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General solution for three-dimensional surface structures using direct methods
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A general method for solving surface structures in three dimensions using surface x-ray-diffraction data
coupled with direct methods is outlined. The method exploits the existence of a support constraint normal to
the surface, and couples the concepts of projections, operators, and sets used in the image reconstruction
literature with statistical operators used in direct methods. The approach presumes nothing beyond the fact that
the scattering comes from atoms, and is a true model-independent apg®at63-1829(99)06324-9]

[. INTRODUCTION exist. Coupling these statistical relationships with experi-
mental data permits construction of feasible models for the
For the last 20 or more years the standard approach whestructure(often only one)for subsequent refinement. In es-
trying to determine a surface structure has been to compareence, direct methods perform a global search for the initial
experimental data against one or more models. This apmodels, eliminating guesswork.
proach has a fundamental flaw; almost any technigug., While direct methods have been used for many years for
low-energy electron diffraction(LEED), reflection high- three-dimensional structure determination, it is only very re-
energy electron diffractiofRHEED), x-ray diffraction, ion cently that they have been successfully employed for
scatteringlcan be refined to find a local minimum, and un- surface-structure determinatidnt’ and to date only with
less one of the models is an approximation to the true struatwo-dimensional data. While there are problems when sur-
ture there is no reason for the comparison to be particularlyace reflections overlap bulk reflections, in general a large set
relevant. In some cases scanning tunneling microscopgf measurements is available in two dimensions enabling
(STM) or high resolution electron microscogiiREM) im- solutions to be obtained. In three dimensions a much smaller
ages may be available, both of which can yield importantraction of all possible measurements to a reasonable resolu-
constraints on the symmetry and in some cases the atomtion, e.g., 1 A, is typically available. Perpendicular to the
positions. In certain cases Patterson maps from x-ray osurface for a given rel-rottifferent| values for giverh and
transmission electron diffraction experiments can be useds in reciprocal spacethe sampling of measurements aldng
but with more complicated structures these can become haid generally relatively small, corresponding to an effective
if not impossible to decode. lattice parameter of 40—60 A, and limited to resolutions of
It follows that the central issue in determining a surfaceabout 1.5 A at best. Even excluding the case whek,l)
structure is not in fact refining against some initial model,overlaps with a bulk reflection, typically only a small num-
but instead finding these initial models. While enough isber of rods are known, less than 30% of all possible in some
sometimes known about the general surface chemistry of eases. With such incomplete data performing direct methods
material to make knowledgeable guesses, guessing is not sai three dimensions for surfaces would appear to be much
ence. What is needed is a global search mechanism that céarder, if not impossible.
determine the set of feasible models for subsequent refine- The intention of this note is to demonstrate that this is not
ment. This is true independent of whether the experimentah fact the case, and three-dimensional surfaces can be solved
data is LEEDI-V curves, RHEED rocking curves, or surface using direct methods relatively straightforwardly. The main
x-ray-diffraction data, the latter being the focus of this paperreason for this is the relatively fine sampling normal to the
This problem is not unique to surface structure determisurface. Even though the effective unit cell parameter normal
nation, but also occurs in bulk three-dimensional crystallog+o the surface is large, 40-60 A, substantial relaxations of
raphy. An x-ray-diffraction experiment only measures theatomic positions only take place in a relatively small region
intensity in reciprocal space, from which the moduli of the near the surface. Hence the charge density normal to the
structure factors can be obtained. Missing are the phases efirface must be zero except in some small region of perhaps
the structure factors, and if these are known even relativelf0—20 A total thickness. This is equivalent to what is called
approximately a viable estimate of the charge density can ba ‘“support constraint” in the image reconstruction
generated. In turn, peaks in the charge density can be assliterature!®?! and has a number of well established math-
ciated with atomic sites and feasible models constructed. ematical properties. Adding in this support constraint as ad-
To solve the phase problem, what are called “direct methditional information compensates for the small number of
ods” have been developed over the last 30 yéafsddi- measurements in many cases.
tional information is available; the diffraction from x rays  The structure of this paper is as follows. In Sec. Il, a brief
occurs from atoms, and the controlling equations are simpleutline of the basic approach is presented, a hybrid of clas-
and cleanly defined. By building in the fact that the scattersical direct methods and what is called the feasible set
ing comes from atoms statistical relationships linking theapproacf?~2*from the image reconstruction literature which
phases(primarily of the stronger reflectionsre known to  uses set theory, mathematical projections, and operd#vrs.
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FIG. 1. Feasible set solution as the intersection of three convex
sets, for instance the measured data, support and functional section N U (K
as discussed in the text. U

