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Au 6× 6 ON Si(111): EVIDENCE FOR A 2D PSEUDOGLASS
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The atomic structure of the Au 6 × 6 on Si(111) phase has been determined using direct methods
and surface X-ray diffraction data. This surface structure is very complicated, with 14 independent
gold atoms, relaxations in 24 independent silicon sites and three partially occupied gold sites. In one
sense the structure can be described as microdomains of the parent

√
3×
√

3 Au on Si(111) structure.
A better description is in terms of a tiling of incomplete pentagonal and trimer units, essentially a
pseudopentagonal glass. In terms of these structural units it appears possible to explain all the gold
structures in the coverage range of 0.8–1.5 monolayers as pseudoglasses with strong short range order
but varying degrees of long range order.

The gold on Si(111) surface in the coverage range of

0–2 monolayers (ML) has been extensively studied,

but many of the details are still unclear and the

underlying physics uncertain. Below 1 ML two dis-

tinct phases, the 5×21 and
√

3×
√

3
2

structures, are

known to exist. Both of these are stable to tem-

peratures far in excess of the bulk eutectic melt-

ing point of 363◦C. In the range of 1.0–1.5 ML

(and perhaps with slightly lower coverages), diffrac-

tion experiments show strong
√

3×
√

3 intensities and

additional diffuse or ordered structures.3–8 The best

defined of these is the Au 6 × 6 structure at around

1.4 ML coverage which forms very close to the bulk

eutectic temperature. At higher coverages gold par-

ticles form, probably Stranski–Krastanov growth.9,10

It should be noted that quenching the bulk eutectic

is known to produce a glass11 which appears to crys-

tallize at similar temperatures into a number of yet

poorly determined phases.12–14 Furthermore, there is

some evidence from XPS15 and diffraction16,17 for a

gold-silicide.

Understanding the Au 6 × 6 structure can shed

light on the transition from a 2D surface to a

more bulklike behavior. Furthermore, because the

temperatures are very close to the bulk eutec-

tic and glass formation/crystallization temperatures,

unusual phenomena may be present. For instance, in

this temperature/coverage range strong homoepitax-

ial growth of silicon has been observed.18 A previous

attempt to look at this surface using X-ray diffrac-

tion data and a Patterson approach was at best only

partially successful.4 STM studies indicate, at a gold

coverage slightly above 1 ML, sets of three maxima

surrounded by triangular domain walls and a num-

ber of bright “protrusions.”19 At a higher coverage

(1.4 ML), another STM paper8 suggested a slightly

different structure — a rectangular array of protru-

sions with a smaller periodicity than the 6 × 6 unit

cell.

We have recently shown that direct methods can

be used to solve surface structures.20–24 We report

here their use to determine the atomic structure of
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the Au 6× 6 surface.

Details of the collection of the X-ray intensity

data have been previously reported4 and will not be

described herein. A total of 139 independent inten-

sities in p6mm and 248 for a plane group of p3 were

used. For the direct methods we used a minimum en-

tropy unitary Sayre method coupled with a genetic

algorithm for global optimization, more details of

which are given elsewhere.23,24 In essence, the ap-

proach finds the most ordered charge density maps

consistent with the experimental intensities; the out-

put is a number of plausible solutions with a robust

likelihood for each. With small experimental mea-

surement errors, a complete set of intensities and

little nonkinematical scattering (for example from

subsurface strains), these maps will be rather accu-

rate reconstructions of the two-dimensional charge

density. More often, only part of the structure will

be identified in the initial analysis, the case herein.

Working from such an initial fragment, the full

structure was determined by combining iterative

steps of refinement (of the atomic positions) and

heavy atom holography1 to determine new sites. For

reference, in p3 symmetry incoherent twin domains

were assumed yielding p6mm Patterson symmetry.

