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This paper reviews recent progress in the application of Direct Methods to solve surface structures using
surface X-ray or transmission electron diffraction data. The basic ideas of (crystallographic) Direct
Methods are presented, as well as the additional problems posed by trying to apply them to surfaces
and how they connect to the mathematical theory of projections. Surface crystallography notation
is presented, which differs from the widely used LEED notation in that it emphasizes the surface
symmetry. This is followed by a description of methods for structure completion and refinement,
followed by applications to some experimental systems, both those where the structure was previously
known (calibration tests) and a few where it was not, concluding with problems and limitations.

1. Introduction

To determine a surface structure, almost without ex-

ception the following strategy has been pursued to

date: a set of experimental measurements is com-

pared to models of the surface. The latter may be

just approximate positions of the atoms accurate to

perhaps 0.1 Å, or the positions may be varied to ob-

tain the best fit. Using some criteria of the “goodness

of fit,” which model can best explain the experimen-

tal data is determined and described as best. While

this is a powerful approach, it has one fundamental

flaw: if the true structure does not belong to the

set of models initially considered, then it will (al-

most without exception) never be found. With a

simple system such as carbon monoxide on a nonre-

constructed metal surface in a 1 × 1 or 2 × 1 cell,

there are only a few possibilities. However, as the

number of atoms in the cell increases, it rapidly be-

comes impossible to consider all the alternatives.

To overcome this problem, one has to be able

to start from something rather close to the cor-

rect structure, then refine the atomic positions.

Many techniques can do the latter step rather pre-

cisely if the initial positions are no more than 0.1–

0.2 Å off. Patterson functions are one way of generat-

ing the initial guess since they give information about

interatomic spacings, but can be difficult to use

with complicated structures. An alternative is to

use a real space imaging technique such as STM,1–5

AFM5 or HREM.6–9 However, all have their prob-

lems. With STM and AFM not all atoms may be

resolved and it can be difficult or impossible to tell

the chemical nature of “features” in the images. As

such, while they may constrain the symmetry of the

structure, they may not give the required estimate of

the atomic positions. HREM images are much easier

to interpret, and do give atomic positions to the re-

quired level of accuracy. However, they suffer from

substantial noise problems due to weak signals, al-

though this will improve in the future with the use

of brighter sources.

For bulk X-ray diffraction exactly the same issues

were faced some years ago, and they have largely

been solved by what are called Direct Methods.10–12

Direct Methods can be broadly defined as the set

of methods which provide an initial estimate of the

atomic positions. As such they include Patterson-

based techniques as well as (in a surface context)

approaches such as Photoelectron Holography.13–21

In a more crystallographic setting Direct Methods

are a set of mathematical techniques for determining

the phases of diffracted beams given only amplitude
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Table I. List of surface structures solved by Direct
Methods. ∗ marks structures analyzed as calibration
tests.

Structure Data Reference

Si(111)-(
√

3×
√

3)R30◦Au∗ electron 22

Si(111)-(5× 2)Au∗ electron 22

Si(111)-(7× 7)∗ electron 23

Si(111)-(4× 1)In electron 24

Si(111)-(6× 6)Au X-ray 28

TiO2(100)-(1× 3) X-ray 29

Si(111)-(3× 1)Ag electron 25

Si(111)-(
√

3×
√

3)R30◦Ag∗ electron 30

Ge(111)-(4× 4)Ag X-ray 31

MgO(111)-(
√

3×
√

3)R30◦ electron 32

MgO(111)-(2 × 2) electron 32

MgO(111)-(2
√

3× 2
√

3)R30◦ electron 32

Ni(111)-(5
√

3× 2)S∗ X-ray –

Cu(111)-

∣∣∣∣ 4 1
−1 4

∣∣∣∣S∗ X-ray –

Cu(110)-p(4× 1)Bi∗ X-ray –

information, the square root of the measured inten-

sities. In general they are much more powerful than

Patterson techniques and at the time of writing have

been used to solve three-dimensional structures con-

taining more than 1000 independent atoms. Until

very recently it was thought that these could not be

used for surfaces, but we have lately been able to

use them not just in two dimensions22–25 but (very

recently) for full three-dimensional solutions.26

In this review we will focus upon a general de-

scription of the method, primarily cases where the

structure had already been determined by other tech-

niques; cases where the structure was determined

solely via direct methods will be included only if they

are already in print. The structure of this review is

as follows. The first section describes the basic ideas

of (crystallographic) Direct Methods, as well as the

additional problems posed by trying to apply them

to surfaces. The next section describes a more gen-

eral, and powerful, description using the method of

Projection onto Sets.27 After this we will describe

briefly (for reference) surface crystallography nota-

tion in a conventional fashion, which differs from the

widely used LEED notation for important reasons.

This is followed by methods for structure comple-

tion and refinement, then applications to some ex-

perimental systems, both those where the structure

was previously known (calibration tests) and oth-

ers where it was not; Table I shows a list of cases

where it has been applied to date with appropriate

references.22–25,28–32 We conclude with a description

of (current) problems and limitations, which hope-

fully will be resolved in the future, with a short dis-

cussion at the end.

2. Basics

2.1. What are Direct Methods?

We have a set of M (experimental) diffraction inten-

sities, and by taking the square root have the moduli

of the structure factors. The task we face is finding

values of the M phases to go with these moduli; when

this is done all that is required is to take a Fourier

transform to generate the real space potential (for

transmission electron diffraction) or charge density

(for X-ray diffraction), provided that we are dealing

with kinematical data which is a good approxima-

tion in both cases. (Except for the structure factors

there are few differences between the two; see also

the discussion.) Even in the simplest case, such as

a centrosymmetric structure (where the phase is ei-

ther 180◦ or 360◦), this sounds like an impossible

task since the number of possible permutations is

2M . However, the phases cannot be totally random,

which can be shown via many different routes, all

of which lead to similar conclusions. We will give

here a short description, based upon the idea that

the scattering comes from atoms.

