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Abstract 

Methods of determining the phases for noisy and 
incomplete surface diffraction data (X-ray or transmis- 
sion electron) are investigated. It is found that, while 
conventional methods do not always work, a minimum- 
entropy method that uses the relative entropy is more 
effective in finding the correct solutions. 

1. Introduction 

Despite the large number of different surface probes 
that now exist, very few surface structures are known. 
This is because low-energy electron diffraction 
(LEED), transmission electron diffraction (TED) and 
surface X-ray diffraction all work well for refining the 
structure but determining a viable starting point is often 
trial and error. While scanning tunneling microscopy 
(STM), atomic force microscopy (AFM) and high- 
resolution transmission electron microscopy (HREM) 
do offer information on possible starting structures, 
each suffers limitations. In particular, STM and AFM 
are only sensitive to the top layer of atoms. In addition, 
STM probes the surface electron density, which is not 
necessarily representative of the underlying surface 
structure. While H R E M  is sensitive to surface relaxa- 
tions that extend into the bulk and reveals actual atom 
positions (e.g. Bengu et al., 1996), the signal-to-noise 
ratio is often small and difficult to analyze. In the bulk, 
direct methods are frequently used to generate an 
initial structure or parts of the structure. While direct 
methods are well developed for bulk materials, their 
application to surface structure determination has not 
been explored in any detail; until very recently, it was 
accepted that direct methods could not be used for 
surfaces, and TED or X-ray diffraction experiments 
relied upon Patterson-map analyses. For completeness, 
we are only dealing herein with surface diffraction data, 
not bulk TED data where dynamical effects need to be 
considered. 

Surface diffraction data differs substantially from 
bulk data not only in the much higher noise levels but 
because the data sets are incomplete, missing critical 
reflections. It is useful to define the character of the 
experimental data and what one hopes to achieve. A set 
of experimental intensities in two dimensions from a 
diffraction pattern (X-ray or electron) have been 
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determined. These span 2-3 orders of magnitude, with 
errors of 5-10% in the strongest beams ranging to 
100% or more in the weaker ones. For TED data, some 
of the smaller reflections may be missing (obscured by 
the transmitted beam and associated energy-loss elec- 
trons) and in both cases reflections coincident with the 
primitive two-dimensional surface mesh must be 
excluded from the data set since it is not possible in 
any simple fashion to separate the bulk and surface 
contributions. [One can extract information by making 
assumptions about the bulk scattering in some cases a s  
discussed by Ferrer (1993) but this then introduces 
other complications such as the surface coverage.] Note 
that we cannot assume that the surface content of these 
unmeasurable reflections are weak; they can be and 
often are among the strongest surface reflections. At 
present, the measurement errors for TED data are a 
little smaller, offset by weak dynamical perturbations 
provided that strong bulk diffraction conditions are 
avoided. (This is true in an R-factor sense albeit not 
necessarily in a X 2 sense.) In both cases, subsurface 
strains (Jayaram et al., 1993) perturb the data at higher 
angles; the true phases will give positive/negative 
dipoles rather than atomic features. As a final point, the 
composition of the surface is very poorly determined. 
For a surface composed of material A on a substrate B, 
it may be possible to know moderately accurate 
(4-20%) values for the number of A atoms but not the 
number of B atoms. 