general discussion of a feasible set approach to direct meth-

ods is described elsewher8)The theory is developed first FIG. 2. For a given value of the bulk truncation rod(k) and

for the case when the only rods which do not overlap withsome correct valu&l (k) for the surface reflection, projection onto

bulk reflections are available. This is then extended to theéhe experimental modulUg(k)| gives the vector from the end of

case when bulk data is available as well. Section Il dis-U+(k) to Pg[U(K)].

cusses an important exception to the general case, what we

refer to as Babinet solutions, as well as a method of projectit iS more convenient to use unitary structure factors defined

ing onto them. This is then followed by numerical examples by

concluding with a discussion. U(K) = F(K)(F(K) B2 0

where the term on the right is the expectation value of the

structure factor for random positions of atoms in the unit
We have experimental measurements of the magnitude=ell.

of the structure factors,|F(k)| for different three- There exists a set df (k) values,Sy,, all of which have

dimensional reciprocal-lattice valu&s The aim is to find a the known moduli that are measured experimentally, i.e.,

good approximation to the phases. With this achieved, we

can Fourier transfornf (k) to obtain an approximation of [U(K)|=[Ue(Kk)| 2)

the surface charge density. While this approximation mayhe |atter being the experimental values. A set is convex if

not be that goodit is often very good), almost always any member lying on the line between two other members is

enough of the structure is defined to solve the rest throughiso a member, i.e., X andY are two members of the set, it

one of a number of different techniques. is convex ifAX+(1—\)Y for 0<A<1 is also a member;
We do not need to know the phases that accurately; afhe gphove seBy, is not convex. From any value af(k) we

average phase error of 10° or even 20° is good enoughan convert to values which lie on the 8 using the
Without any other information, the number of possible phaseprojection operator

permutations is prohibitively large, of the order df &r N
beams anq sampling at 45° intervals. We have the following PulU(K)]=U(K)|U(K)|/|U(K)], (3)
additional information:

i) The true charge density is real and positive at al
poi(n)ts. 9 Y P phases unchanged.

(i) As mentioned above, the true charge density is zerg FOr the second set, the charge densits) [Fourier trans-

outside a relatively small region normal to the surface. Aderm of U(K)] should be positive(a positivity constraint),
discussed in the literatuf&;?! this reduces the possible @nd the set of all positive(r) is a convex seSp. We can

phase permutations to at mos¥.2 write this via the projectiorPp where
(i) Statistical (probabilistic) relationships connect the _
phases of different reflections. Pelu(n]=u(r) u(r)>0
The approach is to consider the possible values of the 1
charge density that satisfy constrairits and (i) above as =(1=Mu(r)  u(n)=<0, @)
sets, incorporating the constraints via mathematical projecwhere\ is called a relaxation parameter which lies in the
tions. To this we add the set of all possiit®mplex)struc-  range 0<A<2.2*-?7 Values less than 1 are called under-
tures which have the experimental moduli. Finally, we con-relaxation, value greater than 1 over-relaxation. In general,
sider the statistical relationships via both operators andalues greater than 1 improve the convergence.
functionals, and the set of fixed pointsigenvectorspr the For the particular case of a three-dimensional surface, as
sections of the functional below some value as a fourth setmentioned in Sec. | the data are typically oversampled with
The problem is then decomposed into finding the union of alan effective cell size of 40—60 A normal to the surface.
the above sets; see, for instance, Fig. 1. Within this cell there is only a limited region of 10—-20 A
To start, instead of dealing with the true structure factorsvhere the atomic positions are substantially different from

