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Abstract

Recent work has demonstrated that direct methods, using the minimum relative entropy approach, can be applied to
strongly dynamical diffraction from bulk inorganic structures. In the present work, the possibility of using intensity data
which is thickness averaged, as for a wedge-shaped specimen, is explored. It is shown that for structures which contain
a large number of light atoms, well resolved in projection, use of direct methods with thickness averaged data, combined
with limited phase information from high-resolution transmission electron microscopy (HRTEM) can indicate the
positions of the light atoms. The possibility of using direct methods from thickness-averaged data allows the use of data
from conventional microscopes without fine probe capabilities, and is also of importance for use of direct methods with
beam-sensitive samples. ( 1999 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The most challenging part of solving a crystal
structure is often that of specifying an initial set of
atomic positions which are reasonably close to the
actual structure. Once such an initial set is found,
one can employ refinement methods (such as dy-
namical refinement using multislice, e.g. [1], or
Rietveld when powder data are available) to obtain
more accurate atomic positions as well as statistical
measures of the model’s correctness. Current ap-
proaches for obtaining direct structure information
may be divided into two broad groups. The first are
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those which rely on a physical interference effect,
such as high-resolution transmission electron
microscopy (HRTEM) and holographic methods.
In such techniques, interference of diffracted beams
preserves phase information in the experimental
data. The resulting images may be interpreted dir-
ectly in terms of crystal structure, or, alternatively,
phases can be used in a combined approach with
transmission electron diffraction (TED) intensities
[2,3]. A second group are statistical direct methods,
which are distinguished from HRTEM or hologra-
phy in that they rely on diffraction intensity data
alone. Direct methods systematically approach the
problem of assigning the missing phase information
to the diffracted beams using probability relation-
ships among them [4]. Sets of phases can be ranked
in terms of their overall probability, thereby reduc-
ing the solution space of the phase problem. The
advantages of direct methods over interference
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2See, for example, The Cambridge Crystallographic Data
Centre, at http://www.ccdc.cam.ac.uk/.

methods lie in the relative ease of collecting inten-
sity data, as well as in the resolution.

While direct methods have been widely em-
ployed in solving crystal structures using single-
crystal X-ray diffraction data,2 dominant
dynamical effects in electron diffraction data have
prevented their widespread use with TED data.
Exceptions to this are recent work on surface re-
constructions [5—8], in which the diffraction data
originate from approximately a single monolayer of
atoms, and are thus largely kinematical [9,10].
Also, work on solving organic structures with TED
data was performed as early as the 1960s by Vain-
shtein [11], but has recently attracted renewed at-
tention, with a number of structures solved over the
last several years [12]. The possibility of employing
direct methods for structural investigation of inor-
ganics containing heavy elements with electron dif-
fraction has been explored by Fan et al. [13], but
only within the kinematical approximation. Be-
cause dominant dynamical effects are the rule for
such cases, the application of direct methods to
electron diffraction data from inorganics requires
development of the methods themselves to take
dynamical effects into consideration, and a modifi-
cation of strictly kinematical interpretation. Al-
though prior work in this direction is present in the
literature [14], it uses assumptions which are
equivalent to nearly kinematical conditions, and
which no longer apply for inorganic structures in
the thickness range greater than 50 A_ . The possibil-
ity of routine application of direct methods to solv-
ing crystal structures with TED would be of
significant value, due to the ease of performing
TED, as well as its applicability to samples for
which large single crystals cannot be obtained, or in
small regions of polyphase materials.

Recently, we have reported the solution of two
Ga—In—Sn—O structures using TED and direct
methods, combined with limited phase information
obtained from HRTEM images [15,16]. In contrast
to previous work [13], the direct methods solutions
show the clear effect of dynamical changes to the
intensities. Dynamical effects resulted in an empha-

sis of the oxygen atom positions in the direct
methods solutions, which was particularly useful in
combination with both HRTEM and X-ray diffrac-
tion, which do not easily detect light atoms. As has
been explored elsewhere [16], the usefulness of di-
rect methods in these cases relies on a tendency for
the dynamical TED amplitudes to reflect a real-
space distribution with atom-like peaks located at
the positions of projected columns of light atoms.
Direct methods were applied to the diffraction data
using the minimum relative entropy algorithm
[17,18]. The algorithm restores a real-valued real-
space distribution subject to two constraints. First-
ly, the Fourier coefficients are constrained to match
the diffraction amplitudes, and in addition, the real
space map is optimized for consistency with the
minimum relative entropy operator, which enforces
sharp atom-like peaks and a flat background [17].
The resulting maps clearly showed the oxygen
atoms, and provided accurate starting positions for
successful refinements using powder neutron and
X-ray diffraction [15,19].

The most fundamental issue in using direct
methods with dynamical diffraction data is the pre-
cise identification of what function direct methods
restores. In the case of kinematical diffraction, this
is trivially the electrostatic potential »(r) (or the
electron density o(r) for X-rays). In the presence of
strong dynamical effects, the diffraction amplitudes
are the Fourier moduli DW(h)D of the exit wave in
reciprocal space, which is complex. When direct
methods are constrained to restore a real function
in real space whose Fourier coefficients are identi-
cal to the DW(h)D, this can be neither the exit wave
t(r), nor (because of dynamical effects) the electros-
tatic potential. As has been shown in previous work
[16,20], direct methods in this context can often
restore a function resembling the modulus of the
Babinet Dt(r)!1D. While this approximation is not
completely general, it provides a satisfactory assess-
ment of the effects of dynamical diffraction in many
cases. It can also explain why dynamical effects can
be useful in emphasizing the positions of light
atoms. Dynamical effects at moderate thicknesses
lead quite commonly to an emphasis of light atoms
such as oxygen in Dt(r)!1D, which are in turn
preferentially detected by applying direct methods
to the dynamical intensity data.
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Fig. 1. (a) Argand plot of t(r)!1 for (Ga,In)
2
SnO

5
[15] along the [0 1 0] zone axis direction at 100 A_ thickness. All pixels in the unit

cell are plotted, based on an exit wave calculation obtained using multislice at 1 A_ ~1 resolution. (b) Plot of Dt(r)!1D. (c) Plot of the
scaling between the Fourier coefficients of Dt(r)!1D and diffraction amplitudes DW(h)D for 100 A_ thickness (both quantities from
multislice).