For a set of N diffraction intensities, we seek to assign 
phases. In some cases, a large number of these may be 
correctly determined, yielding a reconstruction (map) 
of the two-dimensional surface potential (for TED) or 
charge density (for X-rays). In other cases where the 
structure is either more complicated or there is a large 
percentage of uumeasureable beams, this may not be 
possible. Note that while the 'correct' map (true 
amplitudes and phases) would be positive everywhere if 
all reflections were measured, owing to the unmeasur- 
able beams it will contain negative regions. One wants 
enough of the structure to be defined in real-space 
maps that Fourier methods can be used to complete it, 
more so than is normally the case. A 'good' map should 
indicate the positions to within a fraction of an 
gmgstr6m of 90% of the atoms and contain few erro- 
neous peaks - the minimum that can probably be 
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tolerated is 50% of the atoms. Chemical arguments such 
as interatomic spacings do not work in projection and 
little prior knowledge about the cell contents can be 
assumed. Furthermore, since the data are two dimen- 
sional, both the initial phase determination and struc- 
ture completion can be somewhat harder than in three 
dimensions. For instance, in three dimensions there are 
many more triplet phase relationships (E2) available 
than in two dimensions, weakening probabilistic 
methods. Indeed, for certain surfaces there are no 
triplets at all, for instance a 2 x 1 surface (real-space A 
axis twice that of the primitive surface mesh) where 
only reflections h - -  2n + 1 are measured. A viable 
estimate of the phases needs to be among the 'best' 
solutions based upon some figure of merit (FOM). To 
put the above into context, we need to restore the 
phases for a complete data set with all reflections 
present to some high degree of accuracy, perhaps 5-10 ° 
r.m.s, error, otherwise we have no hope of finding the 
correct solution when strong reflections are absent as 
well as with measurement errors. 

Before proceeding further, it is important to clarify 
some issues about the crystallography of surfaces and 
our notation herein. It is common in the surface science 
literature to describe surfaces in terms of the primitive 
two-dimensional surface mesh or '1 × 1' lattice 
including the surface normal (in parentheses) along 
with the bulk material. A reconstructed surface is then 
described as a multiplication (or matrix in the general 
case) with respect to this lattice; for instance, a 3 x 1 
cell means that the A axis of the surface is three times 
that of the 1 x 1 lattice. Unfortunately, this leads to 
indexing of the surface reciprocal lattice using frac- 
tional order reflections and loses the symmetry infor- 
mation encoded in the two-dimensional space group. 
We will retain the multiplicative notation but use the 
more standard two-dimensional space groups and 
integer values for reciprocal-lattice points. We will also 
only deal herein with the two-dimensional problem 
normal to the surface; the full three-dimensional 
problem where the aperiodic information along the rel 
rods (surface truncation rods) normal to the surface has 
been partially measured is harder. 

For simple structures where there is a large complete 
set of measured beams, the solution may be found by 
application of the Sayre equation (Landree et al., 1997). 
Such a method has already been used in reliability tests 
for Au on S i ( l l l )  ~/3 x V~ and 5 x 2 surfaces (Marks 
et al., 1997) and solved In on an S i ( l l l )  4 x 1 surface 
(Collazo-Davila et al., 1997). Alternatively, one can use 
a branching structure, taking options for Z1 relation- 
ships, assuming phases for some of the unmeasured 
reflections then using symbofic methods. With experi- 
mental electron diffraction data for the S i ( l l l )  7 x 7 
surface, both maximum entropy and this technique 
work (Gilmore et al., 1997). In this paper, we address 
the issue of optimizing an approach using unitary 

structure factors in a Sayre-type sense, with no set 
phases beyond those for origin definition. We will show 
that a minimum relative entropy approach can be very 
successful for noisy and incomplete data. 

2. Unitary Sayre equations 

We will start with a somewhat unconventional 
description of certain direct methods. No new concepts 
will be introduced at first but our interpretation of the 
equations will be rather different. 

Consider a complete set of structure factors in reci- 
procal space F(k), where k corresponds to a reciprocal 
lattice vector. The standard Sayre equation states that 
for non-overlapping identical atoms 

F(k) -- c(k) ~] F(k - h)F(h), (1) 
h 

where c(k) is a known function. This can be rewritten in 
terms of the unitary structure factors U(k) for N atoms 
a s  

U(k) = N ~ U(k - h)U(h) (2) 
h 

or in a probabilistic fashion using the normalized 
structure factors E(k) as 

E(k) = ~] E(k - h)E(h).  ( 3 )  
h 

Given some initial phases, any of equations (1)-(3) can 
be used to generate new ones via the tangent formula 
(Karle & Hauptman, 1956) or modified to include 
statistical weights as in M U L T A N  (Germain & 
Woolfson, 1968). These new phases are then fed back in 
an iterative fashion and the validity of a set of phases 
determined by some combination of self-consistency 
FOMs. In effect, this is similar to a Picard iteration or 
successive approximation method, and equation (2) can 
be somewhat better written as 

