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While it is known that the kinematical approximation works poorly if at all for

transmission electron diffraction, substantial success has been achieved over the

last few years in applying it via direct methods to determine atomic structures.

This raises an interesting quandary; is the established theory of electron

diffraction wrong, or are the apparent successes mirages? The intention of this

note is to look more deeply into this question and it is found that the correct

answer is neither of the above. Beyond vanishingly thin samples when the

kinematical approximation holds rigorously, the distribution of phases can

remain effectively kinematical; the
P

0 distribution given by the sum of the

phase of�g andÿg re¯ections remains peaked, albeit not at zero phase, and has

a relatively narrow distribution. This fact is shown via both exploiting prior

works on including anomalous-scattering effects into direct methods, and

numerical calculations. Provided that the
P

0 distribution remains narrow, direct

methods and indeed structural re®nements have some validity. Even larger unit-

cell structures with close to statistically random atomic positions do not

approach a kinematical limit but instead an effective statistical kinematical

approximation. While there are similarities to what there is in conventional

(kinematical) direct methods, there remain major differences; for instance,

positivity is no longer a valid constraint and the scattering need not be

dominated by heavy atoms.

1. Introduction

A classic problem in transmission electron diffraction (TED)

and microscopy is to determine at least approximately the

atomic structure. Over the last 15 years, there has been

substantial success in this using high-resolution electron-

microscopy (HREM) techniques, coupled as appropriately

with image simulations and in some cases powder X-ray

diffraction analyses (e.g. Spence, 1988; Buseck et al., 1988).

Provided that the images are not interpreted too naively, in

general they show the atomic structure to a resolution of

0.2 nm or better and approximate atomic positions can be

found with a ruler. More challenging is the issue of getting

atomic positions to an accuracy of better than 0.05 nm. Quite

some time ago, it was shown that a large number of effects,

both microscope aberrations as well as dynamical diffraction

phenomena (e.g. Spence, 1988; Buseck et al., 1988; Cochayne

& Gronsky, 1981; Treacey et al., 1985; Saxton & Smith, 1985;

Self et al., 1985) could lead to artifacts. Despite these, with due

care it is possible to re®ne atomic positions at defects (e.g. see

Zhang et al., 1994; Zandbergen et al., 1997; He et al., 1997).

To overcome this problem, one can correct the microscope

aberrations, a process that looks like it will work in the near

future (Haider, Rose et al., 1998; Haider, Uhlemann et al.,

1998). Alternatively, one can avoid any aberrations by dealing

directly with the diffraction data where the intensities can be

measured to an accuracy of 5% or better using cross-corre-

lation techniques (Xu et al., 1994). Either exploiting some

phases obtained from images or just by using these intensities,

direct methods appear to be an attractive approach to exploit.

Since the region from which diffraction is taken (in a micro-

scope) is small, less than 0.1 mm in routine machines, there are

few if any problems with polycrystalline samples. In addition,

radiation damage is much less severe with diffraction than in

imaging since much lower doses are required. Some substan-

tial successes have been reported using this general approach,

either phase extension or full ab initio direct methods (Dorset,

1995). Inorganic compounds were ®rst solved using electron

diffraction data sets collected from textured structures

(Vainshtein, 1964; Vainshtein et al., 1992). More recently,

direct methods have been successfully used, for instance, to

solve organic crystal structures from electron diffraction data

(Dorset, 1996, 1998), zeolites (Nicolopoulos et al., 1998),

ceramic oxides (Sinkler et al., 1998), a precipitate AlmFe in

aluminium alloys (Gjùnnes et al., 1998) and a new modi®cation

of Ti2Se, the �-phase, and several related inorganic crystal

structures (Weirich et al., 2000). Very recently, the prospects

and some of the problems in kinematical least-squares



re®nement for polymer electron crystallography have been

discussed by Dorset & Gilmore (2000). Except for the work of

Sinkler et al. (1998), all the above used a conventional (i.e.

kinematical) approach to direct methods. More often than not,

dynamical diffraction effects, which always exist and should

never be neglected, have been presumed to not matter.

