reflection and a few others. Even 
relatively low resolution electron microscope 
images could be used in the same fashion. 

One complication which we have avoided here 
is the symmetry of the surface, which is generally 
an input parameter for the direct methods. While 
it is possible to scan over different possible symmet- 
ries, independent determination of these would be 
invaluable, although this is not always easy to 
determine from existing experimental techniques, 
although likelihood can in principle be used to 
resolve symmetry ambiguities: all possible symmet- 
ries are investigated, and the correct one (i.e. that 
which is most consistent with the measured inten- 
sity data) should have significantly higher likeli- 
hoods in the phasing tree than the remaining 
choices. 

One interesting point is the disorder that is 
apparent in the restorations out to higher reso- 
lutions. The primary reason for this is that at 
larger angles, the kinematical approximation of  a 
monolayer on a surface will break down. First, 
there is scattering from the long-range strain field 
associated with the reconstruction (by St. 
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Verdant's principle, to a depth approximately 
equal to the lateral dimensions of the reconstruc- 
tion); as discussed previously [11,12] this contrib- 
utes most significantly at larger angles. Second, 
there is dynamical diffraction of the surface reflec- 
tions by the bulk lattice. While it is dangerous to 
generalize [33], this will tend to transport intensity 
from the strong, smaller-angle reflections out into 
the larger-angle ones. A secondary consequence of 
this is that it is difficult to obtain values for the 
Debye-Waller terms via a classical Wilson plot, as 
mentioned previously. It also turns out that crystal 
tilt can affect the Wilson statistics of  the data, a 
point which will be discussed in more detail else- 
where [34]. 
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