Un+l(k ) = N ~ Un(k - h)Un(h), (4) 
h 

where U,,(k) contains the nth iteration phase estimate 
and at the end of each cycle the modulus is corrected to 
the known value. Equation (4) [or with En(k) values] is 
not at all unique; one can also write 

Un+l(k ) = N 2 ~ ~ U,,(k - h -- i) U,, (h) U,, (I), (5) 
h ! 

in effect including positive quartet values (Schenk, 
1973; Woolfson & Fan, 1995). To extend even further, 
instead of using convolutions in reciprocal space it is 
easier to use real space. Using the standard image 
processing and electron diffraction notation of lower 
case for real-space functions that correspond (Fourier 
transformation) to an upper-case reciprocal-space 
function, equations (4)-(5) can be generalized as 
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u,+l(r ) = O(un(r)), (6) 

where () is some sharpening operator operating on a 
given real-space (potential) density map, u,,(r). This 
method is not unlike other techniques such as the 
holographic method (Somoza et al., 1995) or the Shake-  
and-Bake  algorithm (Miller et al., 1994), which utilize 
real-space density modifications and constraints to find 

• the correct structure. 
We want some 'optimum' sharpening operator that 

will enhance strong features in u,,(r) and suppress weak 
ones; a priori,  there is no reason why a classic 'Sayre' 
form taking the square should be at all optimal. For 
instance, one could u s e  Un(r) 3 or u,,(r)[u,(r)[, both of 
which preserve negative regions. Borrowing from 
information theory (Shannon & Weaver, 1949), a 
completely flat u(r) has no information so we can 
consider 

u(r)ln[u(r)/e(u(r))]  u(r) > 0 
Sr(r) " - "  0 u(r) < 0, (7) 

where Sr(r) is the 'relative entropy' as a function of the 
real-space vector r (Kullback & Leibler, 1951; Cover & 
Thomas, 1991), also known as the Kullback-Leibler 
distance with (u,(r)) the mean value. Note that we are 
considering negative u(r) as containing no useful 
information. This suggests a 'minimum-entropy' itera- 
tive algorithm similar to that described above of 

{u~(r)ln[u,,(r)/(u, (r))] u,,(r) > 0 
u.+~(r) = 0 u.(r)  < 0. (8) 

While equations (7) and (8) have similarities to well 
known maxim/am-entropy methods, they are different. 
First, conventional maximum-entropy methods divide 
u(r) by the sum over all r to give probabilities, rather 
than referencing as we do here to the completely flat 
case. They then use the entropy as a regularizing 
functional based upon probability arguments; loosely 
speaking, they find the most disordered u(r) consistent 
with the experimental data (see Bricogne, 1984; 
Bricogne & Gilmore, 1990; Gilmore et al., 1990, for 
further details). Here we are using equation (8) to find a 
self-consistent solution in a Sayre-like sense, i.e. using 
the relative entropy as a self-consistent sharpening 
operator. At a formal mathematical level, it may have 
no more fundamental validity than the Sayre equation 
and we will not claim anything except that both are 
exact relationships for equal non-overlapping atoms. 
That said, the solution of equation (7) minimizes the 
relative entropy, which is equivalent to maximizing the 
(more conventional) entropy (Cover & Thomas, 1991). 
We really have here a hybrid method that has compo- 
nents of both conventional direct methods (Picard 
iteration and tangent formula) and maximum-entropy 
methods. One feature that it does share with maximum 
entropy is high nonlinearities, which are important in 

the sense that they will compensate for unmeasured 
reflections. For later reference, one can extend equation 
(8) to a form 

{u,,(r) Xln[u,(r) /(un(r))C] u,,(r) > 0 
u"+l(r)-- 0 u , ( r ) < 0 .  (9) 

The constant C can either be treated as part of the prior 
information (in a maximum-entropy sense) or an 
adjustable baseline parameter (Hoare, 1985). Herein we 
will only use x = 1 (but see Discussion)  and C = 1 
unless otherwise stated. 