Any application of direct methods or kinematical re®ne-

ments raises some fundamental problems. There are some

simple cases, for instance a surface, where such re®nements

are legitimate as a good ®rst approximation, but even here

correct results require the inclusion of dynamical effects (e.g.

Jayaram et al., 1993; Marks & Plass, 1995; Collazo-Davila et al.,

1998). It is very well established theoretically that even one

atom of a heavy element such as gold is a dynamical scatterer,

so there are no cases with real samples where the kinematical

approximation is rigorously valid. (While exceedingly thin

values such as 2 nm are sometimes reported for sample

thickness used in matching experimental HREM images, the

actual thickness is certainly larger; the discrepancy is often due

to neglecting terms such as sample vibration or beam tilt.)

We have an apparent contradiction: either more than

50 years of electron diffraction, and by inference quantum

mechanics, is wrong or the direct-methods successes detailed

above are mirages. Neither of these two seems to be at all

reasonable. The intention of this note is to examine more

closely these issues. We will show that a more subtle analysis of

the statistics of the breakdown of the formal kinematical

approximation yields some important results that resolve in

part the contradiction. Of particular importance is the �0 two-

phase structure invariant:

 �g� � '�g� � '�ÿg�; �1�
where '(g) is the phase of the structure factor for the reci-

procal-lattice vector g. While this is rigorously equal to 2�n

(n � 0;�1) for kinematical diffraction, it is not for dynamical

diffraction. However, if in a statistical sense the distribution of

�0 values (for different g) has a central peak and a relatively

narrow width, the statistics underlying direct methods will

remain reasonably valid. The conditions that the distribution

is relatively narrow, what we will refer to as an `effectively

kinematical' case, hold to quite respectable thickness. This

follows both analytically by combining prior work on anom-

alous scattering (Hauptman, 1982) coupled with a simple

channeling model, and is also con®rmed by numerical simu-

lations. Note that, while this implies some similarities to

conventional (kinematical) direct methods, there are still

major differences. The next stage in developing an under-

standing of how direct methods can be applied to dynamical

diffraction data, i.e. the triplet structure invariants, will be

discussed elsewhere (Chukhovskii et al., 2000).
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Figure 1
The probability distributions and histograms of the phases of the dynamic structure factors F(g, z) and the product F(g, z)F(ÿg, z). The crystal thickness
z along the [001] zone axis of C32Br16CuN8 is 5.264 nm.
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2. Analysis

The general problem of three-dimensional transmission elec-

tron diffraction data (i.e. that collected from a number of

different zone axes) is very dif®cult; for instance, it is not clear

whether it is valid to merge data from different orientations

(and with different sample thicknesses). We will limit our

analysis to a two-dimensional data set. We will ®rst show by

combining a channeling (tight-binding Bloch-wave) model

with prior work on anomalous scattering that the �0 distri-

bution will tend to show a peak and relatively narrow width

beyond the limit of kinematical diffraction.

It is appropriate to give a short introduction to the tight-

binding Bloch-wave model that will be used here. The two

standard techniques for calculating dynamical electron

diffraction are multislice and Bloch-wave methods, both using

plane-wave expansions of the wavefunction. For low-resolu-

tion imaging, orientations are generally used (e.g. two-beam or

systematic row) where the calculations converge with only a

few plane-wave terms. However, for a zone-axis orientation, a

large number is required, typically out to 40 nmÿ1. This makes

it dif®cult to generate physical insight into what is going on.

An alternative Bloch-wave expansion was ®rst proposed for

the case of electron or ion channeling (Berry & Mount, 1972;

Kambe et al., 1974), namely to use two-dimensional atomic

orbitals, in essence a tight-binding expansion. This expansion

has been revived recently after it was pointed out by Van Dyck

& Op de Beeck (1996) that for a relatively thin sample only a

limited number of atomic orbitals is required to accurately

describe the wavefunction if the atomic strings do not overlap

appreciably in projection. With a truncated series of two-

dimensional orbitals, one can add orthogonalized plane waves

[OPWs ± see for instance Kittel (1963) or other solid-state

physics texts and Appendix A] to form a complete basis set.