Consider a material with only one type of atom.

The structure factor F (k) as a function of the recip-

rocal lattice vector k can be written as

F (k) =
∑
rl

f(k) exp(2πik · rl) , (1)

where the sum is over the positions of the atoms

r1 and f(k) is the scattering from a single atom.

(Throughout this paper we will use crystallographic

notation with “2π” in Fourier transforms, not physics

notation.) Dividing both sides by Nf(k), where N

is the number of atoms, we generate the equation

U(k) = F (k)/Nf(k) = 1/N
∑
rl

exp(2πik · rl) , (2)

with U(k) being called the unitary structure factor.

[When there is more than one type of atom, f(k) in



Direct Methods for Surfaces 1089

Eq. (2) should be replaced by the expectation value

for random atomic coordinates 〈f(k)2〉1/2. There

are also established methods in the literature for de-

termining and correcting for Debye–Waller factors;

we have yet to find a case where they work for sur-

faces.] Looking at the real space form of U(k) (after

a Fourier transform) u(r),

u(r) = (1/N)
∑
r1

δ(r− r1) , (3)

a set of delta functions at each of the atom sites.

Since the square of a delta function is also a delta

function,

u(r) = Nu(r)2 , (4)

or, in reciprocal space,

U(k) = N
∑
h

U(k− h)U(h) . (5)

Suppose that we already know the phases on the

right hand side of Eq. (5) but not on the left; we can

generate the phase for U(k) straightforwardly — this

is known as phase extension. Alternatively Eqs. (4)

and (5) represent a set of self-consistency equations

that the correct phases have to obey. For M un-

known phases there are M equations of the form of

(5); so, in principle, the problem is completely solved.

With real experimental data the situation is not

so simple; there are measurement errors and not all

the structure factors may have been measured. In

addition, not all the atoms are the same. More rigor-

ously, the “equal” signs above should be replaced by

the “probably equal” sign ≈, but the same concepts

hold. Crystallographic Direct Methods find plausible

solutions for the phases which are self-consistent in

some sense, with the degree of self-consistency mea-

sured by some Figure of Merit (FOM). Rather than

just finding one solution, a set of plausible solutions

is considered, and the corresponding real-space forms

called “maps.” It may only be necessary to consider

the solution with the best FOM and the map may

approach a true restoration of the phases (and real-

space charge density). In other cases (which will be

discussed below) not all the phases will be correct

but among the top solutions there will be enough of

the correct sites that the rest can be found. While

our experience is that the maps are generally exceed-

ingly good, approaching restorations, it is better to

be conservative about their interpretation:

(a) Not all the peaks are in exactly the right places

for the atoms, but are off by 0.1–0.2 Å;

(b) The heights of the peaks may be incorrect;

(c) There may be too few or too many peaks.

However, these maps represent a set of plausible

models for the structure against which to do a more

rigorous refinement.

For a good set of three-dimensional measure-

ments including all reflections to atomic scale

resolution (1.0–1.5 Å), the problem of obtaining

solutions is (probably) more limited by available

computer power than anything else. A surface repre-

sents a special case, in either two or three dimensions.

To understand this, it is important to discriminate

between what, in a LEED notation, are called the

fractional order reflections versus the integer order

reflections. While the top atomic layers with posi-

tions different from the bulk contribute substantially

to the first, for the integer orders there are large con-

tributions from the bulk atoms. One cannot sensibly

extract the structure factor for these integer reflec-

tions when it is superimposed on this typically far

larger bulk signal. While there are strategies being

developed both here and elsewhere to overcome this

issue, for the purpose of this paper we will consider

these as reflections for which both the amplitude and

the phase of the structure factor are unknown. A sec-

ond problem, one familiar to surface scientists (but

not crystallographers), is that one has only a very

poor idea of how many atoms there are in the unit

cell. For some material A on a substrate B, the num-

ber of A atoms might be known to an accuracy of

20%, but the number of B atoms could be almost

anything — this is of course an even more substantial

issue in a native reconstruction. Most available pro-

grams use the number of atoms as an input parame-

ter and find chemically reasonable arrangements (us-

ing typical interatomic distances and bond angles, for

instance), which is again not going to be the same for

a surface. Related to this, given an initial fragment,

say 50% of the atoms, there are a number of clas-

sical methods for finding the rest based upon com-

paring the experimental and calculated intensities.

With a surface there can be a substantial fraction

of the diffracted intensity arising from small subsur-

face relaxations; this is not accounted for in classical

methods. As a consequence finding the remaining

atoms is not so simple and at present requires manual
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intervention; doing this in an automated fashion in

the future is a challenge.

Of the surface data problems, the most severe is

the missing reflections. One can understand their ef-

fect via some simple arguments using an approach

similar to Eqs. (1)–(5). Let us subdivide the true

u(r) into two parts: um(r) for the measured reflec-

tions and uh(r) for the unmeasured reflections or

holes in the data. We can now write

um(r) + uh(r) = N{um(r) + uh(r)}2

= N{um(r)2 + 2um(r)uh(r)

+ uh(r)2} . (6)

Considering just the measured reflections in recipro-

cal space as Um(k),

Um(k) = N
∑
h

Um(k− h)Um(h)

+N
∑
h

Um(k− h)Uh(h) , (7)

assuming that the unmeasured reflections form a sep-

arate lattice. If the unmeasured reflections are small,

the second term on the right can be safely neglected;

if they are large it cannot be. What often happens

in practice is a Babinet solution,33 i.e.

u(r) = uh(r) − um(r) , (8)

as can be shown by looking at the roots of the

quadratic in (6) when uh(r) is large. This can of-

ten be recognized by negative regions which look like

atoms when only the measured set is considered.