So far we have assumed in equations (1)-(9) that a 
complete set of reflections is available. More realisti- 
cally, only reflections out to a certain resolution are 
available and there may be significant holes in the data 
owing to the unmeasurable beams. This is akin to the 
standard problem in image processing where a simple 
power spectrum of an image gives long 'ringing' effects 
(streaking) in reciprocal space. We can handle this by 
introducing a 'window function' W(k) (e.g. Press et al., 
1992) defined only for the experimentally measured 
spots and W(0), chosen to satisfy for any sharpening 
operator: 

w(r) = c~0(w(r)), (10) 

where cr is some constant, yielding windowed unitaries 
U'(u) given by 

U'(k) = W(k)U(k). (11) 

It is simple to show that these windowed unitaries 
satisfy equation (6) subject to a muliplicative constant 
for non-overlapping identical atoms. We will hereafter 
use these windowed unitaries, dropping the prime 
superscript. [For reference, W(k) can normally be found 
by a simple updating scheme similar to equation (6) 
starting from a Gaussian form.] 

Finally, some FOM is required. Since the errors will 
tend to be Gaussian, this suggests a figure of merit  
FOM: 

FOM m = E ' lUn(k  ) - ] 3 g n + l ( k ) l m / E t l g n ( k ) ]  m, (12) 
k / k 

where the sum, ~--~', taken over all reflections except 
k-- -0  with ]3 chosen to minimize the FOM, and the 
unitaries U~+~(k) corrected at the end of each cycle to 
have the experimentally determined moduli (see Fig. 1). 
Since we are employing a Picard-like iteration rather 
than a true minimization, termination of the iteration 
was when the FOM either:increased or became 
stationary. This FOM differs from the traditional defi- 
nition of a residual by inclusion of both the amplitudes 
and the phases. While a form with m = 2 is conven- 
tional, a robust variant with m = 1 will accommodate 
more experimental and numerical errors, avoiding the 
FOM being controlled by reflections that are poorly 
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• determined. In practice, it performed much better. Note 
that the above FOM uses the windowed unitary terms; 
removing the window for the FOM calculation was 
decidedly inferior. In many cases, we used the structure 
factors in equation (12), i.e. replacing U(k) by the 
corresponding F(k). In practice, there was very little 
difference between the two since the window cancels 
most of the increase upon conversion from true struc- 
ture factors to unitary ones, at least for inorganic 
compounds with reasonably small Debye-Waller  terms. 
[A subtle issue here that in practice could be important 

i s  errors in the conversion from F(k) to U(k).] For 
reference, we have not found any method of including 
measurement errors that works better than ignoring 
them. 

A final issue that needs to be addressed is normal- 
ization. If the number of atoms is known, the standard 
normalization procedure can be used but this will rarely 
be the case. Empirically, from a number of calculated 
data sets, the approximation 

y-~'l U(k)] 2 -- A (13) 
k 

(excluding the zero beam from the sum), with A = 1 for 
TED data and A = zr for X-rays works well, slightly 
overestimating the number of atoms. As an alternative, 

Unitary structure factors IU=(k)l calculated 
from experimentally measured reflections. 

= [Ue(k)l~ 00') ; k in starting set'~ Initial phases d0(k ) for starting set  

= 0 ; Otherwise . )  assigned by Genetic Algorithm. 

n=0 

one can run calculations for different assumptions 
about the number of atoms. In terms of the final 
method, it is highly desirable that it be insensitive to 
normalization. For reference, except for the last 
numerical model, we used the crude A = 1 normal- 
ization for all the calculations; better normalizations 
improve the results but this requires assumptions that 
may not be valid. 