The OPWs interact with the much smaller pseudopotential

rather than the full crystal potential, so scattering of the OPW

states is weak for a thin crystal. In most cases, only the lowest

transverse energy 1s states (Bloch-wave state levels) need to

be included, and the pseudopotential can be taken as

vanishingly weak.

The tight-binding Bloch-wave approximation provides a

compact and rather rigorous (exact if all terms in the expan-

sion are used) Bloch-wave expansion for dynamical diffraction

effects near a zone-axis orientation, comparable in many ways

to the classic two-beam approximation used for low-resolution

defect analysis imaging. (The OPW states cannot be neglected

Figure 2
The probability distributions and histograms of the phases of the dynamic structure factors F(g, z) and the product F(g, z)F(ÿg, z). The crystal thickness
z along the [001] zone axis of C32Br16CuN8 is 7.520 nm.



off a zone-axis.) For instance, it has been used to give exact

expressions for high-resolution image contrast including

dynamical effects (Sinkler & Marks, 1999a; Hu & Tanaka

1999) and an approximate method for handling an initial

re®nement of zone-axis diffraction data (Van Dyck & Chen,

1999). More important, here it shows how atom-like features

arise in the real-space wavefunction, and can therefore be

used to understand how direct methods work with transmis-

sion electron diffraction data, for instance the clarity of light

atoms (not just heavy atoms) in many materials (Sinkler &

Marks, 1999b).

As discussed in more detail in Appendix A, we can write a

complete solution for the electron wavefunction in a thin

crystal as a sum over two-dimensional channeling eigenstates

	n(R, z), where R � �x; y� is a two-dimensional vector

perpendicular to the electron-beam direction, namely:

	�R; z� � 1�P
n

an	n�R�fexp�ÿi��En=E0��z� ÿ 1g: �2�

The sum in equation (2) is over the eigenstates labeled n, with

occupations an. Each eigenstate has a characteristic oscillation

frequency as a function of depth z, which is determined by the

channeling (Bloch-wave) eigenvalue En (E0 being the incident

electron energy and � � �ÿ1). For a thin crystal, this series

solution can be legitimately truncated after including only the

most signi®cant terms (see Appendix A). For moderate values

of sample thickness and atomic numbers, a further simpli®-

cation of (2) can be used for cases in which the atomic columns

are well separated in projection so that the atomic potentials

do not strongly overlap (Van Dyck & Op de Beeck, 1996).

(Note that, in a standard perturbation expansion, rehy-

bridization effects will scale with the degree of overlap.) In

such cases, the lowest-lying eigenstate Ej (analogous to the j

atomic 1s state) mainly contributes to the sum on the right-

hand side of (2), so the electron wavefunction may be written

as

	�R; z� � 1ÿ 2i
P

j

aj	j�Rÿ Rj� exp�ÿi��Ej=2E0��z�

� sin���Ej=2E0��z�; �3�
where now the sum is over the j atomic positions.

We will now use this form and do a relatively standard

direct-methods analysis for the
P

0 conditional probability

distribution. Switching to reciprocal space, the standard space

used in structure analyses, the normalized structure factor for

the g re¯ection takes the form
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Figure 3
The probability distributions and histograms of the phases of the dynamic structure factors F(g, z) and the product F(g, z)F(ÿg, z). The crystal thickness
z along the [001] zone axis of C32Br16CuN8 is 11.28 nm.
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Ug � Fg="
1=2
g � "ÿ1=2