Fig. 1 provides an explanation of the relation-
ship between the diffracted intensities and
Dt(r)!1D. Fig. 1a shows an Argand diagram for the
complex exit wave in real space for (Ga,In)

2
SnO

5
,

one of the structures solved using dynamical direct
methods [17,21]. In the plot, the real and imagi-
nary part of t(r)!1 is shown for all of the pixels in
one unit cell, calculated using multislice along
[0 1 0] for a thickness of 100 A_ . As can be seen, the
function t(r)!1 is dominated by a large cluster of
points with a phase angle of about 135°. In Sec-
tion 2 below, it is explained that these points are
associated with the oxygen 1s channeling eigen-
state. Due to the large amplitude of this oxygen
eigenstate, the wave at 100 A_ has predominantly
a single phase (with the exception of a small group
of points orientated at approximately 220°, which
are associated with one of the cation sites). One
therefore can write t(r)!1+Dt(r)!1D]eı/,
where the constant phase / in the present case is
+135°. Fig. 1b shows a map of Dt(r)!1D for the
present case, and it can be seen that the oxygen
atomic positions are the predominant feature of
the map. However, from the approximation
t(r)!1+Dt(r)!1D]eı/, the moduli of the
Fourier coefficients of Dt(r)!1D will scale with the
measured diffraction amplitudes (excepting the di-
rect beam). This is because the constant phase is
first factored out of the Fourier transform, and then
cancels on taking the modulus. The scaling between

the diffraction amplitudes DW(h)D and
DFTMDt(r)!1DND is shown in Fig. 1c for the present
case of (Ga,In)

2
SnO

5
at 100 A_ thickness [16].

Clearly, the function Dt(r)!1D satisfies the central
constraints of the direct methods approach: its
Fourier coefficients scale with the diffraction ampli-
tudes to a good approximation, and it contains
sharp atom-like peaks on a flat background. Be-
cause of this, the direct methods solution from
the experimental amplitudes did resemble Fig. 1b,
and was thus directly applicable to solving
the oxygen positions in the structure [16]. A
similar analysis is expected to hold at inter-
mediate thickness for other structures containing
significant numbers of light atoms, arranged in
well-resolved columns along the beam direction.
This will also be true, for example, in organic
structures.

The present work investigates a further extension
of the application of direct methods to TED data
for the case in which the diffraction data is aver-
aged over thickness, as is characteristic of a wedge-
shaped sample. To our knowledge, this is the first
time that the effect of such averaging has been
considered in direct methods work with TED data.
This is a problem of significant practical interest, as
thickness averaging can be difficult to avoid in
many cases, and it is of importance to consider
whether it will dramatically change the result. In
addition, it is of interest whether direct methods
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can be used with data from a standard selected area
(SA) TED experiment to obtain reliable structural
information. This would make it possible to em-
ploy direct methods with equipment which does
not provide a small spot size, or with specimens
which cannot be investigated with a condensed
beam due to beam sensitivity. As was pointed out
previously [16], it is plausible that thickness aver-
aging may actually provide an advantage in some
cases. This is because the shallow channeling states
associated with light atoms would tend to be accen-
tuated in thickness averaging, whereas the deeper
states associated with the heavier atoms would be
damped.

In the following section, the theoretical frame-
work for considering thickness-averaging effects in
dynamical intensities is presented. The theory is
developed using electron channeling theory, sup-
ported by comparisons with multislice calculations.
Following this, the results of direct methods calcu-
lations are presented using both modeled and ex-
perimental thickness-averaged intensity. It is found
in many cases that direct methods, using data from
a simple SA-TED experiment, can provide reliable
structural information, with a particular emphasis
of light atom positions. The required experimental
apparatus is presently widely available in research
laboratories and universities. While the direct
methods presented here utilize the minimum rela-
tive entropy algorithm, the technique is not limited
to this algorithm, and similar results should be
expected from a variety of direct methods ap-
proaches.

2. Theory

In employing direct methods with thickness-
averaged electron intensity data, the first problem
is to identify the function which is likely to be
restored, for it is only by doing so that one can
understand the results, and assess how dependable
the technique will be. An approximation to this
problem can be obtained using electron channeling
theory [21—25]. In the channeling approximation,
the total wave function is expressed as a sum over
two-dimensional channeling eigenstates /

n
(R),

where R"(x, y) is a two-dimensional vector per-

pendicular to the beam direction.

t(R, z)"+
n

C
n
/
n
(R)expG!ip

E
n

E
0

kzH. (1)

The sum is over the (normalized) eigenstates, with
excitations C

i
. Each eigenstate has a characteristic

oscillation frequency as a function of depth (z),
which is determined by the channeling eigenvalue
E
n

(E
0

being the incident beam energy, and
k"1/j). For moderate thicknesses and atomic
numbers through approximately Fe, the wave cor-
responding to a single atomic column is dominated
by its lowest lying 1s eigenstate (analogous to the
atomic 1s state), which has a form resembling the
atomic potential [16]. This simplification can be
used to make a further approximation [25] for
cases in which the atomic columns are well separ-
ated in projection, so that the atomic potentials
do not strongly overlap. In such cases, one may
write

t(R, z)!1

"+
i

C
i
/

i
(R!Ri)CexpA!ip

E
i

E
0

kzB!1D, (2)

where now the sum is over the i atomic positions,
and the /

i
is the 1s channeling eigenfunction for the

atomic column centered at (x, y)"R
i
. The term in

the brackets is a unit circle centered at (!1,0) in
the complex plane. Thus the phase and amplitude
of the wave at given R and z describe a circle
centered at !C

i
/
i
(R) in the complex plane. The

frequency with which this circle is traversed de-
pends on the channeling eigenvalue E

i
(i being the

closest atom to R). This behavior is illustrated in
Fig. 2 using Argand plots of t(r)!1 calculated by
multislice for the (Ga,In)

2
SnO

5
structure at 25 A_

thickness intervals between 25 and 200 A_ . For 25
and 50 A_ , the wave is still dominated by the cations.
The three finger-like clusters of points seen in
Fig. 2a correspond to the 1s eigenfunctions for Sn,
In-Ga and Ga (in order of decreasing phase). Begin-
ning at 75 A_ , the broad and slowly rotating cluster
of points associated with the shallower oxygen 1s
state becomes dominant in the wave. This cluster
continues to increase in amplitude and phase
through 200 A_ thickness, at which point its phase
is approximately 180°, and its amplitude is
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Fig. 2. (a)—(h) Argand plots of t(r)!1 for (Ga,In)
2
SnO

5
along the [0 1 0] zone axis direction at 25 A_ thickness increments between 25

and 200 A_ (from multislice). All figures are to scale.
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Fig. 3. (a) Argand plot of z(r) for a single unit cell of (Ga,In)
2
SnO

5
, calculated using *a"2.9° and *t"3.16 A_ . (b) Plot of the real part of

z(r). (c) Scaling between Fourier coefficients of Dz(r)D and the diffraction amplitudes (from multislice).