Il. THEORY

i-e., replace the moduli by the measured values, leaving the



PRB 60 GENERAL SOLUTION FOR THREE-DIMENSIONA . . . 2773

the bulk. This prior knowledge callg@h the image process- of possible solutions when a one-dimensional support con-
ing literature)a support constraint, leads to a third, convexstraint is present is drastically reduced as mentioned earlier.

setSg and a projection operatd?s where In many cases we have available measurements of the
bulk rel-rods|Ug(k)| for the reconstructed surface, and can
Pdu(r)]=u(r), -L<z<L make a good estimate of the structure factarsplitude and

phase)for a simple truncation of the surfact(k). Since
we known that for the component &f(k) that coincides
where 4 is the total width normal to the surface where With the bulk data

relaxations have taken placé/Ne have experimented with _

incorporating a relaxation parameter here, but it does not U(k)+Ur(k)[=|Us(k)], (6)
appear to be particularly usefullhis is a particularly pow- we can construct a projection &f(k) (referred to asPg)
erful constraint, with well-understood properties; the numbeisuch that it will satisfy Eq(6) (see Fig. 2)given by

=0 otherwise, (5)

Pe(U(k)) ={U(k) +Ur(k)}HUg(K)|/|U(k) +U(k)| = Ur(k). ()

The set ofU (k) valuesSg that satisfies Eq6) is not convex.  which implies thatT[x(r) ] is closer to the solution than
X(r). Let us define this log-likelihood as equivalent to some
nctional g(u), a figure of merit(FOM), which ideally
ould be zero. The sections of this functional such that

Since the scattering of the x-rays comes from atoms, ther
are certain statistical phase relationships that can be esta
lished between differenttypically the larger)U(k)’s. It is
more convenient to write these in real space. The most prob- g(u)<B (13)
able vales ofu(r) are eigenfunctiongfixed points)of an '

operatorT that represents these statistical relationships, i.ewith g a constant, define a s&. If the operator is contrac-
for the true solution tive this set, and the set of fixed pointsbére convex; if the
Tlu(r)]=u(r) ®) operator is nonexpansive both are in general nonconvex sets.
The mathematical problem to be solved now decomposes
and the difference betwean(r) and T[u(r)] can be inter- into finding the union of all the above sets, i.e., the “feasible
preted as a log likelihood thai(r) comes from a set of set” Swhere
atoms. An important property of is whether it is contrac-
tive, i.e. for two different possible real space charge densities S=SyNSpNSNSgNSr. (14)
x(r) and y(r) _ _
If all the sets were convex, the feasible set is compact, and
5 ) there is only one solutiofplus, perhaps, a few minor vari-
> ITIX(ND]-TIy(D12<BX [x(n—y(n|?, 0<p<1, ants). If one or more of the sets is nonconvex, the feasible set
(9)  may be discontinuous, and we may have more than one fea-
sible solution as initial models for the surface; see, for in-
stance, Fig. 3(Since Sy, is never convex, we can never
guarantee a single, unique solutipithe problem is known
> |TIX(DI=TLy(N12< [x(n)—y(r)|%.  (10) (e.g., Refs. 23 and 23p be solvable by applying in some
cyclic fashion the projections and the operaiorit is fully

with the summation taken ovey or nonexpansive:

An important case of this is if we take solvable to a unique solution if all the sets are convex, solv-
able in a locally convergent sense if they are not. For the
y(n=Tx(n)], (11)  Jatter case, one has to use a global search algorithm with

so that different starting points.

For the operator, we need something which is correct for

_ 2 _ 2 atoms. Starting with some estimaig(r) for iteration cycle
2 TIX(N]=TITIX(NT1P< 2 IX(N)—Tx(1)][?, n, we use a normalized relative entrépy*?°or Kullback-
(12)  Leibler distanc® as an operator:

Unt1(r)=Te(up(r))= a’[un(r)ln{un(r)/<un(r)>}+<un(r)>]a Un(r)>0

=(un(r)), uy(r)<o, (15)
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are determined. Many of these are not measured, and so will
be interpolated. Assuming that we have a reasonable number
of measured reflections, we therefore have estimates of the
phases of the unmeasured reflections. The set of all possible
moduli for these is a convex set. Hence there is a very good
probability that these will be relatively accurate interpola-
tions, provided that they are correctly scaled. The same scal-
ing terma used for the measured reflections should apply to
the unmeasured ones, and in practice works very well. With
all the experimental data that we have seen to date only a
relatively small fraction of the possible beams have been
measured. Without interpolation no such algorithm can be
stable, but with both the positivity an@nore importantly)
the support constraint the algorithm is stable with a surpris-
ingly small number of measurements.
Second, we know rather more than just the basic form of
FIG. 3. Schematic illustration of the nonconvexity and discon-a statistical operator, we also know something about the sta-
tinuous nature of the problem. Shown is the intersection for thdistical distribution. In particular, we know that the phase
nonconvex set and the set defineddfy)<p (assumed to be lo- 6(k) for any reflectionk in reciprocal space is
cally convex). The three subsets of the feasible set have been la-
beledA, B, andC since three such regions were found in some of 0(k)~ 6(k—h)+ 6(h), (18)

the model systems, discussed later. with a probability distribution whose width scales inversely
with [U4(K)|, |[Ue(k—h)|, and|U(h)|. This implies that we
can also use the predicted value|of(k) | as a gauge of the
validity of a phase. We will refer to this as a “phase-
extension” constraint, and code it into the algorithm as de-
gu=2" |Un(k)_aun+l(k)|/ > UK, ;[ailed below. The particular algorithm that we use is as fol-
ows.
(16) (1) Start with some estimatéguess)for some of the

where3 ' indicates that we are not including the=0 term phases, and couple this with the known moduli to give the

and the summation is over the measured reflections onlynitial estimateUq(k). , _
Numerical tests demonstrate that the operdipris nonex- (2) For some given estimate afr) (Fourier transforming
pansive. For reference, Eq3)—(12) earlier for the fixed @S appropriate), i.ey,(r) for cycle n, determine new esti-
points of the operator should only be interpreted for the meaMates in reciprocal space in parallel using the statistical,
sured reflections similar to Eq16). While atoms are fixed POsitivity and support conditions via

where(u,(r)) is the mean value, and is a renormalization
term defined as the value which minimizes

points of this operator for an infinite set of reflections, this is By —

not the case for a finite set; typically measurements are only Un(k)=FTelPs(un(r)], (19)
ilable fi llipsoidal [ ith limited luti

available for an ellipsoidal region with limited resolution UP(K)=FPp[ Ps(Us(N)], (20)

perpendicular to the surface. To strengthen the operator, we
introduce a window functiowV(k), ' and instead of Eqi1)  whereF stands for a Fourier transform.

use the normalization: (3) If we did not previously have an estimate for the phase
for a particulark, apply the phase-extension constraint by
U (k) =W(k)F(k)/{f(k)?)*2, (17)  setting
whereW(k) is real, positive, and a fixed point df for an UE(K)=0 if |UE(K)|<7ynUe(K)], (21)

ellipsoidal region in three dimensions which includes, but is . ) o .

not limited to the measured reflectiofThe fact that we in- Wherey, is an adjustable scalar, and similarly for the posi-

clude a complete ellipsoidal region here allows us to inter!Vity- Empirically, the form

polate reflections, as v_viII _be discussed more beloks a . v, =0.3exii—n/2) (22)

consequence, a combination of nonoverlapping atoms is a

fixed point of T, a zero ofg(u) assuming all the atoms are is close to optimal.

the same. With measurement errors and different types of (4) Combine the two estimates in parallel via

atoms we can only state that it is probable that the FOM is N £ b

small at the correct solution. Un(k) =wUq (k) + (1=w)U(k), (23)
Two other points need to be mentioned. In the abov

equations, some apply to the real-space charge density whic

implicitly contains all possible reflections; some, such as Eq. w=0.5"[1+exp —n/3)]. (24)