g

PN
j�1

jFjgj exp�i��jg ÿ 2�g � rj��; �4�

where

Fjg � jFjgj exp�i�jg� �5�
� 2Vj�g� exp�ÿi�=2ÿ i��Ej=2E0��z� sin���Ej=2E0��z�

�6�

is the complex atomic scattering amplitude of the atom labeled

j, rj its position vector and N the number of atoms in the unit

cell. The normalization factor "g is equal to

"g �
PN
j�1

jFjgj2 �7�

with Vj(g) the Fourier transform of 	j(R ÿ Rj), to a ®rst

approximation the kinematical single-atom structure factor. In

the limit of a vanishingly small thickness, one has then

 �g� � 0 ['�ÿg� � ÿ'�g�]. The conditional probability

distribution (CPD) P( (g)|Rg, Rÿg) de®ned for the value of

 (g) and the two magnitudes Rg � jUgj, Rÿg � jUÿgj may be

written as (Hauptman, 1982)

P� �g�jRg;Rÿg� � 2�I0

2RgRÿg

1ÿ X2

� �� �ÿ1

� exp
2RgRÿgX

1ÿ X2

� �
cos� �g� � ��g��

� �
:

�8�
Here the

P
0 CPD parameters X and � are given by

Xg exp�ÿi�g� � "ÿ1
g

PN
j�1

jFjgj2 exp�2i�jg�; �9�

where I0 is the modi®ed Bessel function. It follows from

equation (8) that the
P

0 CPD has a single maximum at

 g � ÿ�g (the
P

0 invariant), and the two-phase structure

variable is distributed around the value of ÿ�g with a width

� � Aÿ1=2
g . The latter is relatively narrow if the variance of

the
P

0 CPD is small, which is inversely proportional to

Ag � RgRÿgXg=�1ÿ X2
g �: �10�

Going back to (5) and staying in the frame of 1s-state chan-

neling, one ®nds that the phase of the complex atomic scat-

tering amplitude �j does not depend on the diffraction vector

g, only on the thickness variable z. Hence, the subscript g can

be omitted in the symbols �jg, Xg and �g, and the
P

0 invariant

Figure 4
The probability distributions and histograms of the phases of the dynamic structure factor F(g, z) and the product F(g, z)F(ÿg, z). The crystal thickness z
along the [001] zone axis of YSr2Cu2GaO7 is 5.42 nm.



(equal to ÿ�) has a unique value that does not depend on the

diffraction vector g.

To condense this into very simple mathematical terms, the

true wavefunction 	(r, z) can be relatively well approximated

in a statistical sense as

	�r; z� � 1���r; z� exp�i'�z��; �11�
where �(r, z) is a real function which we call the effective

potential, and the approximation is better obeyed for the

stronger re¯ections in reciprocal space. Note that, while it

follows directly from the tight-binding analysis that �(r, z) has

atomistic character, there is no guarantee that it is positive or

dominated by heavier atoms. Some of the statistical char-

acteristics that are normally associated with kinematical

scattering still apply, even though in a numerical sense the

kinematical approximate is not even close to valid.

3. Numerical simulations. Results

The connection detailed above between a 1s-state channeling

model and the
P

0 CPD derived using the same arguments

that have been applied for anomalous-scattering effects in

X-ray diffraction needs to be tested against proper dynamical

diffraction calculations before any conclusions can be reached.

In this section, multislice results are presented for a number of

different structures which show that the analytical conclusions

in x2 hold well in general for relatively thin samples.