3This is not the same as the 1s channeling eigenvalue ob-
tained for an isolated oxygen atomic column with B"0.3,
which is 15.4 eV. The discrepancy is presumably due to the effect
of a small overlap with neighboring column potentials in the
multislice simulation. FORTRAN code for calculating s-type
channeling eigenvalues can be downloaded at http://
www.numis.nwu.edu/ftp/direct/channeling.

approximately 4 (relative to an incident beam of
unit amplitude). The circle traced out by the oxygen
1s state with increasing z is indicated in Fig. 2.
From the phase change with thickness, the channel-
ing eigenvalue is approximately 30 eV.3

Averaging the t(r)!1 functions over thickness
with a factor which cancels the phase of the slowly
varying oxygen 1s state would tend to enhance the
states corresponding to the oxygen atoms, while
decreasing the contribution of the more rapidly
varying states for heavier atoms. For the case of
a wedge-shaped crystal, one can write this average
as

z(r)"+
n

expM!i(n *a#p/2)Nt
n
(r), (3)

where n determines the thickness via t"n *t(*t
being the repeat distance along the beam), *a is the
phase change of the oxygen peak (or another shal-
low state) per thickness increment *t, and t

n
(r) is

the exit wave for thickness n *t. Averaging the
wave according to Eq. (3) was performed using

*a"2.9° obtained from Eq. (2) using E
14

for oxy-
gen of 30 eV, *t"3.16 A_ and E

0
"300 kV. The

resulting z(r) is shown in an Argand plot in Fig. 3a.
As can be seen, z(r) is predominantly real and
positive. A plot of the real part of z(r) is shown in
Fig. 3b, and one can see that the averaging has
enhanced the peaks at the oxygen sites with respect
to those corresponding to the heavier cations. In
general, one can expect such averaging to enhance
slowly varying shallow states with respect to those
which vary rapidly in phase and amplitude. Be-
cause the imaginary part of z(r) is small, and the
real part is positive, one has Real (z(r))+Dz(r)D. In
the present case, the appearance of Dz(r)D is not
readily distinguishable from Fig. 3b.

If the Fourier coefficients of Dz(r)D were used as
input to direct methods, it is reasonable to expect
that the oxygen atom positions would be restored
as peaks in the solutions. The question thus be-
comes whether or not the averaged diffraction in-
tensities resemble the modulus squared of
FTMDz(r)DN. Since the averaging has produced a z(r)
which is predominantly real and positive, one has
DFTMDz(r)DND2+DZ(h)D2. From Eq. (3), the latter is
given by

Z(h)Z*(h)"+
n

DW
n
(h)D2

#2 +
n:m

W
n
(h)W*

m
(h)cos *a(m!n). (4)
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Fig. 4. (a) Argand plot of z(r) for a single unit cell of Na
7
Nb

15
W

13
O

80
[26] along [1 0 0], calculated using *a"1.1°, and *t"3.92 A_ .

(b) plot of Dz(r)D for one unit cell. The sharp peaks in (b) are positions of pure oxygen atomic columns; Nb/W atomic column positions are
recognizable by rings. (c) Scaling between Fourier coefficients of Dz(r)D and the diffraction amplitudes (from multislice).

In the present work, the intensities for a wedge-
shaped sample are approximated by averaging over
thickness, which may be justified as shown in Ap-
pendix A. The averaged intensities are given by
I
!7
(h)"SDW(h)D2T, which is proportional to the first

term of Eq. (4). The averaged intensities will thus
resemble the Fourier coefficients of z(r) if the sec-
ond sum is either small or if it scales with the first
sum. The cross terms in the second sum of Eq. (4)
will tend to resemble those in the first sum when
(m!n) is small (given that the wave changes slowly
as a function of thickness), whereas attenuation via
the cosine term will occur if (m!n) is large. This
can be tested by plotting DFTMDz(r)DND versus JI

!7
(h)

for a particular case, as is shown in Fig. 3c for
(Ga,In)

2
SnO

5
. The figure shows an excellent cor-

relation between JI
!7
(h) and DFTMDz(r)DND in this

case. The current analysis and the scaling shown in
Fig. 3c rely on two approximations: The first is that
z(r)+Dz(r)D, i.e. by appropriate choice of *a a z(r)
can be constructed which is predominantly real and
positive. Secondly, it depends on the second sum of
Eq. (4) not deviating strongly from the first. When
both approximations are satisfied, the result will be
a scaling such as shown in Fig. 3c. Given this scal-
ing, direct methods with input JI

!7
(h) will very

likely result in a solution containing features of
Dz(r)D.

In order to test the generality of these character-
istics, several additional structures were investi-

gated with regard to the scaling between JI
!7
(h)

and DFTMDz(r)DND, and also to determine whether Dz(r)D
clearly indicates the positions of light atoms.
Figs. 4—6 show the examples of Na

7
Nb

15
W

13
O

80
,

[26], C
32

Br
16

CuN
8

(copper perbromophthalo-
cyanine) [27] and Ca-doped YSr

2
Cu

2
GaO

7
[28].