Shown in Fig. 1 is an initial fragment with about

20 gold atoms, found among the top solutions us-

ing p3 symmetry. While not obvious in the initial

stages of the analysis, all the top solutions in both

p3 and p31m symmetry showed 20 or more of the

gold atoms. Building from this structure we were

able to generate the gold framework shown in Fig. 2,

a total of 14 independent sites (42 atoms without

the partially occupied sites). In terms of an R factor

defined as

R =
∑ |Icalc(h, k)− Iexpt(h, k)|∑

Iexpt(h, k)

and reduced χn as

χn =
1

M −N
∑∣∣∣∣Icalc(h, k)− Iexpt(h, k)

σ(h, k)

∣∣∣∣n , (1)

with M data points each with errors σ(h, k) and N

variables, this structure gave R = 0.25 and χ2 = 50.

While the χ2 is rather high, it is more than two or-

ders of magnitude better than that found in a pre-

vious analysis.25 A strong possibility exists that the

experimental results were obtained from a two-phase√
3 ×
√

3 and 6 × 6 mixture; eliminating reflections

Fig. 1. Contour map of the initial fragment first used
with the primitive unit cell indicated by solid lines and
excluding negative contours. Including the peak at the
origin which turned out to be only partially occupied,
the peaks are very close to gold positions in the final
refinement, and three weaker silicon peaks are also ob-
servable. One of the three symmetry-equivalent Si peaks
is arrowed; all the other peaks corresponds to Au sites.
Other maps showed different fragments of the total
structure.

which overlap with the
√

3×
√

3 reduced χ2 to about

32 and R to 0.2. (This reduced only slightly the

number of reflections, from — in p3 — 248 to 234.)

Adding a single silicon layer reduced these again

by about a factor of 2; similarly a second silicon

layer reduced χ2 to about 8. Based upon previ-

ous work2 with the
√

3 ×
√

3, the relaxation ex-

tends several layers into the substrate. However, in

p3 symmetry there are only 234 reflections (about

half of these independent), so including large num-

bers of silicon atoms (12 per layer) is not justifiable

in terms of the number of measurements. To com-

pensate for not including all subsurface atoms, the

more robust form χ was used. [This corresponds

to n = 1 in Eq. (1), and is less sensitive to out-

liers in the data.] For one layer of silicon we ob-

tained χ = 2.7; for two, χ = 2.0. Including partial
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Fig. 2. Diagram of the structure, with the primitive unit cell indicated by solid lines and the notation Au-p for the
partially occupied sites. The second layer silicon atoms are only slightly displayed from bulk sites — see Table I. The
structure can be described in terms of incomplete pentagons and trimer units, or the two-gold-ring configurations A
and B discussed in the text. One of the rectangular units observed in domain boundaries of the

√
3×
√

3 structure is
shown.

occupancy at the three special sites (0, 0), (1/3, 2/3)

and (2/3, 1/3) and expanding the subsurface strain

field as the gradient of a two-dimensionally periodic

harmonic26,27 had a large effect, yielding χ2 = 3.8

and χ = 1.7, with a partial occupancy of approxi-

mately 0.5 (total coverage of 1.2 ML). For refernce,

no other solutions came close.

Atom positions for two silicon layers and some

of the calculated and experimental intensity values

are shown in Tables I and II respectively; for a more

complete set see Ref. 25. For the atoms positions we

averaged four calculations, two each using χ2 and

χ, with two different registries for the third layer of

silicon atoms, and then we used these to determine

the errors. The gold site errors are about 0.01 Å, the

silicon about 0.05 Å. However, since the gold Debye–

Waller factor refined to a rather high value (0.16 Å

RMS displacement) implying substantial static dis-

order (consistent with partial occupancy), a multi-

plicative factor of 2–3 on the errors might be appro-

priate. Most of this is almost certainly rotation of

the gold trimers, similar to the
√

3×
√

3.2 We were

not able to refine the surface silicon Debye–Waller

term, which tended to drop to unreasonable values,

implying more subsurface relaxations than can be

matched with the available data.



462 L. D. Marks et al.

Table I. Average atomic positions with 14 gold sites and
two Si layers (24 sites). Only two-dimensional diffrac-
tion data were available, so no heights could be refined.
Values for the errors (δX, δY ) as well as the displace-
ments from bulk sites for the subsurface silicon atoms
(∆X,∆Y ) are given.