3.1. Copper perbromophthalocyanine C32Br16CuN8

The ®rst test case we will consider is copper perbromo-

phthalocyanine (C32Br16CuN8) (Dorset et al., 1992). The slice

thickness along the beam incident direction was c � 0:376 nm,

the projected two-dimensional axes were a � 1:756 and

b � 2:608 nm, and calculations were performed for an accel-

erating voltage of 200 kV. It is a centrosymmetric structure

with space group C2=c. Figs. 1(a) and 1(c) show the numeri-

cally simulated one- and two-phase probability distributions

for the dynamic single F(g, z) and the product of

F(g, z)F(ÿg, z) structure factors, respectively. The phase is

plotted versus the corresponding amplitude that was normal-

ized by using single atomic scattering coef®cients within a unit

cell in order to show the values on a unitary scale, and the 0

beam was normalized as 1. The corresponding histograms of

the frequency of phases are given in Figs. 1(b) and 1(d). The

crystal thickness used in Fig. 1 is z � 5:264 nm. Figs. 2 and 3

show the same behavior for thicknesses of z � 7:520 and
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Figure 5
The probability distributions and histograms of the phases of the dynamic structure factor F(g, z) and the product F(g, z)F(ÿg, z). The crystal thickness z
along the [001] zone axis of YSr2Cu2GaO7 is 10.84 nm.
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z � 11:28 nm, respectively. It can be seen from these ®gures

that the phase distribution of the dynamical F(g, z) has two

peaks separated by about 180�, and that the phases of the

product,
P

0, tends to a constant value. Within a range of 30�,
the maximum is 20±30% of a total of 1629 diffraction beams

within a circle of radius 15.0 nmÿ1. The peak height reduces

with increasing crystal thickness, as other states (e.g. 2s)

become more important. It should be noted that the
P

0 CPD

has a smaller deviation for larger amplitudes as predicted in

x2. (Since there were fewer large amplitudes as the thickness

increased, the calculated distribution of phases does not show

such a pronounced peak in Fig. 3.)

3.2. Ca-doped YSr2Cu2GaO7

The second test structure was the superconducting ceramic

of YSr2Cu2GaO7, with lattice parameters of a � 2:2696,

b � c � 0:542 nm and � � � �  � 90� (Vaughey et al., 1991).

As observed previously (Sinkler & Marks, 1999a,b), a 1s

channeling model does not describe this material particularly

well. Figs. 4 and 5 are the simulated phase distributions at

sample thicknesses of 5.42 and 10.84 nm, respectively, again

at 200 kV. The number of beams inside a circle of radius

15.0 nmÿ1 was 439. Although the distributions are somewhat

wider than those of Figs. 1±3, there is still a tendency for the

stronger beams to obey the
P

0 relationship. In particular, the

frequency histogram of phases shows a maximum as shown in

Figs. 4(b), 4(d) and 5(b), 5(d).

3.3. Chlorinated copper phthalocyanine C32Cl16CuN8:
centrosymmetric and broken centrosymmetric cases

The last sample used is an arti®cial structure constructed by

switching about half of the atoms in chlorinated copper

phthalocyanine (C32Cl16CuN8) to create a broken centro-

symmetric structure. It has the same lattice parameters as

C32Br16CuN8 (Uyeda et al., 1978±1979). The multislice-calcu-

lated results for both the centro- and broken centrosymmetric

structures (`random' model) of C32Cl16CuN8, respectively, are

shown on the left and right in Figs. 6, 7 and 8; for reference,

Table 1 lists the atomic positions used for the random model.

We note that for the `random' model the phase distribution of

F(g, z) does not exhibit any frequency peak (e.g. Fig. 6d). It is

apparent that the `random' model obeys very well the
P

0

distribution (see Figs. 7d and 8d). To understand this, it is

important to note the connection between what is called in the

Figure 6
Phase distributions and histograms of the dynamic structure factors F(g, z) for the centrosymmetric and noncentrosymmetric (random) models of
C32Cl16CuN8 crystal.



direct-methods literature `pseudosymmetry' and dynamical

diffraction effects. For a `random' distribution of atomic

columns, cross terms will statistically tend to cancel out,

similar to an amorphous material (Marks, 1988). When addi-

tional pseudosymmetry is present within the unit cell, this may

not be the case. It follows that larger-cell materials with more

random atomic columns will tend to follow the effective

kinematical approximation rather better with a narrow
P

0

distribution. Note that the maximum of the
P

0 distribution is

not at 0� (as it is for kinematical diffraction) but shifted.