The first two cases clearly showed predominant
slowly varying states, which were used to assign *a.
The predominance of these states is related to the
large number of well-resolved atomic columns con-
sisting of light atoms. In the case of copper per-
bromophthalocyanine, the 1s states of the light
carbon and nitrogen atoms are the brightest peaks
in Dz(r)D (Fig. 5b), while the copper is essentially
absent and the bromines are present as fainter, yet
broadened peaks (the result of a mixture of 1s and
2s states). In Na

7
Nb

15
W

13
O

80
, the dominant shal-

low states are oxygen 1s and Nb/W 2s states, the
latter appearing as rings surrounding all projected
Nb/W columns in Fig. 4b. In both of the above
cases, as also with (Ga,In)

2
SnO

5
, averaging to ob-

tain z(r), has accentuated the shallow states, produ-
cing a z(r) which is predominantly real and positive.
In these cases, the scaling of DFTMDz(r)DND with
JI

!7
(h) is quite good, suggesting that the peaks in

Dz(r)D may appear in direct methods solutions.
For the final case of YSr

2
Cu

2
GaO

7
, the scaling

of DFTMDz(r)DND and JI
!7

(h) is considerably poorer.
This indicates some degree of breakdown of either
of the two approximations in this analysis. In fact,
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Fig. 5. (a) Argand plot of z(r) for a single unit cell of C
32

Br
16

CuN
8

[27] along [0 0 1], calculated using *a"1.26°, and *t"3.76 A_ . (b)
Plot of Dz(r)D for one unit cell. The sharp peaks in (b) are positions of carbon and nitrogen atomic columns, while the bromine columns are
visible as very broad, less intense peaks, while the copper at the cell center is nearly extinct. (c) Scaling between Fourier coefficients of
Dz(r)D and the diffraction amplitudes (from multislice).

Fig. 6. (a) Argand plot of z(r) for YSr
2
Cu

2
GaO

7
[29] along [0 0 1], calculated using *a"1.26°, and *t"3.76 A_ . (b) plot of Dz(r)D for one

unit cell, and for comparison a ball-and-stick model of the structure. The sharp peaks in (b) are positions of carbon and nitrogen atomic
columns, while the bromine columns are visible as very broad, less intense peaks, and the copper at the cell center is nearly extinct. (c)
Scaling between Fourier coefficients of Dz(r)D and the diffraction amplitudes (from multislice).

in this case, the second approximation, i.e that the
second term of Eq. (4) be small, is quite well fulfil-
led, as was ascertained by plotting DFTMz(r)ND
against JI

!7
(h) (i.e. using the complex z(r)). Rather,

it is primarily the first approximation, that
DFTMDz(r)DND+DZ(h)D, which is violated. In contrast
to the three other structures considered, in
YSr

2
Cu

2
GaO

7
structure only a small minority of

the projected atomic columns consist purely of

oxygen atoms, and the exit wave is therefore not
characterized at intermediate thicknesses of &100
to 200 A_ by dominant light-atom s-states with
a narrow energy range. The shallow states for this
structure occupy a range of energies due to large
overlap in the potentials of neighboring atomic
columns, for instance at the Ga or Sr columns, both
of which have oxygen columns within a distance
of less than 0.6 A_ . This overlap gives rise to

258 W. Sinkler, L.D. Marks / Ultramicroscopy 75 (1999) 251—268



pronounced dispersion in the two-dimensional
band structure, which causes loop-like shapes to
appear in the Argand plot. An example of this is
indicated by an arrow in Fig. 6a, and it is asso-
ciated with the overlapping oxygen and gallium
columns in the blocking layer (see Fig. 6b). When
the low-lying states occupy a continuum of ener-
gies, the averaged wave clearly must have a signifi-
cant imaginary component, and cannot fulfill the
requirement of being predominantly real and posit-
ive. An additional reason for the poor scaling in the
case of YSr

2
Cu

2
GaO

7
is the relatively low density

in the cation columns. There is only one atom per
repeat unit along the beam in all cation columns,
whereas the pure oxygen columns adjacent to Cu
are doubly occupied. The channeling energies for
both Ga and Cu are thus relatively low, and the
averaging does not strongly attenuate them. This is
the source of some rather large positive imaginary
values in the Argand plot, many of which are asso-
ciated with the Cu columns. Based on the results for
the YSr

2
Cu

2
GaO

7
[0 0 1] zone axis, the detection

of light atoms using thickness-averaged data will be
less effective in structures for which no zone-axis
direction exists with a large number of well-re-
solved atomic columns containing only light ele-
ments, and/or when there is poor registry within
columns. It will also be negatively affected when
low occupation of cation columns gives rise to
several closely spaced states at low energy, rather
than a single dominant state corresponding to the
light atoms.

3. Direct methods

Direct methods calculations were performed for
simulated data sets for all four structures presented
in the previous section, as well as for experimental
data sets from the (Ga,In)

2
SnO

5
and

YSr
2
Cu

2
GaO

7
structures. The simulated data sets

were obtained by averaging intensities via

I
!7
(h)"

1

N
+
i

DW
i
(h)D2 (5)

where N is the number of repeat distances between
0 and 200 A_ , and the W

i
(h) are the wave functions

calculated with multislice for each repeat distance
multiple in this interval. Justification for Eq. (5) is
provided in Appendix A. The thickness interval
used is representative, for example, of a diffraction
pattern taken with a 75 nm probe at the edge of
a wedge-shaped sample with a wedge angle of 15°.
Simulated data sets included all unique beams to
1 A_ ~1 resolution. Although it may be possible to
measure intensities beyond this resolution, this will
depend on voltage. The 1 A_ ~1 resolution limit was
thus chosen as a reasonable practical limit, provid-
ing an adequate representation of the features of
the exit wave. For obtaining experimental inten-
sities, an Hitachi H9000 microscope was used, op-
erated at 300 kV. In the data set for (Ga,In)

2
SnO

5
,

a 100 nm probe was positioned with approximately
40 nm overlap with the specimen. Experimental
intensities for YSr

2
Cu

2
GaO

7
were collected using

a 300 nm diameter selected area aperture, posi-
tioned approximately 1

3
on and 2

3
off of the sample.

Experimental intensities were measured from
microdensitometer scans of through-exposure
series on photographic film. The intensities were
quantified from the scans using a cross-correlation
method [29]. The tilt deviation was small, as in-
dicated by differences between intensities at
$(h, k, l) which were in the same range of the
measurement errors (about 20%) for both
YSr

2
Cu

2
GaO

7
and (Ga,In)

2
SnO

5
.