(16), apply only to the measured reflections. While only the

experimentally determined phases are being used for the (5) Correct the values of the moduli in reciprocal space

scaling terma and the FOM, the window functio/(k) is  back to the experimental values, using a relaxed projection

set up such that all the reflections within an ellipsoidal regioroperator

here a good choice of the weighting temmis
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TABLE I. Unique atomic positions for model Jp2mm with TABLE Ill. Rod data used for models 1 and 2. Shown are the
a=4.581A,b=18.325A, ancc=64.79 A. For model 2, thg co-  largestl values () in the data for giverh andk values.
ordinate of the first atom is 0.128 726, leading to strong attenuation

of the scattering from the first and last atoms, which lie almost h k Imax
exactly at bulk sites in th&-y plane. For model 3 an additional

atom at(0, 0.25, 0.513was added. 0 2 D

0 3 5

X Y Z 0 5 0

0 6 0

0.500 000 0.178 726 0.500 000 0 7 0

0.000 000 0.376172 0.498513 0 9 0

0.000 000 0.219691 0.506 416 0 1 0

0.500 000 0.372170 0.533 348 0 13 0

0 14 30

1 2 2

Q(k) = Un (k) +A[Up(k) = Un(K)], (25) 1 3 D

Un+1(K)=Q(K)|Ue(k)|/|Q(K)|, kN Sy L S 2

1 1 6 K2

=aUy(k), kNSy 1 7 2

. 1 9

=0 otherwise, (26) 1 10 ;‘g

whereS,, is the set of measured reflections aéhgthe set of 2 1 <]

unmeasured reflections which lie within the aperture defined 2 2 <]

by the window functionW(k) of Eq. (17) and « the renor- 2 3 K]

malization scaling from Eq(16). 2 5 D

(6) Project(if appropriate)onto the bulk reflections. 2 6 o)

(7) Evaluate via the FOM applied only to the relative 2 7 <o)

entropy how well the current set of phases obeys both the

statistical relationships, and how close are the moduli to the

experimental values. U (1) =Ny (r)+uy(r)2—uy(r). (28)
(8) If the FOM is decreasing, go back @) and continue M M v v

the iteration; if it is increasing store the initial starting phasesSolutions of Eq.(28) are

and best FOM. (1) if uy(r) is small,
The global search is then performed by a genetic
algorithmt* which finds approximate values for the phases in up(r)=0 or 1IN; (29)

the feasible set. For reference, not all phases need to be
specified in stef1), but typically only 5—10% of the stron- (2) if uy(r) is large, approximately 1/N
ger reflections.
upm(r)=0 or —1/N. (30)
Il BABINET SOLUTIONS We start the iteration cycle with zero for the unmeasured
There is one interesting extension to the above casggflections, so the algorithm will tend to find the solutions for
which we will refer to as “Babinet solutions.*? To under-  case(1) above; the true solution might correspond to case
stand these, we will use the simpler unitary Sayre equation(2). To handle this problem, we note that the primary differ-
ence between the two is reversal of the sigrugir)—we
u(n=Nu(r)?, (27) " are obtaining negative or Babinet solutions(‘.J o
which is true forN identicaL nonover|apping atoms. Let us It mlght be effective to start with random initial values for
decompose the charge density into two componanggr) some of the unmea_sured reflections; we have not testgd this.
for that due to the measured reflectiory,§, anduy(r) for Instead, one can simply run a calculation starting with no
that due to the unmeasured on&g). Then
TABLE IV. Two-dimensional (=0) data values used, except
TABLE Il. Atomic positions for model 4, cm witha  for whenk=4n with n an integer.
=20.79A,b=4.00A, andc=65.33 A, anda=8=y=90.0. The

same unit-cell parameters were used for the fourth data set. h Kmax
X Y z 0 19

1 19

0.500 000 0.0 0.5 2 18

0.055 556 0.5 0.5 3 15

0.166 667 0.5 0.5 4 11

0.222 222 0.0 0.5 5 3
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TABLE V. Rod data used for models 3 and 4. TABLE VI. Two-dimensional (=0) data values used for the
last two data sets, excludirg=3n.

h k Imax

1 1 % P X

2 0 23 20 0

2 2 37 19 1

4 0 2 16 2

5 1 40 13 3

7 1 K9]