3. Numerical methods 

The primary algorithm that we used to govern the 
initial phases was a genetic (evolution) method that has 
been previously discussed (Landree et aL, 1997). In 
essence, this uses random initial phases similar to a 
R A N T A N  method (Yao, 1981), guiding the choice of 
phases based upon an evolution algorithm and the 
FOM. The main input were simulated TED data for 
surfaces and the atomic positions and other details are 
shown in Table 1. Model 1 was a complete data set to a 
resolution of 0.1 nm with two types of atoms, In and Si. 
Model 2 used the same coordinates, but with only Si 
atoms and excluded reflections that would be unmea- 
surable for a 2 x 4 unit cell, i.e. the A and B axes 2 and 
4 times, respectively, the primitive surface 1 x 1 lattice 
dimensions, thereby excluding reflections 2n, 4m, which 
include a number of the strongest reflections (see Table 
2). Model 3 was the same as model 1 but also had 
missing reflections for a 2 x 4 unit cell. In all of the 
above, Gaussian noise was added to the simulated data, 
representative of experimental conditions. How well the 
methods worked was gauged by a consistency term 
defined as 

Transform to real space. 

Electron potential/density map. 

Apply shaqoening operator. 

New electron potential/density map. 

Transform to reciprocal space. 

I Un+l(k)  ] New amplitude and phase estimates. 

; IU.+t(k)[ > tolerance~ -lU~(k)leiO(k) ;Otherwise / 

Return FOM and initial 
phases for n=0 to 
Genetic Algorithm. 

Final result is Unq(k ) 

Fig .  1. F l o w  d i a g r a m  for  t he  m e t h o d s  d i s c u s s e d  he r e in .  T h e  s h a r p e n i n g  
o p e r a t o r  is c o m p l e t e l y  g e n e r a l .  

CFOM = ~' lg(k)l(lk -- cos 0 ) / ~ ' [ U ( k ) l  (14) 

at the end of a given iteration cycle, with 0 the angle 
between the true and algorithm-determined phases. For 
reference, this is similar to 1 -  X, where X is the 
normalized cross-correlation coefficient, albeit a more 
robust form that will pay more attention to phase errors 
in the weaker reflections. A given method can be 
considered to work well if there is a strong correlation 
between small FOM and small CFOM values: if the 
CFOM is zero, a full restoration rather than an 
approximate map has been achieved; if the FOM is 
small but the CFOM large, the method has found an 
incorrect solution. 

The final set (model 4) was experimental X-ray data 
for the S i ( l l l )  7 x 7 surface (Robinson et al., 1986), a 
centrosymmetric p 6 m m  cell. While this surface contains 
only one type of atom, in projection there are overlaps. 
Furthermore,  the strongest beams for the surface lattice 
(3-6 times stronger than any others) coincide with bulk 
220 reflections and are unmeasurable. We permuted all 
combinations of the strongest ten reflections and will 
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Table 1. Atom positions within the unit cell 

a = 7.68, b = 15.36 ~k, Y = 90°. 

x y 

0.5~- 0.28t 
0.51" 0.72t 
0.19 0.0 
0.81 0.0 
0.29 0.5 
0.71 0.5 
0.5 0.15 
0.5 0.85 
0.0 0.117 
0.0 0.307 
0.0 0.693 
0.0 0.883 

"~ In model  1 and model  3, these atoms are indium and the rest are 
silicon. 

Table 2. The 30 strongest structure factors for models 
1-3; model 1 is the same as model 3 with the missing 

reflections included 

h k Models 1 and 2 Model 3 

2 2 0.316569 0.369099 
2 0 0.261807t 0.315425t 
4 0 0.243135t 0.294317t 
0 5 0.230172 0.272069 
0 7 0.19207 0.231195 
2 7 0.175555 0.209605 
2 5 0.188602 0.209008 
1 9 0.114184 0.189854 
1 2 0.072682 0.182747 
6 0 0.133009t 0.170699t 
0 4 0.117841t 0.164648t 
3 7 0.122018 0.159623 
0 6 0.190422 0.152341 
4 5 0.1464 0.147433 
6 7 0.06872 0.130556 
5 9 0.092332 0.124187 
0 8 0.123191t 0.120740t 
2 4 0.203030t 0.118838t 
3 11 0.051 0.118047 
1 4 0.063744 0.117468 
4 7 0.074547 0.113024 
0 10 0.135422 0.107284 
4 2 0.076938 0.107225 
2 12 0.084765t 0.1038t 
0 1 0.104691 0.101061 
3 0 0.015168 0.09692 
0 .9 0.026972 0.094193 
1 7 0.027356 0.093642 
0 2 0.012494 0.091613 

t Missing reflection for model  2 and model  3. 

show later how the true solution ranked among these in 
terms of the FOM. 