The direct methods calculations were performed
using the minimum relative entropy approach de-
scribed elsewhere [17,18]. The calculations as-
sumed that a limited number of low-resolution
image phases were available. Where the phases
were not taken from actual experimental HRTEM
images (the cases of (Ga,In)

2
SnO

5
and

YSr
2
Cu

2
GaO

7
), simulated images for Scherzer de-

focus and a thin sample (+30 A_ ) were used to
assign phases for a number of low-angle beams
(approximately 10% of the total data set). The
criteria in choosing which phases to fix were based
on the strength of the image Fourier coefficient,
and a limitation on the spatial frequency to below
0.45 A_ ~1 (short of the Scherzer limit for both ex-
perimental and calculated images). For such re-
flections the phase of FT(Dt(r)!1D) tends to be
stable as a function of crystal thickness [16], so
that the image phase information (the same as

W. Sinkler, L.D. Marks / Ultramicroscopy 75 (1999) 251—268 259



Table 1
Image phases used for (Ga,In)

2
SnO

5
. The phases were taken

from an experimental HRTEM image, and represent 18 of 305
unique reflections. All phases are in agreement with FTMDz(r)DN

h,l Image phase

4,!1 180
0,3 180
2,!1 180
4,2 180
2,0 360
5,0 360
3,!1 180
1,3 180
1,!2 180
3,!3 180
1,!1 360
1,!3 360
3,0 180
1,1 180
4,!2 180
0,4 360
2,!3 360
3,!2 360

Table 2
Image phases used for Na

7
Nb

15
W

13
O

80
. The phases were ob-

tained from a calculated HRTEM image, and represent 20 of
305 unique reflections. All phases are in agreement with
FTMDz(r)DN

h,k Image phase

2,6 180
0,8 180
4,6 180
6,2 360
2,0 180
4,4 360
0,2 180
6,5 180
6,6 180
6,4 180
2,2 180
6,0 180
4,3 360
4,5 180
4,1 360
2,3 360
2,7 180
6,1 180
2,1 360
2,5 360

FT(Dt(r)!1D) at low spatial frequency) is likely to
be characteristic of the function Dz(r)D. The phases
used are listed for each structure in Tables 1—4,
where they are compared with the corresponding
phases in Dz(r)D. As can be seen, there is nearly
perfect agreement between the image phase in-
formation and FTMDz(r)DN except in the case of
YSr

2
Cu

2
GaO

7
.

In performing the direct methods calculations on
the thickness-averaged diffraction data, normaliz-
ation of the root intensity (amplitude) data was
performed using

Dº(h)D"DF(h)D )¼(h)/SDF(h)DT,

in which ¼(h) is a window function designed to
improve the self-consistency of peaks in the solu-
tions with the minimum relative entropy operator,
and SDF(h)DT is the expectation value of DF(h)D. Un-
der the assumption of randomly located atoms,
SDF(h)DT is given by M+

i
f 2
i
N1@2, where the sum is

over the atomic scattering factors for all atoms in
the unit cell.

It was reproducibly found in direct methods us-
ing thickness-averaged dynamical intensity data

that the use of very large Debye—Waller factors in
the normalization led to better prediction of phases
in terms of finding peaks representative of the Dz(r)D
maps shown in the previous section. Under the
present conditions, Debye—Waller factors corre-
sponding to an rms spread of approximately 0.8 A_
for heavy cations and 0.3 A_ for the light atoms was
found to produce good results for all structures
investigated. This can be explained by the tendency
for the peaks in the wave, and thus in Dz(r)D, to
broaden as the thickness increases, due to the in-
creasing importance of shallow 2s and p states
which unlike the 1s states are not maximal at the
atomic positions. A good example of this can be
found in Fig. 5b, which shows Dz(r)D for copper per-
bromophthalocyanine. The peaks at the bromine
atomic positions have a breadth (full-width at half-
maximum) of nearly 2 A_ , while those at the carbon
atoms are about 0.8 A_ in breadth. This contrasts
with potential peak widths for the structure model
used in the multislice calculation, which were ap-
proximately 0.9 A_ for the bromines, and 0.7 A_ for
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Table 3
Image phases used for C

32
Br

16
CuN

8
. The phases were obtained

from a calculated HRTEM image at Scherzer defocus, and
represent 18 of 191 unique reflections

h,k Image phase

4,8 360
3,5 180
7,1 360
1,9 360
3,7 360
6,4 360
4,4 180
6,0 180
5,5 360
1,11 360
0,8 180
5,7 180
6,6 360
2,4 360
2,8 180
5,1 360*
1,7 360
0,10 360

A single phase in disagreement with FTMDz(r)DNis marked with an
asterisk.

Table 4
Image phases used for YSr

2
Cu

2
GaO

7
. The phases were ob-

tained from an experimental HRTEM image, and represent 5 of
57 unique reflections

h,k Image phase

1,1 360
2,0 360*
4,0 180
6,0 180*
10,0 360

Phases in disagreement with FTMDz(r)DN are marked with an
asterisk.

Fig. 7. Plots of the total normalization factor ¼(h)/SDF(h)DT
versus spatial frequency DhD for copper perbromophthalocyanine:
(a) using large thermal parameters; (b) using standard small
thermal parameters.

the carbon atoms. The inclusion of large De-
bye—Waller terms in the normalization mimics this
dynamically induced broadening of the atomic col-
umn peaks in Dz(r)D, and is thus beneficial towards
restoring the features of Dz(r)D. The fact that the
additional 2s- and p-type states dominate more
quickly for heavier elements supports the use of
a Z-dependent correction to the thermal factors.
Fig. 7 is a plot of the total normalization factor

¼(h)/SDF(h)DT used for the example of perbromoph-
thalocyanine as a function of spatial frequency h.
This is also compared with a normalization using
Debye—Waller factors of 0.3 A_ 2, or 0.06 A_ rms vi-
brational amplitude.