8 0 b
10 0 36 for ten generations, a total of about 5000 different cases,

except for the first model where two different initigdan-
dom) seedings were used to improve the statistics.
unmeasured moduli, then invert the phase of the measured The four model structures contain atoms at the positions
values and rerun, retaining the estimates of the unmeasurdidted in Tables | and I, in standard crystallographic nota-
reflections. tion. The first two models are based around theldsubcell
of the InSb(001)X 8 reconstructiori® Comparing model 2
IV. NUMERICAL TESTS tc_J mo_del 1, the first anq last atpms Ii_e almost exactly at bulk
sites in thex-y plane, with a height difference of about 2 A.
Here we will present results for five different data sets,They will therefore only contribute strongly to relatively

four model structures, and one set of experimental dte.  largel values, which are not well represented in the available
have also applied the method to three other sets of experieflections. This makes the second model harder to solve
mental data. However, since the structure of the latter havbased just on the surface reflections, without using the bulk
not previously been solved they will not be discussed furthereflections. The third model includes an extra pair of atoms
herein.)In addition to origin-defining reflections, in all cases very close to two existing atoms. While physically unrealis-
a total of 80 reflections were quadrant permut@@° steps) tic for true atomic positions, this structure no longer consists
and the charge density was limited to a total height of 0.3of well-separated atoms which therefore weakens the statis-
along thec axis. (Smaller heights will converge faster, but a tical relationshipgthe functionalg(u) discussed above will
conservative approach needs to be taken with real experbe small, but not zero for the correct solution]. The reflec-
mental data.Within the genetic search algorithfrthe popu-  tions used for the first three models are shown in Tables IlI
lation size was twice the number of bits, and the number ofind IV, again in standard crystallographic notation, and re-
children twice this number. Each calculation was performedsemble those actually measured for the ¥ subcell of the

FIG. 4. Reconstructed charge densities sectioned normal tp dles with slices of thickness approximately 0.5 A, with white corre-
sponding to regions of high charge dendiaggoms). In (a)and (c) the background level is close to zero, and(lin negative holegblack
regions)exist. Shown in(a) is the result with both the measured and unmeasured reflections, &ogdtihe result with only the measured
reflections. In 6(cwe show the best solution from s€t Strong artifacts irfb), some of which appear as “atoms” i), should be noted.
For both (a) and (c) the sections were essentially featureless outside the regions show(in) feome artifacts persisted to substantial
distances away from the atoms.
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FIG. 5. Scatter plot of CFOM1 vs FOM for the top 1200 solu- FIG. 7. Scatter plot of RFOM vs FOM for model 1, showing
tions for model 1. Three “arrow” shaped regions pointing towards that a reasonably good restoration of the amplitudes is obtained.
smaller FOM values are marked As B, andC and correspond to
three subsets of the total feasible set regime. agreement. Based upon prior experience, a value of approxi-

mately 0.1 or better will give a very good reconstruction of
InSb(001)2< 8 reconstructiori® The last two data sets are the charge density. The second metric does the same for all
based on the Rb on Ge(111¥3 3 with the available reflec- the phases, i.e., it includes the phases of the unmeasured
tions shown in Tables V and VI. Model 4 is a simple one-reflections as well. Since phases are more important than the
layer representation of the recently solved structirand  moduli in obtaining a viable reconstruction, values of 0.1 or
the final data set is actual experimental data. To analyze ibetter are very good. The final metric RFOM shows how
more detail how the algorithm performs, it is useful to intro- good an overall fit is achieved including interpolation of the
duce three parametrizations of the agreement between tmeoduli of the unmeasured reflections. This need not be that
reconstructed amplitudes and phases. The first is a consismall for a good restoration of the charge density.
tency figure of merif CFOM1) defined as The first model structure solves without use of any bulk

projections, and a typical result is shown in Figay Not
CFOM=Y U, (k){1—cog 6,(K)— 0.(k) T} 2> U, (k), only are the atom sites very well re_solve_d, very good recon-

struction of the unmeasured reflections is obtained. To illus-

B trate this, Fig. 4(bshows the charge density if only the mea-

where6,(k) are the true phases amig(k) those returned by Sured reflections are used. Figure 5 plots CFOML1 versus the
the algorithm U, (K) is the true unitary structure factors, and FOM for the best 1200 solutions for a search of about
the summation is taken over the reflections initially set vial0 000. As can be seen from the figure, there are three ar-
the genetic algorithm. The second, CFOM2, has the sam©Wlike features in the scatter plot pointing towards low

equation but the sum is now extended to all reflectitns FOM values, indicating three different subséstolutions)
ceptk=0). The last RFOM is defined as within the total feasible set. The first two, labelédndB in

the figure, both give very good reconstructions similar to Fig.
B 4(a). The third, labeled, is rather inferior and is shown in