These models are deceptively simple; even though 
they contain relatively few atoms there are far less 
triplet relationships than with a three-dimensional data 
set so classical probabilistic methods will have 
problems. A conventional direct-methods package 
(MITHRIL) had great difficulties even with model 1, a 

point that we will return to in the discussion. There are 
also significant holes in the data for the last three 
models. To illustrate the latter, Table 2 lists the stron- 
gest reflections for models 2 and 3 with the unmeasur- 
able ones marked. 

4. Results 

4.1. Model I 

For this model, the simple 'unitary Sayre' method 
[equation (2)] was not very efficient, while the 
minimum-entropy method worked very well. (We will 
return in the Discussion to one way that the Sayre 
method worked.) Shown in Fig. 2 are plots of the FOM 
versus the CFOM for the two. With the minimum- 
entropy method, the restoration is of sufficient quality 
that one is reconstructing the surface potential to a high 
degree of accuracy. 

4.2. Model 2 

For this model, the Sayre method was reasonable; 
two basic solutions were found, one of which is the 
correct one. While the solutions are not as good as for 
the minimum-entropy method and model 1, it would be 

[] Sayremethod ] 
o Minimum Entropy Method 

M o d e l  1 
0.6 . . . .  , . . . .  , . . . .  , . . . .  , . D .  • 

a ~ 

0.5 o 
o ~ 

cP 

0.4 o o ~ . ~  

uO~ 0.3 ° o, , ~  

0.2 

2 4o o 0.1 

o , ~~°~ °°° 
0 " '~'~ . . . . . . . . .  ! . . . . .  ' ' ' 

0.15 0.2 0.25 0.3 0.35 0.4 

F O M  

Fig. 2. Plot of the figure of merit  (FOM) calculated using unitary 
structure factors and robust fitting [m = 1; equation (6)] v e r s u s  a 

'correctness '  factor (CFOM), which compares  the calculated 
solution to the true solution [equation (8)] for model 1. The tail 
of values with low CFOM and F O M  values indicates that the 
minimum-entropy method is achieving a full restoration of the 
phases. 
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T a b l e  3. Position o f  the correct solution within the final list o f  generated solutions based on the estimated number o f  
atoms within the unit cell 

Cube: O(u(r)) = u(r) 3. Sayre: O(u(r)) = u(r) 2. Min Ent  1: [equation (5)] C = 1. Min Ent  0.5: [equation (5)] C = exp(0.5). S.E: FOM calculated 
using robust form (m = 1) with structure factors. Unitary: FOM calculated using robust form (m ---- 1) with unitary structure factors [equation 
(6)]. 

Cube Sayre Sayre M i n E n t  1 Min Ent  1 M i n E n t  0.5 Min 
S.E • • • • 
Unitary • • 
No. of atoms 

50 25 100 132 5 5 7 5 
60 19 103 111 4 4 6 5 
70 33 60 87 4 4 3 3 
80 34 69 86 3 3 1 1 
90 18 67 83 7 4 2 2 

100 7 70 82 6 3 4 2 
110 7 22 41 7 2 2 2 
120 6 21 35 1 1 2 1 
135 2 69 98 1 1 2 2 
150 2 86 102 1 2 3 2 

Ent  0.5 

simple to complete the solution. Similarly, the 
minimum-entropy method was adequate; both cases are 
shown in Fig. 3. 