For a surface we therefore have some set Mm of

measured reflections, and another set Mh of unmea-

sured reflections. This gives us a total of Mm + 2Mh

unknowns but only Mm equations. Classical Direct

Methods assume that all the strong reflections have

been measured and only consider relationships be-

tween the measured reflections. (In effect, unmea-

sured reflections are taken to have zero intensity.) As

a consequence they will (probably) fail completely

if there are large, unmeasured reflections. What

is needed instead are methods which in some fash-

ion include estimates for the unmeasured reflections

and/or work when there are not enough equations

for a formal mathematical solution. Fortunately such

methods already exist, and use the idea of exploit-

ing the entropy as a functional. The best-developed

of these is the “Maximum Entropy Method,”34–44

which maximizes the entropy S given as

S = −
∑

r

u(r) ln{u(r)} (9)

summed over the map in real space, coupled with

a constraint that the set of Um(k) values generated

have moduli close to that of the experimental data.

In effect they interpolate values for the unknown set

Uh(k), which gives a real-space form that maximizes

the entropy. The approach we have developed45 is

similar, and minimizes the relative entropy46 given

by

Sr =
∑

r

[u(r) ln{u(r)/e〈u(r)〉}+ 〈u(r)〉] . (10)

The maximum of Eq. (9) with no other information

is when u(r) = 〈u(r)〉, which minimizes (to zero) the

relative entropy of Eq. (10) for all values of r. Both

of these are highly nonlinear and as a consequence

have an in-built interpolation of the unmeasured re-

flections. The fact that the minimum of Eq. (10)

is zero has some algorithmic advantages, in that we

can use an iterative series solution where an updated

estimate is generated from the nth estimate via the

equation

un+1(r) = un(r) ln{un(r)/〈u(r)〉} un(r) > 0

= 0 un(r) < 0
(11)

[skipping the last term on the right of Eq. (10) since

we are not matching the mean], and the FOM is a

measure of how close the relative entropy is to zero

for the measured reflections:

FOM =
′∑
k

|Un(k)− αUn+1(k)|/
′∑
|Un(k)| , (12)

with α a scalar chosen to minimize (12) and the

prime notation indicating that U(0) is excluded from

the summations. Ideally the FOM will be zero for the

correct solution; in general it is small, in the range of

0.1–0.2. To strengthen the algorithm, we define the

unitary structure factors a little differently via

U(k) = W (k)F (k)/〈f(k)2〉1/2 , (13)

with the window W (k) chosen to satisfy (after

Fourier-transforming to real space)

w(r) = βw(r) ln{w(r)/〈w(r)〉} , (14)
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Fig. 1. Flow diagram of the Minimum Relative Entropy
algorithm. Initial phase values are controlled by the Ge-
netic algorithm for a global search; for the final calcula-
tion the best solutions found are used as input and the
final phases stored to produce the maps.

where β is a scalar. In effect this builds in a pattern

recognition element such that the relative entropy is

identically zero for a set of nonoverlapping identical

atoms (see next section for a better description). A

flow diagram for the whole process is shown in Fig. 1.

One useful extension of the above which is effective

in many cases is to add in some fragment or estimate

of the structure if this is already known. If e(r) is

this estimate, and retaining Eqs. (12) and (13) for

the FOM calculation an effective iteration process is

to use

un+1(r) = un(r) ln{un(r)/〈u(r)〉} un(r) > 0

+λe(r) ln{e(r)/un(r)}
= λe(r) ln{e(r)} un(r) < 0 ,

(15)

where λ is in principle a Lagrangian multiplier, al-

though setting it to one seems to be best. In effect,

this incorporates atoms into the structure at the po-

sitions of the initial fragment.

A very useful property of this algorithm is that

it will automatically generate values for the unmea-

sured reflections. While originally we did not use

these, setting them to zero after each cycle, it has be-

come apparent recently that these interpolated val-

ues are in fact quite good. (Why this is the case will

become clearer in the next section.) Unfortunately,

at least in two dimensions, we have not been able to

achieve substantive extrapolation to larger recipro-

cal lattice vectors (superresolution) while simultane-

ously determining the phases; to date the algorithm

is unstable. Connected to this, the problem of Babi-

net solutions can often be solved rather simply using

the interpolated values. In the first pass one gen-

erates stable values for the unmeasured reflections,

then flips the phase for the measured reflections by

180◦ to explore the possibility of a Babinet solution

with a better FOM in a second pass.

Such complicated mathematical methods are not

always needed, and sometimes structures can be

solved very easily. In many cases there are less

than M unknown phases since a simple translation

of the unit cell cannot change the contents. Ex-

cept when there are threefold rotational axes, one or

more phases can be arbitrarily specified to eliminate

simple translations. Further restraints are possible.

For instance, based upon the requirement that u(r)

be positive, constraints can be set via Determinants

connecting different phases.47 There is also what is

known as the Σ2 relationships,48,49 which state that

for two reflections k–h and h, the phase of φ(k) for

reflection k is given by

φ(k) ≈ φ(k–h) + φ(h) , (16)

with a probability of

P (φ(k)) = exp(K(k–h, h) cos(φ(k))/2πI0(K(k–h, h)) .