3.4. Accelerating voltage effect

In addition to sample thickness, accelerating voltage is

an independently adjustable parameter. Fig. 9 shows

simulated results for C32Cl16CuN8 at voltages of 100 kV,

500 kV and 1 MV, respectively, for a thickness of

5.264 nm. On the left is shown the probability distribution

of
P

0 phases versus the diffraction amplitude, on the right

the corresponding frequency histogram of the phases. Neither

the distributions nor the frequency histograms are improved

at higher voltage; indeed, as evident in Figs. 9(c) and 9( f), at

1 MV the results are somewhat worse. The reason for this is
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Figure 7
Phase distributions and histograms of the products F(g, z)F(ÿg, z) for the centrosymmetric and noncentrosymmetric (random) models of C32Cl16CuN8

crystal. The sample thickness z along the zone [001] axis is 5.264 nm.

Table 1
Atomic positions of the broken centrosymmetric structure (`random'
model) of C32Cl16CuN8.

x y z

Cl1 0.919 0.302 0.000
Cl2 0.919 0.698 0.000
Cl3 0.419 0.802 0.000
Cl4 0.419 0.198 0.000
Cl5 0.157 0.202 0.000
Cl6 0.657 0.702 0.000
Cl7 0.843 0.202 0.000
Cl8 0.343 0.702 0.000
Cl9 0.271 0.120 0.000
Cl10 0.771 0.620 0.000
Cl11 0.729 0.120 0.000
Cl12 0.229 0.620 0.000
Cl13 0.595 0.057 0.000
Cl14 0.595 0.943 0.000
Cl15 0.095 0.557 0.000
Cl16 0.095 0.443 0.000
N1 0.000 0.070 0.000
N2 0.500 0.570 0.000
N3 0.093 0.000 0.000
N4 0.593 0.500 0.000
N5 0.883 0.090 0.000
N6 0.883 0.910 0.000
N7 0.383 0.590 0.000
N8 0.383 0.410 0.000
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that at higher voltages there are more strongly bound states

(e.g. 2s, 3s), which complicate the dynamical diffraction. This is

a classic example of the role of relativity in electron diffrac-

tion, in that diffraction does not tend towards simple kine-

matical at higher voltages owing to the increase of the electron

effective mass.

4. Discussion

The numerical results presented in the previous section

con®rm the distribution analysis of x2. While it is certainly not

true or even close to true to state that the diffraction is

kinematical, in a statistical sense the
P

0 CPD is relatively

narrow for some realistic sample thickness. To reiterate what

was derived previously, the true wavefunction 	(r, z) can be

relatively well approximated in a statistical sense as

	�r; z� � 1���r; z� exp�i'�z��;
where �(r, z) is a real function, which we call the effective

potential, and the approximation is better obeyed for the

stronger re¯ections in reciprocal space. Conventional direct

methods applied to the diffraction data will tend to recover

this effective potential. Note that there is no reason to assume

that �(r, z) is positive and, while it will have maxima or

minima at the positions of atomic columns, there is no a priori

reason to presume any direct scaling between the crystal

potential and the effective potential. In certain cases as shown

by Sinkler & Marks (1999b), light atoms dominate the effec-

tive potential. While there are similarities to what one has in

conventional (kinematical) direct methods, there are also

major differences.

The apparent contradiction that was described in the

Introduction can now be considered partially resolved. Taken

literally, the kinematical approximation is awful for trans-

mission electron diffraction. However, taken statistically, it is

reasonable. Furthermore, provided that the effective potential

has peaks at the atom sites, which it has for 1s channeling,

`re®nement' of atomic positions should have some validity. It

is worth repeating the point made earlier that larger unit-cell

structures with close to statistically random atomic positions

do not approach a kinematical limit but instead the effective

kinematical approximation. While the existence of this

statistical limit rationalizes prior successes using conventional

direct methods, this should not be taken as implying that a

kinematical approximation is the best way to solve structures

Figure 8
Phase distributions and histograms of the products F(g, z)F(ÿg, z) for the centrosymmetric and noncentrosymmetric (random) models of C32Cl16CuN8

crystal. The sample thickness z along the zone [001] axis is 11.28 nm.



from transmission electron diffraction data; we believe it is

not. The more general dynamical triplet case with inclusion of

dynamical effects, i.e. direct methods with complex terms in

real space, will be discussed elsewhere (Chukhovskii et al.,

2000).