4.3. Model 3 

In this case, we were completely unable to find 
anything close to the correct solution using the Sayre 
method, no matter  what variants were attempted in 
terms of the FOM. In contrast, the behavior of the 

0.7 

[] Sayre Method [ 
o Minimum Entropy Method I 

Model 2 

i . . . .  i • 

0 

L) 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

° ~ ° 

0 

0 0 

0 [ ]  

0 

[ ]  

O 

c9 ° 
o 

%[] 
[ ]  

q~o% [] [] 

[] 

0 . . . .  ! . . . .  | ' • ' ' I , , , , 

0.25 0.3 0.35 0.4 0.45 

F O M  

Fig. 3. Plot of the FOM versus CFOM for model 2. Both methods are 
finding reasonably good CFOM values (<0.1) indicating correct 
assignment of the majority of the phases. 

minimum-entropy method was adequate. Both sets of 
results are shown in Fig. 4, and we should note that the 
plot is a little too pessimistic in appearance; many 
different initial phases gave the same final phases so the 
probability of obtaining the correct solution was much 
higher than might appear  to be the case. There were 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

[] Sayre Method (+0.055) 
o Minimum Entropy Method 

M o d e l  3 

. . . .  0000~0 ~ .  " C) ~ ' []' . . . .  g~~l]]]i,• ' I 

o o° 
o~ 

0 

~ 0 O , - - K )  

0 

. . . .  ! . . . .  i . . . .  ! , I , 

0.25 0.3 0.35 0.4 0.45 

F O M  

Fig .  4. Plot of the FOM versus CFOM for model 3. An absolute value 
of 0.55 has been added to the value of the FOM for the Sayre 
method so as not to overlap. The tail of low CFOM values for 
relatively low FOM values with the minimum-entropy method 
corresponds to the correct solution that could be found by 
analyzing in more detail the top four solutions as discussed in the 
text. 
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Fig. 5. Phase maps of the first four (a)-(d) unique solutions 
within the final set of calculated phases for model 3 
compared to (e) the true solution. 
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only four solutions (see Fig. 5), two of which could be 
eliminated based on the low, noisy contrast character of 
the solutions (Figs. 5b and c). This leaves two unique 
solutions, which can be then be analyzed quantitatively 
to determine the correct one. A situation with more 
than one type of atom and strong reflections obscured 
by bulk diffraction spots will be the hardest case to 
solve. Note that we have assumed here nothing about 
the unit-cell contents, using the normalization A = 1 
from equation (13); if the correct normalization is used, 
this shifts the low CFOM values to lower FOM values. 
In other words, with correct normalization the FOM 
versus  CFOM curve would resemble those in Figs. 2 and 
3 - but this involves assumptions that one may not be 
entitled to make. 

reflections are unmeasurable and there are no E2 
relationships. While the top six solutions were noise 
solutions, the seventh is very close to the true solution 
and of rather good quality - see Fig. 6. This directly 
corroborates our theoretical conclusions with the 
extreme cases where there are strong unmeasurable 
reflections (model 3). How well it will work in general, 
particularly for cases similar to model 3, remains to be 
seen, although one can also superimpose branching 
strategies setting certain beams (e.g. using E1 condi- 
tions). Preliminary tests indicate that it is also quite 
viable with three-dimensional data, for lower-resolution 

4.4. M o d e l  4 

Similar to model 3, the Sayre method did not come 
close but the minimum-entropy method worked for 
C = 1 or exp(0.5). [The value C =  exp(1.0) failed 
completely.] To explore this in more detail, we exam- 
ined the results in terms of the number of atoms (an 
input parameter)  in the unit cell - see Table 3. For the 
' true'  number of atoms, 102, both values of C are good 
but the larger value is much more tolerant of errors in 
the number of atoms and therefore much more robust. 
(However, it was worse for model 3.) 