RFOM_E |Ut(k)_uc(k)|/ E Ur(k). (32) Fig. 4(c). At a rigorous level it would be necessary to check

] ) ) ) _ (via a x? refinement)each of these three possible solutions

The first metric CFOM1 will describe how good a match is o 4 full structure determination. Shown in Fig. 6 is CFOM2

obtained between the phases of the reflections used in thgysus FOM. and shown in Fig. 7 is RFOM versus FOM for
starting set and their true values, being zero for perfecye top 120 solutions. Good results are obtained for restora-
tion of the phases of the unmeasured reflections, not so good

0.050 - (but adequatefor restoration of the moduli as well. To show
. the later in more detail, Fig. 8 is a plot of the true versus
0.040 + restored moduli for one of the stronger rel-rdds., h andk
o 0,030 4 fixed, and different values dy.
g ' The second model structure does not solve so well using
% 0.020 4 the surface reflections, as can be seen from the plot of
CFOM1 versus FOM in Fig. 9; the incorrect set of solutions
0.010 - h\ markedC [similar to the subse€ in Fig. 5) move to lower
’ij:w' FOM values. This is accentuated in the third model, where
0.000 12t R . . subsetC moves to lowest FOM as shown in Fig. (&0.]

0 0.05 0.1 0.15 While part of the structure is corre¢the nearly coincident
atoms are found), the second layer is too close to a perfect
bulk and is not determined. Sufficient information might be
FIG. 6. Scatter plot of CFOM2 vs FOM for model 1, demon- available for the true structure to be determined by subse-
strating that small FOM values give very good restoration of thequent structure completion by Fourier methog$,analysis,
phases of the unmeasured reflections. and chemical information, but this would not be easy. How-

FOM
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0.40 - 0.45 +
0.40 1
:‘: g 0.35 1
&
3> 6 0.30 - .
*
0.25 -
0.20 L] L) T LS L]
0.12 0.13 0.14 0.15 0.16 0.17
1 value FOM
FIG. 8. Plot of the (0,4)l rel-rod showing both the true values
(solid line) and the restored values. 0.50 -
ever, when three bulk rodshe (1,0,), (0,4,), and (1,4) 0.40 - .. .a,”‘:
rods]are included in the calculation, it does solve as shown . .
by the plot of CFOM1 versus FOM in Fig. {lf). (The sec- = 0.30 - . Co., -w
ond model behaves similarly, collapsing to the correct solu- 5 .
tion when projection onto the bulk rods is employed. S 0.20- . * ¢ ig, .
As an alternative approach, the complexity of the problem Sag .ﬁof?:.,{.\ SIS
can be reduced by solving first in two dimensidbsth for 0.10 - Be*® C AN 0 ‘5‘%
the phases and @ refinement)prior to analyzing the three- ot 0 '.2.‘\ 5
dimensional(3D) problem. One can then apply some of the 0.00 r ; s Lt .
phases from the 2D solution as part of the starting set. For 0.1 0.12 0.14 0.16 0.18

both models 2 and 3 this works well, and reduces substan-
tially the FOM of the correct solution within the feasible set

as illustrated in Fig. 11. _ FIG. 10. Scatter plots of CFOM1 vs FOM for model 3. ()
The final two data sets demonstrate the importance Ofply the surface data are used, and the incorrect sol@itmund in
Babinet solutions. The structure is equivalent to one Ge bigth Figs. 5 and 9 dominates. However, when projection onto the

layer (at the same heightpinus a dimer. The standard algo- pyik rods is exploited only the true move to smaller FOM values as
rithm suggests a dimer structure as shown in Figalfor shown in(b).