(17)

with

K(k–h, h) = 2/
√
N |E(k)E(k–h)E(h)| , (18)

and the normalized structure factors are defined as

E(k) = F (k)/{ε(k)
√
N〈f(k)〉} , (19)

and ε(k) is a statistical weighting50 that depends

upon the class of a given reflection in the space

group. Often the right hand side of Eq. (16) must be

360◦ (or 180◦ when glide planes are present). How-

ever, since we only have a probability, it is dan-

gerous to rely too much on these. With a few re-

flections specified to fix the origin and a few others

set as variables, one may be able to set up a set of
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relationships (called Symbolic Logic51) to determine

the structure on the back of an envelope — two ex-

amples will be given later for the Si(111)-(7× 7) and

Au on Si(111)-(
√

3×
√

3) surfaces.

As a final point, it should be noted that nowhere

in the above description has anything been said

about whether the data is two-dimensional or three-

dimensional. In fact, three-dimensional data tend to

be rather easier since the number of terms in the

convolution of Eq. (5) is larger and for some special

reasons that will be discussed below. However, for

almost any surface the (0, 0, `) reflections (z normal

to the surface) will be rather large and also depend

upon surface roughness. To date this does not ap-

pear to be a limitation although it is a concern (see

also next section).

The final component of any solution method is

a way to perform a global search to identify the set

of plausible solutions — remember, we are not in-

terested in the absolute minimum but the set of lo-

cal minima. Many methods exist in the literature,

the most common being assigning random phases,52

a systematic set of encoded phases for certain re-

flections using what are called “magic numbers,”53

error-correcting codes54 or simulated annealing.55,56

We have used a slightly different approach based

upon a genetic algorithm.57,58 A subset of the phases

is selected and these phases are digitized into a bi-

nary representation, with typically three bits (eight

values)representing a general phase which can be

anywhere from 0◦ to 360◦. The bits for each

phase (gene) are arranged into a string (chromo-

some) which represents one individual, and used as

starting values for a calculation. For a population

of such individuals the FOM is evaluated. These

individuals now act in pairs as parents of a new

generation of children using cross-linking to produce

the new children (see Fig. 2), with a weak weight-

ing to prefer parents with better (smaller) FOM’s.

The FOM for each of these children is now evalu-

ated, and then they are used to produce the next

generation. This rather simple-sounding algorithm

has some very powerful convergence properties due

to what is called the Schema Theorem.57 In effect,

if we produce N children from N parents, N2 phase

combinations are explored for only N FOM calcula-

tions. While some care has to be taken to adapt the

algorithm such that it will find multiple solutions,

rather than just one local minimum, in practice it

Fig. 2. Flow diagram of the Genetic algorithm routine.
“Minimum Entropy” operation refers to the flow diagram
shown in Fig. 1.

works rather well and is much faster than a random

search.

2.2. Projection onto Sets

A number of methods have been developed for solv-

ing the phase problem for images, parallel with but

independent of Direct Methods. These include some

mathematical results which are relevant to surface

problems. The basic idea is to use sets, and what is

called projection onto sets.27 We consider a set to be

those values which satisfy certain conditions or con-

straints. The set is termed convex if all points on the

line connecting any two members are also members,

and nonconvex if they are not. In a similar fashion,

the constraints which determine the character of a

given set can be called convex or nonconvex. A pro-

jection operator is defined to be the operation which

converts from one set to another. The mathematical

theory combining convex, nonconvex sets and iter-

ative projection between sets is called “Projection

onto Sets” and can be used to analyze some facets of

Direct Methods.
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Turning to the specific problem herein, we know

the amplitudes of the measured |U(k)| unitary struc-

ture factors; our problem is to find the phases φ(k),

such that

U(k) = |U(k)| exp(iφ(k)) . (20)

Let us consider the set of all possible values of U(k),

S1, which satisfies the above constraint on the mod-

uli. This set S1, is not convex, but the related set

where the phases are known (but not the moduli)

is convex. Let the projection operator P1 convert

the set S1 to a second set S2, for instance the set of

all possible maps which are positive at all points, a

convex set. Let P2 be the corresponding projection

operator from the set S2 back to the set S1. The

iterative sequence

Un+1(k) = P2P1Un(k) (21)

attempts to solve for the unknown U(k) using the

method of projection onto sets. If the two sets S1,

and S2, are both convex, the algorithm is known to

converge to the intersection of the two sets. Such

convergence is not guaranteed with nonconvex sets,

but the iteration is known to normally have an error-

reducing property, moving towards the true solution

if a good initial set of values is provided.

Direct Methods use for the (forward) projection

P1, a set of constraints which are consistent with

the fact that the scattering comes from atoms; the

(back) projection P2, corrects the amplitude; struc-

ture completion methods use different types of pro-

jections. (At a formal mathematical level, pure pro-

jections are not used; instead a single iteration step

is employed.) Using Fourier transforms generic Di-

rect Methods can be represented using the block di-

agram of Fig. 3, or in terms of sets in Fig. 4. While

the constraint that the real space maps are positive

leads (by itself) to a convex set, in general neither

the real space nor reciprocal space sets are convex.

As such they are exceedingly similar to some image

restoration algorithms, particularly the Gerchberg–

Saxton59 and Fienup60,61 algorithms.

Different flavors of Direct Methods use different

projection operators and constraints. For instance,

classical Direct Methods project the phases using

probabilistic relationships (P1) and correct the mod-

uli (P2) iteratively. Maximum Entropy projects the

solution onto maxima of the entropy in real space

Fig. 3. Block diagram description of Direct Methods in
the most general case.

Fig. 4. Illustration of the Projection onto Convex Sets
for Un+1(k) = P1P2Un(k) considered for the space of all
U(k). The calculated FOM corresponds to the distance
along the projection P1.