5.  D i s c u s s i o n  

Our results indicate that the minimum-entropy method 
is a robust method for solving surface problems, 
certainly superior to a simple Sayre method. The 
minimum-entropy method shares some similarities with 
maximum entropy with substantial non-linearities and 
some fundamental differences from traditional direct 
methods. It would be too strong to state that conven- 
tional direct methods will never work for surfaces; all 
the packages that we have been able to find are tuned 
for three-dimensional data and cannot be tested. Based 
upon testing with M I T H R I L  code, we can confidently 
state that they will not work in a routine fashion - 
perhaps after modification they will. How viable 
sophisticated Patterson search algorithms will be is also 
unknown at present, a good topic for future work. 

After  completing this work we used the minimum- 
entropy method for Au on an S i ( l l l )  6 x 6 surface 
(Marks et al., 1998), p3 with twinning, and were able to 
determine approximately half the atoms from the initial 
phasing when other methodologies were not effective. 
More recently, it has been applied to many more 
surface data sets (about 12), both ones that had 
previously been solved by Patterson methods and 
unsolved ones. One noteworthy example is for Bi on an 
InSb( l l0 )  2 × 1 surface (Van Gemmeren et al., 1998). 
This is the extreme pathological case where 50% of the 
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Fig. 6. Phase maps showing the top solution in (a) and the seventh 
solution in (b) using experimental data for Bi on an InSb( l l0)  
2 x 1 surface. 
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molecular  envelope data or even three-dimensional  
surface diffraction data. 

A few addit ional  comments  are appropriate  about  
some of the technical numerical  aspects of imple,  
ment ing the algorithm. Our experience is that  obtaining 
an accurate form of the window function satisfying 
equat ion  (10) is very important .  A default Gaussian 
form adjusted to optimize for a complete set of reflec- 
tions out to some cut-off works well and can normally 

• be i terated to a more  accurate form. However ,  some- 
times this i terat ion will not  work (a topic for fur ther  
work). With the window, the algori thm behaves similar 
to a simple convolution,  so array sizes of 3N x 3M are 
all that  are needed  to avoid aliasing effects with N and 
M the largest 'h '  and 'k '  values in the set of h , k  
reflections used in two dimensions. (The same" appears 
to hold in three dimensions.) For reasons that  are not  
completely obvious to us, square pixels in real space are 
ra ther  important;  we suspect that  this eliminates astig- 
matism or other  aberrat ions that  will arise with uneven 

sampl ing .  Except  for cases with strong unmeasured 
reflections, the best solution generally has very small 
r.m.s, phase errors, with a cross-correlation coefficient 
of 0.9 or higher (CFOM < 0.1) relative to the true 
structure. This is enough to enable conclusions about  
the structure to be made just f rom the maps alone, 
critical in practice. 
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Fig. 7. Plot of the average FOM and CFOM in arbitrary units for a 
given population versus number of chromosomes treated. A 
chromosome refers to a set of assigned phases. A population is a 
previously determined number of chromosomes that are treated as 
a group and allowed to 'evolve' to a final collection of. 
chromosomes consisting of the best solutions based upon the FOM. 

The me thod  itself is not  necessarily unique and other  
variants are possible. For instance, one can use a higher 
power before the logari thm and we have exper imented 
a little with this. Values of 1.25 or 1.5 seem to be useful, 
a l though it is not  clear that  they are better.  An  inter- 
esting avenue for future work is to pose the sharpening 
operator  O in terms of a calculus of variat ion problem 
and look for the 'opt imum'  value. 

A comment  should be made concerning another  
possible strategy. Consistently, we found that  the Sayre 
method  (and sometimes the minimum-ent ropy algor- 
i thm) came close to the correct solution when only a 
limited number  of permutat ions  were considered, but  
the overall  FOMs for a more comprehensive analysis 
were sometimes not  so good, see Fig. 7. This indicates 
that,  in terms of an N-dimensional  phase hypersurface, 
the minima associated with the true phases are large in 
area al though not  that  deep. The probabil i ty  of finding 
a part icular solution in M trials depends not  only upon 
the F O M  but implicitly upon the selvage regions from 
which other  phases will convert  (via the tangent  
formula) into it, i.e. an area-weighting term in the 
hyperspace. It should be possible to construct an 'area- 
weighted'  F O M  which might be very powerful,  a topic 
for future research. 
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