model 4, while the Babinet solution in Fig. @@ gives the
correct solution. The same is found with the experimenta
data[Fig. 12(c)], very close to that recently determiriéd,

FOM

lend up with the wrong result if due care is not exercised.
. ; While the algorithms herein are powerful, care is needed
although see Sec. \In practice, both the dimer and four- with the global search and in some cases there may simply

atom solutions wou_Id have to be considered as part Of_thﬁot be enough data to determine a surface structlirthere
feasible set of possible solutions for a subsequent full refine

: . . are not enough data for direct methods to work, there are
ment.)Note that if the bulk rods were included in the analy- g

. e . . almost certainly not enough data to solve the full three-
sis, the possibility of a Babinet solution would be removecj'dimensional structure; one or two measurements of the rel-

V. DISCUSSION rods may not be a.dequate.). .
Very important is the quality of the data, both in terms of
It is perhaps best to start with a word of warning: no

method is completely foolproof, and it is always possible to
0.25 4

0.30 c- ‘Lt
0.20 1
C *
. .O
0.20 . .:0 & : E 0.15 - .
- . o .
= I B . ot N, .
E PN O 0.0+ RIS, Z RIS
: Ll T
- . .o ot
0.10 Be' . “‘-(.‘- 005 | R RER -
000 4— ‘ ‘
0.00 A. mm ¢ P 'S"m""&‘ 0.175 0.18 0.185 0.19 0.195 0.2
o] 0.05 01 0.15 FOM
FOM

FIG. 11. Scatter plot of CFOM1 vs FOM for model 3, where ten

FIG. 9. Scatter plot of CFOM1 vs FOM for model 2; the incor- (h,k,0) reflections have been fixed to mimic initial 2D solutions.

rect subset of solutions marké&ihave moved to lower FOM values SolutionsA andB dominate, albeit with higher FOM values than in
relative to Fig. 5. Fig. 10(a).
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FIG. 12.(Continued).

struction. This severely constrains the possible solutions, and
might be determined by STM, although rather little attention
has been paid to this to date. Better information about the
unit cell contents always helps, since this is used in the nor-
malizations.(In practice one can run for a number of differ-
ent assumptions about the symmetry and contents.
Many other versions of direct methods will probably also
work for surfaces in three dimensions, and it is not unrea-
sonable to hope for fully automated structure solutions in a
few years. Some maodification to existing codes will almost
certainly be needed, particularly the introduction of the sup-
port constraint. At present some manual intervention is still
required in an interpretation of the maps and a conversion
from these to atomic positions, a problem since bias can be
introduced. Due to the large number of unmeasured reflec-
FIG. 12. Charge-density sections normal to thexis with @ tjons conventional Fourier difference techniques do not work
slice thickness of about 0.5 A for model 4, and the experimenta{,ery well, although some preliminary results suggest that
data. Shown ina) is a dimer solution obtained with the standard \,qqifications to include projections may be viable.
algorithm; in(b) we show the Babinet solution after a sign reversal  rpage caveats aside, we have outlined herein what ap-
fgfﬁ?g; 2?:;2?&2?5;: the text, and(@) the Babinet solution o5 46 he a completely general method of solving, without
P ' guesswork, surface structures using three-dimensional x-ray-

diffraction data. In many cases the 3D data will solve on its

measurement errors and other issues such as secondgiyn (with appropriate attention paid to Babinet solutipns
phases. It is not at all unusual to have defects and partigls an alternative, if bulk-rod data are available and the cov-
occupancies of certain sites due to surface disorder. Furthegg,-rage of the structure relatively is well knowfor scaling
more, in almost all cases there will also be additional Surfac%urposes), this information can be used; if a reasongbBle
phases whose reflections may be coincident with that of thean pe obtained in two dimension, a determination of the full

target surface structure. The latter means that it may be difiyycture from a limited number of rods is quite realistic.
ficult to extract the bulk component due to a particular sur-

face structuréor domain), although in principle it is possible

to extend the method herein to include simultaneous projec-

tions onto a number of different surface structures. This work was supported by the National Science Foun-
Also of prime importance is the symmetry of the recon-dation Grant No. DMR-9705081.
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