Gold Debye–Waller factor (B) = 1.98 (0.02)

Occupancy of special (protrusion) sites = 0.504 (0.004)

Gold sites:

X δX Y δY

0.3435 (0.0012) 0.8670 (0.0005)

0.3090 (0.0005) 0.3018 (0.0002)

0.1852 (0.0006) 0.1804 (0.0011)

0.8647 (0.0004) 0.3488 (0.0003)

0.2545 (0.0005) 0.0315 (0.0008)

0.4470 (0.0007) 0.3553 (0.0005)

0.9560 (0.0003) 0.0926 (0.0007)

0.6276 (0.0003) 0.2048 (0.0005)

0.4712 (0.0004) 0.8840 (0.0005)

0.0089 (0.0006) 0.3582 (0.0001)

0.2501 (0.0003) 0.7164 (0.0015)

0.7832 (0.0003) 0.8687 (0.0002)

0.4523 (0.0008) 0.2356 (0.0007)

0.5880 (0.0004) 0.8725 (0.0003)

Silicon layer 1:

X δX ∆X(Å) Y δY ∆Y (Å)

0.0309 (0.0021) −0.569 0.9320 (0.0026) −0.286

0.4116 (0.0009) 0.524 0.6237 (0.0014) 0.291

0.7445 (0.0014) 0.512 0.3147 (0.0032) 0.850

0.3681 (0.0024) 0.478 0.1072 (0.0006) −0.090

0.3577 (0.0043) −0.719 0.2350 (0.0021) −0.985

0.2369 (0.0036) 0.338 0.1390 (0.0083) 0.643

0.1960 (0.0031) −0.604 0.3002 (0.0042) 0.517

0.1738 (0.0024) −1.115 0.3970 (0.0017) −1.093

0.0908 (0.0008) 0.812 0.3398 (0.0021) 1.428

0.5261 (0.0001) −0.679 0.4502 (0.0008) 0.133

0.5798 (0.0049) 0.558 0.5665 (0.0049) −1.027

0.3955 (0.0010) 0.152 0.4152 (0.0015) −0.674

Silicon layer 2:

X δX ∆X(Å) Y δY ∆Y (Å)

0.0582 (0.0002) 0.060 0.1099 (0.0007) −0.028

0.2220 (0.0004) −0.005 0.6090 (0.0001) −0.049

0.7198 (0.0001) −0.056 0.4453 (0.0012) 0.019

0.2249 (0.0006) 0.061 0.1144 (0.0002) 0.076

0.3882 (0.0007) −0.015 0.1113 (0.0007) 0.004

0.3870 (0.0010) −0.044 0.2756 (0.0006) −0.050

0.0570 (0.0002) 0.033 0.2832 (0.0006) 0.125

0.2211 (0.0002) −0.027 0.2794 (0.0007) 0.038

0.2189 (0.0001) −0.077 0.4392 (0.0007) −0.122

0.3926 (0.0007) 0.086 0.4408 (0.0008) −0.083

0.5545 (0.0014) −0.024 0.4469 (0.0015) 0.057

0.5591 (0.0010) 0.081 0.6086 (0.0010) −0.057

The most interesting aspects of the structure is

that it is astonishingly simple, and at the same time

complicated. There is a strong relationship to the

parent
√

3×
√

3 with three sets of three gold trimers.

More interesting is the structure of the additional

gold atoms which form incomplete pentagons and

trimer units; if all the special sites were occupied,

complete pentagons would be formed. Every gold–

gold separation is close to 0.28 nm, the bulk gold in-

teratomic distance. At the center of these incomplete

pentagons, probably at the lower apex of a pentago-

nal prism, are the silicon atoms of the next layer.

In a number of cases silicon atoms are separated

by 0.2 nm, implying the presence of second layer

dimerization.

The correspondence at a qualitative level between

the structure and the STM images8,19,28 at lower co-

verages is good. Similar to the parent
√

3×
√

3, the

trimers are not properly resolved, and the protru-

sions are the partially occupied special sites — these

match the STM images not only in location within

the unit cell but also in terms of their local symme-

try. The overall symmetry of the structure is close

to p31m, again matching well the STM images. The

trimers are arranged in rectangular arrays (Fig. 2)

which have previously been observed in the domain

walls in the
√

3 ×
√

3 structure, where they become

more abundant with increasing coverage8 and the√
3×
√

3 LEED pattern more diffuse. This suggests

that the domain walls in the
√

3×
√

3 break up with

increasing coverage and recognize as part of the 6×6

structure.