The details of the direct methods algorithm used
will not be described here, as they have been dis-
cussed in detail in previous publications [17,18,20].
Subsequent to normalization of the amplitudes as
described, two consecutive direct methods calcu-
lations were performed for each structure. An initial
run was performed, after which it was observed
which beams among the strongest in the data set
had strongly defined phases (having the same phase
in all of the top 10 solutions). These were then
assigned fixed phases, and the process was repeated
a second time. This two-step procedure was found
to be beneficial particularly in the cases of per-
bromophthalocyanine and Na

7
Nb

15
W

13
O

80
,

which have rather large projected unit cells, and
thus contain a large number of beams.

Fig. 8a—d shows direct methods solutions for all
four structures considered using simulated data.
The solutions shown represent the top solutions in
terms of the figure of merit (FOM) [17,18] in all
cases except for YSr

2
Cu

2
GaO

7
, for which the sec-

ond-ranked solution is shown. The top solution for
YSr

2
Cu

2
GaO

7
was discounted due to its strongly

inhomogeneous appearance (it had only two strong
peaks in the unit cell). The solutions are consistent
with the analysis of Section 2 for all but the case of
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Fig. 8. Direct methods solutions obtained using averaged intensities for thicknesses between 0 and 200 A_ . (a) (Ga,In)
2
SnO

5
, with rings

marking positions of all oxygen atomic columns. (b) Na
7
Nb

15
W

13
O

80
, with rings marking positions of the 46 (of 52 total) oxygen atomic

columns which are present as peaks in the solution. (c) C
32

Br
16

CuN
8
, with rings marking the positions of the 64 (of 80 total) light atom

positions present as peaks in the solution. (d) For YSr
2
Cu

2
GaO

7
.

YSr
2
Cu

2
GaO

7
. They consistently reflect the low-

lying channeling states seen in the Dz(r)D plots, and
are therefore a good guide to the positions of light
atoms in the structure. This is particularly true for
the case of (Ga,In)

2
SnO

5
, as should be expected

based on the excellent scaling between the input
amplitude data and the Fourier coefficients of Dz(r)D.
For the larger structures, perbromophthalocyanine
and Na

7
Nb

15
W

13
O

80
, the predominant peaks are

those of the light atoms, while additional peaks are
located at the bromine (perbromophthalocyanine)
and W—Nb (Na

7
Nb

15
W

13
O

80
) sites. In the case of

perbromophthalocyanine, 64 carbon and nitrogen
sites are recognizably associated with peaks in the

direct methods solution, out of a total of 80 sites.
For Na

7
Nb

15
W

13
O

80
, 46 of a total of 52 oxygen

atomic columns are indicated by peaks in the direct
methods solution. For both structures there are
a number of additional peaks in the direct methods
solutions, most of which are associated with
heavier atoms in the structure (as well as in Dz(r)D).
Thus, for example, there are a few peaks in Fig. 8c
which correspond to bromine atoms, and in Fig. 8b
some features appear at the locations of the ring-
like features marking W/Nb sites in Fig. 4b. Be-
cause these are all features of Dz(r)D, and given the
good scaling between the diffraction intensities and
Dz(r)D in these cases, the appearance of these features
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Fig. 9. (a) Direct methods solution obtained using experimental
thickness-averaged electron intensity data from (Ga,In)

2
SnO

5
.

The solution shows peaks at all oxygen atomic positions (dots)
as well as fainter peaks at two tin positions (single arrows) and
two gallium positions (double arrows). (b) Direct methods solu-
tion from experimental thickness-averaged intensity data from
YSr

2
Cu

2
GaO

7
. Overlay shows a ball-and-stick model of the

structure.

corresponding to shallow states in the exit wave is
not surprising. While the respective structures are
not necessarily solvable without further effort using
Fig. 8b and c, the direct methods solutions would
clearly be of significant benefit to solving the struc-
tures. Provided the additional availability of
HRTEM images, with indications of where the
heavy cations of the structures are located, it is
likely that the correct structural model could read-
ily be developed.

Fig. 8d presents the second-ranked direct
methods solution for the case of YSr

2
Cu

2
GaO

7
,

using simulated diffraction intensities. As can be
seen, a number of the strongest peaks in the direct
methods solution correspond to projected atomic
columns. Nevertheless, the solution does not bear
much resemblance to the function Dz(r)D presented in
the previous section. The solution also does not
emphasize light atoms or shallow channeling states
in any systematic way. While the solution might be
useful in solving the structure, the approach of
Section 2 cannot be used to predict the dependabil-
ity of direct methods for this case.

In addition to modeled diffraction intensities,
direct methods was performed using experimental
diffraction intensities for both (Ga,In)

2
SnO

5
and

YSr
2
Cu

2
GaO

7
. The direct methods solutions are

shown as Fig. 9a and Fig. 9b. The solutions bear
a reasonable resemblance to those obtained with
modeled data in both cases. In the case of
(Ga,In)

2
SnO

5
, the oxygen positions are the most

prominent peaks of the direct methods solution.
Additional weaker peaks are located at two of the
tin positions (arrows), and two of the gallium posi-
tions (double arrows). The exact nature of the result
will depend on the precise weighting with respect to
thickness, as well as the details of the direct
methods calculations (for example the normaliz-
ation employed). Nevertheless, the sensitivity of
direct methods to the light atom positions which is
evident in Fig. 9a is in general agreement with
expectations based on the analysis of Section 2 for
the (Ga,In)

2
SnO

5
structure. In the case of

YSr
2
Cu

2
GaO

7
, the direct methods solution using

experimental data has several features in common
with the solution from modeled data (Fig. 8d) as
well as with the structure. There are strong maxima
near the atomic columns in the Sr—O layers, and

weaker maxima in the Ga—O layers, also corre-
sponding well with the mixed oxygen-gallium
atomic columns. In the yttrium layers, the yttrium
has a weak maximum, and there is a spurious
maximum between the yttrium columns. In con-
trast to the solution from modeled data the Cu—O
layers show only weak maxima near the Cu col-
umns, and slightly stronger maxima near the pure
oxygen columns. Altogether, it is possible that the
direct methods solution for YSr

2
Cu

2
GaO

7
might

be useful for solving the crystal structure. However,
it must be pointed out that the reliability of the
present technique in this case is uncertain, because
there is as yet no systematic means of obtaining
a prediction concerning probable features of the
direct methods solution. This contrasts with the
other three cases considered, in which it is at least
probable that a simple interpretation based on sen-
sitivity to light atom positions provides a simple
and reasonably reliable basis for interpreting the
direct methods solutions.