(P1) and the moduli in a χ2 sense in reciprocal space

(P2). The algorithm we use can be written as

P1 : Un+1(k) = αF1{un(r) ln{un(r)/〈u(r)〉
if u(r) > 0; 0 if u(r) < 0} ,

P2 : |Un+1(k)| = Experimental value ,

where α is the scaling term from Eq. (12) and F1 is

an inverse Fourier transform. As such it has three

components:

(a) The solutions are forced to be positive — a con-

vex constraint.

(b) The solutions are forced to resemble atoms, since

identical, independent nonoverlapping atoms are

eigensolutions of the minimum relative entropy
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treated as an operator. This appears to be a

nonconvex constraint.

(c) The moduli are corrected to the experimental

values — a nonconvex constraint. The slightly

different case where an initial estimate of the

structure is available [Eq. (15)] includes a projec-

tion onto the set of solutions with atoms at spec-

ified locations, the latter a convex constraint.

The FOM that we are using is (in the language

of Linear Programming) the L1 mean of the dis-

tance between the solutions after cycles n + 1

and n (see Fig. 4), and will be zero for “atomic”

solutions matching the experimental data at the

intersection of the sets S1 and S2. With mea-

surement error and different atoms the two sets

approach, but do not touch, and we find local

minimum approach locations.

In terms of the umneasured reflections, if we

know their phases and apply the constraint that the

solutions are positive, we have two convex sets. From

the other reflections a very good estimate of their

phases is possible, and it follows that it is math-

ematically justifiable to expect restoration of the

amplitude of the umneasured reflections. (The prob-

lem is stability, since the amplitude of the unmea-

sured reflections affects the phases of the measured

reflections.)

An even stronger case can be made with three-

dimensional data from a surface. Substantial devi-

ations of the atomic positions exist for only a lim-

ited region normal to the surface, and the rel-rods

are normally sampled much finer than this. There-

fore within the unit cell (whose length normal to

the surface is specified by the smallest sampling)

the charge density is zero over a large region. This

is a strong convex constraint, called in the image

restoration literature a support constraint.62 For a

one-dimensional set of M points in real space, with

a strong support constraint there are at most 2M

unique solution,63 a substantial reduction compared

to the general case (> 8M ). (In some cases there

is only one solution, but this cannot be predicted in

advance.) If the phases for the unmeasured reflec-

tions are adequately determined by the other reflec-

tions, the one-dimensional problem of determining

their amplitudes is completely unique with a support

constraint, assuming no axis of symmetry or anti-

symmetry. It follows that not all the relrod data need

to be available for a viable solution to be achieved,

even the strong (0, 0, `) reflections, and the prob-

lem is better-conditioned than a two-dimensional

problem.

2.3. Structure completion

Very dependent upon the data, the results of the ini-

tial Direct Methods analysis may yield rather accu-

rate locations for > 90% of the atoms, or only poor

estimates for a much smaller number. In practice

one does not need much to complete the structure

from this initial fragment; knowledge of part of the

solution is a strong convex constraint. Many classi-

cal methods exist,64,65 for instance Fourier difference

maps based upon the transform of Fd(k), given by

Fd(k) = {|Fe(k)| − |Fc(k)|} exp(iφc(k)) , (22)

where φc(k) and |Fc(k)| are respectively the calcu-

lated phase and modulus of the structure factor for

a given set of atomic positions. Peaks in these differ-

ence maps are probable positions for atoms missing

from the structure. To date we have rarely found

this useful for surface data. More powerful is to

build information about atomic positions into the

Direct Methods themselves, for instance by using a

model as described above. A third approach is to

employ what is already known to reconstruct a more

complete map, what we have called “heavy atom

holography.”7,30 If Fu(k) is the unknown component

of the structure factor,

|Fe(k)|2 = |Fc(k) + fu(k)|2

= |Fc(k)|2 + 2Re{Fc(k)∗Fu(k) + |Fu(k)|2 .
(23)

This equation is equivalent to an in-line hologram,

and if the known component is reasonably large it

can be pseudoinverted in a Wiener filter sense to give

Fu(k) ≈ {|Fe(k)|2− |Fc(k)|2}Fc(k)∗/{|Fc(k)|2 + δ} ,
(24)

where δ is adjustable. (Other pseudoinversion

schemes are also plausible.) Feeding this estimate

back into Eq. (23) leads to an improved estimate.

In general, atom-like peaks in the real-space trans-

form of the unknown component are good estimates

for the unknown atomic positions and an iterative

procedure can be established as illustrated in Fig. 5.
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Fig. 5. Flow diagram of iterative procedure using
heavy atom holography and refinements to complete a
structure.

Fig. 6. (a) Scattering potential map for the initial
fragment of Si(111)-(4 × 1)/In structure, white being
high potential, black low. The fragment consists of two
In atoms (center) and two Si atoms in the unit cell.
(b) Heavy atom restoration showing the location
(arrowed) of an additional Si site.

As an example, Fig. 6(a) shows an initial fragment

with two In atoms and two Si atoms from the In on

Si(111)-(4× 1) structure.24 The heavy atom restora-

tion [Fig. 6(b)] clearly shows one of the silicon atoms

needed to complete the structure. While these meth-

ods work it would be accurate to state that too much

user intervention is required at the current moment

and less biased automated methods are needed.