This structure is remarkably similar to what

would be expected for a two-dimensional glass with

pentagonal units, trimers and a rather fixed gold–

gold separation. To understand this, note that the

structure can be considered as a combination of the

two Au ring structures A and B in Fig. 2 surround-

ing three silicon atoms in the next layer, with two

rotational variants of B. Both rings sit at
√

3 ×
√

3

lattice sites, the particular configuration shown giv-

ing the 6×6 structure; pure A units (with vacancies)

will give the known
√

3×
√

3 structure. Other tilings

will yield a combination of trimers and incomplete

pentagon units breaking the long range order to pro-

duce a glasslike structure. However, this would not

be a true glass, because relatively sharp diffraction

spots will be obtained at the
√

3×
√

3 unit cell recip-

rocal lattice points, with diffuse scattering elsewhere
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Table II. List of the intensities of the stronger reflections (using crystal-
lographic notation, not fractional indices), the corresponding calculated
values, the weighted error and absolute errors for χ2 = 3.8.

H K Expt. Calc. Wt. Err. Abs. Err.

7 2 0.488E + 02 0.489E + 02 −0.330E − 01 −0.134E − 01

8 1 0.469E + 02 0.449E + 02 0.285E + 01 0.200E + 01

9 0 0.311E + 02 0.304E + 02 0.241E + 01 0.767E + 00

7 3 0.229E + 02 0.228E + 02 0.254E + 00 0.866E − 01

9 7 0.208E + 02 0.205E + 02 0.556E + 00 0.279E + 00

5 5 0.175E + 02 0.173E + 02 0.609E + 00 0.190E + 00

6 3 0.128E + 02 0.131E + 02 −0.132E + 01 −0.344E + 00

4 3 0.117E + 02 0.120E + 02 −0.183E + 01 −0.296E + 00

8 0 0.862E + 01 0.896E + 01 −0.132E + 01 −0.345E + 00

9 1 0.937E + 01 0.964E + 01 −0.995E + 00 −0.263E + 00

11 5 0.122E + 02 0.124E + 02 −0.608E + 00 −0.179E + 00

13 2 0.111E + 02 0.111E + 02 −0.580E − 01 −0.174E − 01

14 1 0.993E + 01 0.119E + 02 −0.303E + 01 −0.195E + 01

10 6 0.873E + 01 0.883E + 01 −0.462E + 00 −0.993E − 01

10 7 0.810E + 01 0.768E + 01 0.190E + 01 0.421E + 00

16 1 0.793E + 01 0.817E + 01 −0.595E + 00 −0.238E + 00

7 5 0.718E + 01 0.610E + 01 0.437E + 01 0.108E + 01

6 5 0.689E + 01 0.454E + 01 0.184E + 01 0.235E + 01

15 4 0.596E + 01 0.642E + 01 −0.118E + 01 −0.460E + 00

15 0 0.592E + 01 0.622E + 01 −0.922E + 00 −0.298E + 00

3 5 0.584E + 01 0.598E + 01 −0.599E + 00 −0.143E + 00

in agreement with experimental data.3–8 We hypoth-

esize that the whole coverage range of 0.8–1.5 ML is

really a surface solution pseudoglass. As such it is

a two-dimensional analog of the bulk glassy state,

which may well have similar structural units.

Many questions remain open about this struc-

ture. It would obviously be good to obtain more pre-

cise information about the silicon sites, which would

require collection of a larger data set using either

X-ray or transmission electron diffraction. (Elec-

tron diffraction will be more sensitive to the sili-

con sites.) We also suspect that there may be other

ordered structures, and there is some evidence al-

ready for this from electron diffraction6 and STM

data.8 Aside from the structural aspects, an in-

triguing question is the character of the electronic

states in this two-dimensional structure. In addi-

tion to standard surface-spectroscopic techniques,

matching the already available STM data at differ-

ent biases with theoretical calculations would be very

interesting.
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