4. Discussion

The present work develops a methodology
for determination of crystal structures using
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thickness-averaged electron diffraction intensities
combined with limited HRTEM image informa-
tion. It has been shown in both modeled and ex-
perimental cases that thickness-averaged intensity
data can be used for direct methods calculations to
indicate probable atomic positions. Once these in-
itial positions are obtained, subsequent refinement
techniques can be used to improve the accuracy of
the structure data, as well as to confirm the correct-
ness of the structure. The technique has particular
sensitivity to light atom positions, and is viable in
structures which contain a large number of light
atoms, located in well-resolved atomic columns
parallel to the incident beam. For such cases (which
include many organic structures), the direct
methods result is sensitive to light atom positions.
This is a consequence of a narrow and shallow
channeling energy band corresponding to the light
atom 1s states. These states are accentuated both
using thickness-averaged intensity data, as well as
in single-thickness data from thicknesses in the
range of 100—200 A_ at conventional accelerating
voltages [16]. In contrasting cases for which there
is significant overlap of neighboring atomic col-
umns, the direct methods result becomes difficult to
predict. Dependable atomic resolution using direct
methods in such cases may perhaps be obtained by
taking extreme precautions to gather data from
a very thin region ((50 A_ thickness). An addi-
tional possibility for less tractable structures such
as YSr

2
Cu

2
GaO

7
would be to use single-thickness

data in a more general Fourier restoration scheme,
in which the solutions are complex (see e.g. Ref.
[30]). It may be possible to use such an approach
together with limited phase information from
a through-focus series to restore the complex exit
wave. This alternative is currently being developed.

The possibility of obtaining structural informa-
tion using thickness-averaged intensity data means
that the use of dynamical direct methods is not
restricted to data collected using microscopes
which are designed to provide an electron probe in
the nanometer range. Data for direct methods can
be obtained using conventional or older high-res-
olution instruments, and all experimental data used
in the present work was collected using a standard
HRTEM instrument with a probe size on the order
of 100 nm. This may be particularly useful, because

a single experimental session on a high-resolution
microscope can suffice to collect all data used for
a direct methods structure determination: Sub-
sequent to obtaining high-resolution images (for
image phases), a diffraction through-exposure
series can be collected from the same sample area
used for the imaging.

While most of the details of the technique have
been discussed in the above Sections 2 and 3, three
points of practical importance should be men-
tioned. The first concerns the collection of the data,
and in particular the restrictions on sample thick-
ness. In addition to the data sets employed to
obtain Fig. 9a and Fig. 9b above, a third data set
was collected from the [0 1 0] zone axis of
(Ga,In)

2
SnO

5
using a 300 nm diameter selected

area aperture, overlapping the specimen by 200 nm.
The direct methods result using this data did not
reveal the oxygen atomic positions, while that
taken using a 100 nm condensed beam, overlapping
the sample by 40 nm did (see Fig. 9a). Based on the
five times greater beam—specimen overlap, the fail-
ure of the selected area data to provide approxim-
ate oxygen atomic positions was likely due to
excessive specimen thickness (based on a 20° wedge
angle, the maximum thickness exceeded 1000 A_ ).
For thicknesses in this range, inelastic effects be-
come dominant, and the channeling approxima-
tions concerning the exit wave — that it is essentially
flat with peaks at the positions of atomic columns
— break down. In general, the thicknesses for which
direct methods should work along the lines pre-
sented here are closer to the range of 100—200 A_ ,
which are characteristic of a sample with a small
wedge angle ((20°), using a probe—specimen over-
lap on the order of 50 nm. This is nevertheless
easily achieved using virtually any microscope
manufactured within the last 20 years.

A second aspect of practical importance is the
adjustment made to the diffraction amplitude nor-
malization to account for dynamical effects in the
data. This represents a first approximation towards
modifying the direct methods calculation when
working with dynamical data. As pointed out
above, the large thermal factors used for normaliz-
ation mimic the Z-dependent broadening of peaks
in the wave which occurs through excitation of 2s-
and p-type channeling eigenstates. Use of this
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Fig. 10. Direct methods solution from modeled thickness-aver-
aged diffraction intensities for copper perbromophthalocyanine.
Overlay shows ball-and-stick model of the structure, with large
dots at the cation positions. The solution was obtained using
a standard normalization with small thermal parameters corre-
sponding to 0.06 A_ rms vibration amplitude.

normalization led to the most faithful reproduction
of the function Dz(r)D, including the predominance of
peaks at the positions of light atoms (see Fig. 8a—c).
It is interesting to note that use of the standard
normalization which would be used with kinemati-
cal data (Fig. 7, curve b) results in solutions which
are not reminiscent of Dz(r)D but nevertheless may
contain peaks at atomic positions. This is shown in
Fig. 10 for the case of copper perbromoph-
thalocyanine. While this direct methods solution
differs strongly from that shown as Fig. 8c, the
peaks in Fig. 10 show a reasonable correlation with
the cation positions in the structure. The emphasis
of the cation positions can be understood based on
the fact that the total integrated size of the peaks at
the bromines in Dz(r)D (Fig. 5b) is nearly twice as
large as that at the light atoms, in spite of the light
atoms being stronger in terms of their peak ampli-
tude. Fig. 10, which compared to Fig. 8c is a less
faithful restoration of the sought-after Dz(r)D, is
consistent with the enhanced sensitivity towards
real-space distributions containing broader peaks
which results from a flatter normalization. This is
because the flat normalization produces a recipro-
cal space distribution in which the reflections at
high angle are damped, and the real-space features
must therefore be relatively broad. Under these
constraints, the direct methods calculation thus

provides a solution which contains fewer peaks, but
in which these peaks are the largest ones in Dz(r)D. In
contrast, a normalization using large thermal fac-
tors increases the relative strength of large-angle
beams and results more consistently in locating
most of the peaks in Dz(r)D, thereby emphasizing the
light atom positions.