2.4. Refinement

The final test of any model is to refine the atomic

positions against the experimental data. To be rigor-

ous, if we have a set of experimental structure factor

moduli |Fe(k)| and calculate a set of values |Fc(k)|

we first determine (from the experimental data) the

probability distribution of the errors and then refine

the negative logarithm of this probability distribu-

tion — a maximum likelihood method. Many dif-

ferent functions exist in the literature for different

assumptions about the probability distribution, the

most common being the χ2 estimator based upon

Gaussian error statistics for the intensities:

χ2 = 1/(M − V )
∑
k

{|Fe(k)|2 − α|Fc(k)|2}2/σ(k)2 ,

(25)

whereM is the number of measurements, V the num-

ber of variables, α a variable and σ(k) the errors in

|Fe(k)|2. If the errors are Poisson in character one

can approximate

σ(k) ≈ const∗|Fe(k)| ≈ const∗|Fc(k)| (26)

and reduce this to the equivalent form

R2 =
∑
k

‖Fe(k)| − α|Fc(k)‖2/
∑
|Fe(k)|2 . (27)

A danger of these is that the errors are rarely Gaus-

sian in character and it is not unusual to have a few

outlier points very poorly measured. A good alter-

native is to use what are called Robust methods,

which are less sensitive to these outliers; for instance

a double-sided exponential or Laplacian error distri-

bution leading to

χ = 1/(M−V )
∑
k

‖Fe(k)|2−α|Fc(k)|2|/σ(k) (28)

and the “Crystallographic R factor” assuming Pois-

son statistics for the errors:

R =
∑
k

‖Fe(k)| − α|Fc(k)‖/
∑
|Fe(k)| . (29)

[The similarity of the FOM used for the Direct Meth-

ods to Eq. (29) is deliberate.] With transmission

electron diffraction data a parallel measurement of

all the intensities takes seconds, so a number of in-

dependent measurements can be made. By treat-

ing these as repeat measurements the error distribu-

tion can be determined as illustrated in Fig. 7. For

X-ray diffraction each measurement takes much

longer, so determining the random (and systematic)

errors is harder. Evidence to date indicates that

TED errors are close to Gaussian/Poisson distribu-

tions, but those in X-ray measurements are not and

scale closer to

σ(k) ≈ const∗|Fe(k)|2 + background . (30)
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Fig. 7. Distribution of measurement errors for two dif-
ferent TED negatives from the same data set. (a) From
negative exposed for 8 s. (b) From negative exposed for
32 s. The normalized error is defined for each intensity
as: [(measured value for intensity on negative) − (aver-
age value from entire data set for intensity)]/[measured
value for intensity on negative]1/2. Gaussian curves have
been fit to each distribution. The standard deviation for
the longer exposure negative is higher due to increased
background signal.

For a complete analysis it is necessary to include

subsurface relaxations which can have substantial ef-

fects, and for TED the weaker (but important for

refinement) scattering by the substrate. To prevent

nonphysical atomic displacements from occurring it

is possible to constrain these via some interatomic

potential, for instance a Keating potential. An alter-

native is to expand the subsurface displacement field

R(r) as decaying biharmonics which satisfy the equa-

tions for isotropic, inhomogeneous elasticity,66,67 the

simplest of which is

R(r) = ∇
∑
g

[Ag cos(2πg · r)

+Bg sin(2πg · r)] exp(−2πgz) , (31)

where the summation is over the two-dimensional re-

ciprocal lattice vectors g of the reconstructed cell,

and A, B constants varied in the fitting procedure.

3. Crystallographic Surface
Crystallography

It is very common to describe surfaces in terms of

LEED notation using the primitive 1 × 1 lattice

as the starting point, so reciprocal lattice points

have fractional indices.68 In any (conventional) crys-

tallography the symmetry of the unit cell plays

a crucial role for symmetry-equivalent reflections,

constraints on the phases and also a number of

statistical relationships.50 As an example, the Woods

notation of
√

3×
√

3R30 on a (111) surface is highly

ambiguous; the symmetry could be p3 (twinned),

p3ml, p3lm, p6 or p6mm — which of these is cor-

rect matters not only for structure refinement but

also for other properties, such as the electronic and

phonon structure. It is also more conventional to

reference reciprocal lattice vectors to the large unit

cell, avoiding fractional indices. For these reasons

the case is made here that it is better to use the

standard notations that can be found in the Interna-

tional Crystallography Tables,69 conforming to the

rest of the crystallographic community. Since there

is no possible symmetry above and below the plane of

the surface, the number of plane groups is rather lim-

ited, summarized in Table II together with the full,

three-dimensional space groups. Included in the ta-

ble are the alternate descriptions for the rectangular

unit cells which correspond to switching the relative

orientation of the axes and symmetry elements; for

instance, it is easier to consider that a 4× 1 unit cell

is p1m1 or p11m rather than switching between 4×1

and 1× 4 cells with pm symmetry.

4. Experimental Examples

4.1. Si(111)-(7× 7)

The silicon (111) 7× 7 surface is a good test system

for Direct Methods. On one hand it is rather simple
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Table II. Possible two-dimensional plane groups with their short, full and alter-
native settings as well as the three-dimensional space group. For completeness,
P1a1 is equivalent to p11g; the other setting is not shown in detail in the current
tables.

System Point group Symbol 3D

Short Long Alternate

Oblique 1 p1 P1 #1

2 p2 P112 #3

Rectangular m pm p1m1 p11m P1m1 #6

pg p1g1 p11g P1a1 #7

cm c1m1 c11m C1m1 #8

2mm p2mm Pmm2 #25

p2mg p2gm Pma2 #28

p2gg Pba2 #32

c2mm Cmm2 #35

Square 4 p4 P4 #75

4mm p4mm P4mm #99

p4gm P4bm #100

Hexagonal 3 p3 P3 #143

3m p3m1 P3m1 #143

p31m P31m #157

6 p6 P6 #168

6mm p6mm P6mm #183

since it is essentially p6mm, and so the phases are ei-

ther 180◦ or 360◦. (The true symmetry is p31m but

the deviation from p6mm is small.) What makes it

hard is that the structure factor for the {7, 7} re-

flections is three to four times larger than that of

any of the other reflections, coincident with a bulk

(220) reflection and therefore unmeasurable. Conse-

quently the structure is very difficult to solve except

by methods that have an interpolation component.

4.1.1. Symbolic Logic

One of the first methods we used23 was symbolic

logic.51 A very large number of the strong reflec-

tions have a Σ2 relationship suggesting not only that

the (7, 7) reflection is strong but that it is 360◦ (see

Fig. 8). Furthermore, reflections connected by any

vector in the family {7, 7} are probably the same

provided that they are strong, i.e.

ϕ(6, 1) ≈ ϕ(8, 0) , (32)

ϕ(7, 1) ≈ ϕ(0, 6) . (33)

There are also Σ2 relationships suggesting that

(0, 13) is 360◦, and strong Σ2 relationships (with

symmetry-related values) that

ϕ(6, 1) + ϕ(7, 7) ≈ ϕ(13, 0) , (34)

so

ϕ(6, 1) + ϕ(8, 0) ≈ ϕ(0, 13) ≈ 360◦ . (35)

Enough is now known that the structure can be

solved rather accurately by varying ten additional

reflections, with the result shown in Fig. 9.

4.1.2. Phase extension from an HREM model

Much easier is the case where some of the phases

are already known23 from another experiment, such

as an HREM image.9 Figure 10(a) shows the initial

map excluding the {7, 0} reflections and Fig. 10(b)

the resultant extension. All the atoms in the top

three layers are present in the map due to good in-

terpolation of the {7, 0} and {7, 7} reflections.
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Fig. 8. Modulus of the structure factors using electron diffraction data for the Si(111)-(7× 7) surface. The values for
the reflections which overlap bulk beams or surface 1× 1 periodicities have been interpolated by the minimum relative
entropy method. The (7, 7) reflection is by far the strongest beam. Two red arrows show how the strong (3, −10)
and (10, −3) reflections are connected by a (7, 7) vector — since their phases are identical this indicated 360 for (7, 7).
Many other pairs of strong reflections connected by {7, 7} vectors can be found.

Fig. 9. Map of the scattering potential for the Si(111)-(7 × 7) surface solved by deriving phase relations for some
of the strong beams using symbolic logic and then searching over ten additional reflections with a genetic algorithm.
Some artifacts are present in the map due to the small number of reflections used in the search. The dimer sites (D)
and the adatoms (A) are marked in the figure.
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Fig. 10. (a) An initial scattering potential map for the Si(111)-(7 × 7) surface constructed with phases determined
from an HREM image [the (7, 0) reflection has been excluded]. Contours of the final 7×7 map have been overlaid in the
top right corner to highlight the location of the atoms in the structure. (b) The potential map after phase extension,
which shows much better definition of the atomic sites than in either Fig. 9 or Fig. 11(a). The dimer sites (D) and the
adatoms (A) are marked in the figure.

4.1.3. Ab initio solutions

Harder by far is to solve the structure with no prior

information — if the {7, 7} reflections are not inter-

polated a Babinet solution is obtained. This was first

done23 using the Maximum Entropy method, but we

have recently been able to solve using the minimum

relative entropy approach after stabilizing the inter-

polation of the unmeasured results. The results are

shown in Fig. 11(a). For reference, Fig. 11(b) shows

the same phases without the interpolated reflections.

The reader should not think that this surface would

be solved easily, without any prior information; there

are other solutions which would have to be tested

in detail.

4.2. Metals on Si(111)

A very simple example to illustrate solving a struc-

ture with little effort is Au on Si(111)-(
√

3×
√

3).22
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Fig. 11. (a) Ab initio solution of the Si(111)-(7× 7) structure determined by the minimum relative entropy approach
with interpolated estimates for the unmeasured reflections. (b) The same solution without the interpolated reflections.
The dark holes are due to the missing reflections, and an arrow indicates the location of one atom that essentially
disappears without the interpolated beams. The dimer sites (D) and the adatoms (A) are marked in the figure.

The diffraction data indicate that the {2, 1} reflec-

tions are far stronger than anything else. Taking the

space group as p31m, there is the relationship

φ(2, 1) ≈ φ(−1, 3)− φ(−3, 2) ≈ −2φ(2, 1) , (36)

so

φ(2, 1) ≈ 120n , n = 0, 1 . (37)

The case where n = 0 gives just one large peak

[Fig. 12(c)], and the coverage is known to be closer to

three Au atoms per unit cell. Using just these reflec-

tions and n = 1 gives the map shown in Fig. 12(b),

with the well-known trimer structure. Three other

examples using the more complete method described

above searching all the reflections are the Ag on

Si(111)-(
√

3×
√

3) surface30,71 shown in Fig. 13, the

In on Si(111)-(4×1) surface24 in Fig. 14, and the Ag

on Si(111)-(3 × 1) surface25 in Fig. 15 — the maps

approach restorations.

4.3. Sulfur on metals

The opposite extreme to a heavy metal on a lighter

substrate is a lighter element such as sulfur on a

metal. At least in the cases examined to date this

has not proved any harder. An example is the S
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Fig. 12. (a) Accepted model structure for the Au on
Si(111)-(

√
3 ×
√

3) surface. Gold atoms are orange, sili-
con is yellow, and the p31m unit cell is outlined in blue.
(b) Scattering potential map formed from only the (2, 1)
reflection and symmetry-related beams with φ(2, 1) set
to 120◦. (c) Scattering potential map formed from only
the (2, 1) reflection and symmetry-related beams with
φ(2, 1) set to 0◦.

on Ni(111)-(5
√

3 × 2) “clock structure”71 shown

in Fig. 16; a second the S on Cu(111) “zigzag”’

structure72 in Fig. 17. In both cases the maps ap-

proach restorations.