Finally, it may be noted that all of the examples
treated in the present work are from centrosymmet-
ric projections. This is not a constraint of the
present direct methods algorithm, but derives
solely from the use of initial phases taken from
HRTEM images. For centrosymmetric projections
the image phases are limited to 0 and p, which
thus eliminates the significant error in image
phases from non-centrosymmetric projections. As
pointed out above, the use of image phases is indis-
pensible in dynamical direct methods. Image
phases for non-centrosymmetric projections may
be used provided that care is taken to statistically
assess and if possible reduce their error. An addi-
tional alternative for non-centrosymmetric struc-
tures is to employ the image phases as a fixed
constraint in the first several cycles or projections,
and subsequently (because of their potential for
introducing error) allow them to vary in the final
cycles.

5. Conclusions

The present work has investigated the possibility
of applying direct methods to thickness-averaged
electron diffraction intensities. Direct methods
were applied to both modeled and experimental
electron diffraction intensities from several known
crystal structures. It is found that in structures
containing a large proportion of columns of light
atoms, aligned along the incident electron beam
and well separated from neighboring columns,
direct methods is able to indicate the positions
of the light atom columns. A theoretical framework
for understanding the application of direct methods
to thickness-averaged dynamical diffraction inten-
sities has been developed, using electron channeling
theory. The work provides the basis for using
conventional TEM equipment without fine probe
capabilities to obtain diffraction data for use
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Fig. 11. Schematic diagram of a wedge-shaped sample with
wedge angle a. The phase difference of the incident wave at x’
relative to that at x"0 is 2pd/j. Using m"tan(a) this is
2pmx/j. The aperture or beam width extends from x"0... x

.!9
.

towards solving crystal structures with direct
methods.
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Appendix A

Considering the case of a wedge-shaped sample,
in the one-dimensional geometry shown in Fig. 11,
the exit wave can be expressed as

t(x)"+
g

W
g
(mx)exp(2pigx)exp(!2pimx/j), (A.1)

where W
g
(t) is the waves Fourier coefficient at g for

thickness t, j is the electron wavelength, and
m"tan(b) (see Fig. 11). From Fig. 11 the thickness
at position x is equal to mx. Eq. (A.1) thus con-
siders the wave at x as identical to that of a planar
sample with thickness mx, for which the incident
wave is out of phase (with respect to that arriving at
x"0) by !2pmx/j. If one sets:

¼
g
(u)"F¹MW

g
(mx)exp(!2pimx/j)N (A.2)

(in which the FT is taken with respect to the vari-
able x, and the W

g
are all equal zero for x outside of

the aperture interval x"0...x
.!9

), one then has
from the Fourier transform of Eq. (A.1):

W(u)"+
g

d(u!g) * ¼
g
(u) (A.3)

in which * denotes convolution. By assuming that
all ¼

g
(u) are well localized around the reflection at

wavevector g, one can integrate over a small region

*u around g to obtain

I
g
+P*u

D¼
g
(u)D2du (A.4)

for the intensity of the reflection at g. This is the
same as calculating the intensities for planar sam-
ples and averaging, as is done in Eq. (5) to approx-
imate the scattered intensity from a wedge-shaped
sample. One can show this from Parseval’s the-
orem. Assuming that the region *u includes all the
intensity scattered from within the aperture corre-
sponding to the beam g, one has

P*uD¼g
(u)D2du"P

A

DW
g
(mx)exp(!2pimx/j)D2 dx

"P
A

DW
g
(mx)D2 dx (A.5)

in which A indicates the area 0...x
.!9

contained
within the aperture. The assumption that the ¼

g
(u)

are localized around the reflection at g is critical to
this approximation. In order to justify this, one
needs detailed information concerning the function
W

g
(t). The channeling approximation is well suited

for this problem because of its analytical thickness
dependence. For a one-dimensional primitive unit
cell, containing a single column of atoms, one has
a form analogous to Eq. (2)

t(x)"1#C
1
/
1GexpA!ip

E
1

E
0

ktB!1H (A.6)

in which /
1
(x) is the 1s channeling eigenfunction,

and E
1

is the corresponding eigenvalue. This gives
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Table 5
Characteristic spread of diffracted beams due to a local variation
of thickness as a function of wedge angle and channeling eigen-
value. Values are in (A_ ~1)

Energy (eV)
Angle (deg)

10 30 100 200

5 0.000087 0.00026 0.00087 0.0017
10 0.00017 0.00052 0.0018 0.0035
15 0.00026 0.00080 0.0027 0.0053
30 0.00057 0.00172 0.0058 0.012

W
g
(t) as

W
g
(t)"d(g)#C

1
U

1
(g)GexpA!ip

E
1

E
0

ktB!1H.
(A.7)

Inserting this into Eq. (A.2) along with an aperture
function A(x), which is equal to 1 inside the aper-
ture and zero outside, one obtains

¼
g
(u)"C

1
U

1
(g)G CdAu!A

E
1

2E
0

km#kmBB
!d(u!km)D

sin px
.!9

u

pu
exp(ipux

.!9
)H.
(A.8)

Here C
1
U

1
(g) is proportional to the electron scat-

tering factor, and is assumed to be nearly constant
close to the reciprocal lattice vector g. The intensity
variation around this reciprocal lattice vector due
both to the aperture and the wedge shape of the
sample is given as a function of u by the term in the
curved brackets. From Eq. (A.8), the sample thick-
ness variation within the aperture introduces
a spread in ¼

g
(t) which is of the order

*u"(E
1
/2E

0
)km. In a more general channeling

scheme starting from Eq. (1) of the main article,
E
1

is replaced by *E, which is the total energy
spread between the deepest and shallowest excited
channeling states. The magnitude of *u for repre-
sentative values of E

1
and the wedge angle a are

given in Table 5 for 200 kV accelerating voltage.
Considering that the distance between reflections is
the inverse of the lattice parameter, the values of *u
would amount to a significant portion of the dis-

tance between reflections only in extreme cases in
which the wedge angle is 30°, the channeling eigen-
value is 200 eV and the lattice parameter is several
tens of a> ngstroms. Channeling eigenvalues exceed-
ing 200 eV occur only for elements heavier than
approximately Mo, aligned in perfect columns
along the beam. This supports the validity of
Eq. (5) for approximating the diffracted intensity
from a wedge-shaped sample.
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