4.4. Bi on Cu(110)

A case which illustrates some of the limitations of

the method and the role of subsurface strains is Bi

on Cu(110).73 The maps shown in Fig. 18 clearly

show the bismuth atoms, but very little about the

copper; the bismuth scattering completely dominates

that from the lighter copper atoms. Just including

these atoms does not completely solve the structure,

and additional relaxations to the copper are needed

in the final solution.73

5. What Can Go Wrong?

Many things. The most pathological situation is

twinning, and there are cases such as Sn on Si(111),74

where there is complete overlap of three domains at

each reciprocal lattice point. Much simpler twinning,

for instance two p1 domains giving an effective pm

symmetry, does not appear to be limiting; the maps

yield results indicating double-positioning, not too

hard to separate at least for simpler structures. An-

other problem is when two different surface phases

give some of the same reciprocal lattice vectors. In

some cases one can exclude the perturbed reflections

from the data set and obtain viable solutions.

Connected to the above is a more fundamental

issue related to the coherence between domains. If

one has a random combination of relatively large do-

mains, large compared to the transverse coherence of

the (X-ray or electron) beam intensities of the two

domains should be added incoherently. However, if

the domain size is small compared to the transverse

coherence length, in most cases the domain diffrac-

tion should be added coherently equivalent to partial

occupancies of sites. The reality is probably halfway

between these two extremes with partial coherence,

and how to determine this and refine appropriately

atomic positions remains an unclear issue.

Last but not least, one has the unmeasured re-

flections. As mentioned before, in practice these

can to lead to Babinet solutions which require some

care to detect and explore. It seems that this prob-

lem is slowly vanishing as we improve the stabi-

lization of our approach, although it is too soon to

claim victory.

6. Discussion

Direct Methods for bulk structure determination are

approaching their 50th anniversary; for surfaces their

age is only a year or so. Obviously much more needs

to be done and can be done. There are a large
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Fig. 13. (a) The honeycomb-chained triangle model for the Ag on Si(111)-(
√

3×
√

3) surface. Silver atoms are shown
in orange, silicon is yellow, and the p31m unit cell is outlined in blue. (b) Phasing map of the scattering potential
found from TED data.

Fig. 14. (a) Model for the In on Si(111)-(4× 1) surface structure. Indium is shown in orange, silicon in yellow, and a
pm unit cell is outlined in blue. (b) Direct phasing map of the scattering potential found using TED data. The phasing
analysis was done in the p2mg plane group; the true symmetry for the final refinements is pm.
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Fig. 15. (a) Model for the Ag on Si(111)-(3×1) surface structure. Two equivalent, half-occupied silver sites are shown
in two shades of orange. The silicon is yellow and a 6× 1 cm unit cell is outlined in blue. (b) Direct phasing map of
the scattering potential calculated from TED data. The structure is p1-twinned to give an effective pm symmetry, so
the quality of the map is not as high as in some of the other cases examined to date.

Fig. 16. Charge density map determined for the S on Ni(111)-(5
√

3× 2) “clock structure,” with contours for a single
unit cell overlaid. The fourfold arrangement of the Ni atoms around the S atoms is indicated.
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Fig. 17. Charge density map determined for the S on Cu(111) “zigzag” structure, with a single unit cell marked. A
similar fourfold arrangement of Cu atoms around the S atoms as in Fig. 16 can be seen. The map is not as symmetric
as the published refined structure, suggesting some disorder.

Fig. 18. Charge density map determined for Bi on Cu(110) shown in pseudocolor with red high, blue/black low. The
Bi atoms are very clear, with perhaps a hint of the Cu relaxations — for the latter additional structure completion
work would be required.

number of literature methods, some of which may

translate to the surface problem and prove useful.

There may also be ways of exploiting what is known

about the missing reflections. One strategy that

is being explored is to use the values for a perfect

1 × 1 lattice for these, then a heavy atom inversion

method; alternatively they could be built into the ap-

proaches described herein with some modifications.

To what extent Direct Methods for surfaces can be-

come “black-box” methods with little or no user in-

put required is not clear. One can purchase routines

for bulk structures and they appear to work very well

(in the bulk), but how one can automate issues such

as determining registry remains unclear.

Direct Methods are most powerful for larger unit

cell structures where Patterson-based techniques
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break down and it is impossible to search all the

possible alternatives. In two dimensions with a stan-

dard workstation the Direct Methods code only takes

about 30 min for a reasonable number of beams

(100), and a few hours in three dimensions with 1000

reflections. Here the main limitation is obtaining the

experimental data. While TED data is much faster

to collect, at present there does not seem any simple

way to obtain three-dimensional information; here

X-ray methods are superior. TED does have certain

advantages, most notably a weaker dependence upon

the atomic number and much higher sensitivity to

charge transfer. Therefore it is more useful for heavy

elements on a light substrate and (in principle, albeit

to date not in practice) looking for ionicity. A disad-

vantage is that the kinematical approximation, while

good for symmetry-averaged data, is not strictly cor-

rect for TED — certainly inadequate for refinements.

(To date the maps from TED have not been quite as

clean as those from X-ray data, so some weak dynam-

ical effects probably carry over into the phase anal-

ysis.) With improvements in sources and detectors

large unit cell structures such as Langmuir–Blodgett

films or even ordered protein structures should be

plausible and not unreasonably expensive in com-

puter time.
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