As a ®nal caveat, it needs to be remembered that the

effective kinematical approximation holds well only if the

diffraction is dominated by 1s states. This is not generally true,

and there are many structures where 2p states (or, depending

how one performs the expansion, the orthogonalized Bloch-

wave states) are important, and there can readily be stronger

excitation of these if the sample is tilted off the zone axis. The

question of whether classical direct methods have any validity

in these cases or should be abandoned in favor of approaches

that include dynamical effects from the start remains un-

answered.
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Figure 9
Phase distributions and histograms of C32Cl16CuN8 crystal for different values of accelerating voltage: (a), (d) 100 kV; (b), (e) 500 kV; (c), ( f) 1 MV. The
sample thickness z along the zone [001] axis is 5.264 nm.
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APPENDIX A
We will give here a slightly more complete derivation than that

of Van Dyck & Op de Beeck (1996). Considering SchroÈ -

dinger's equation in the high-energy approximation, we look

for solutions to the quasi-two-dimensional equation:

i@=@z�	�R; z�� � HR	�R; z�; �12�
where the two-dimensional Hamiltonian

HR � �1=4�k��ÿ�R � V�R��; V�R� � ÿ�8�2me=h2���R�
�13�

and �(R) is the electrostatic crystal potential function aver-

aged along the direction (z axis) of the incoming electron

beam, m and k are the relativistic electron mass and inverse

wavelength and h is Planck's constant.

We look for a solution 	(R, z) expanded as a series of

eigenfunctions for the Hamiltonian (13) in the form

	�R; z� �P
c

h	cj0i	c�R� exp�ÿi�cz� �P
n

Cn�z�'n�R�: �14�

Here we have introduced so-called `core' eigenfunctions

	c(R) exp(ÿi�cz) and, to complete the solution, orthogona-

lized plane-wave functions (OPW's) 'n(R) of form

'n�R� � jni ÿ
P

c

h	cjni	c�R� �15�

[the concise notation jni implies the plane-wave function

jgni � exp�ign � R�, g1 � 0]. In general, the core eigenfunc-

tions are the lowest lying Wannier functions which we will

later approximate as linear combinations of the isolated

column two-dimensional orbitals. While one can include all

the core states in the expansion, i.e. use a conventional Bloch-

wave analysis, we choose instead to truncate the series. We will

show that such a truncation is legitimate for a thin crystal.

Substituting the wavefunction (14) into SchroÈ dinger's

equation (12) yields the following system of equations for the

coef®cients Cn:

i
P

n

@=@z�Cn� jni ÿ
P

c

h	cjni	c

� �
�P

n

Cn ��n � V�R��jni ÿP
c

�ch	cjni	c

� �
; �16�

where �n � g2
n=4�k is the eigenvalue of the plane-wave state

jni and the potential-function notation V(R) is

V�R� � �1=4�k�V�R�: �17�
Using the exponential substitution Cn � bn exp�ÿi�nz� and

switching to the Fourier transform of equation (16) yields the

following equation written in the matrix form:

iMC@=@zb � VPCb: �18�
The matrices M, VP, C and vector b stand for

M � dÿG; �19�
where

�d�nk � �nk; �G�nk � Gnk �
P

c

h	cjkihnj	ci: �20�

Note that the matrix Mÿ1 can be expanded as

Mÿ1 � d�G�G2 �G3 � . . . ; �21�
for which the off-diagonal elements are small compared to

those on the diagonal. The non-local `pseudo-potential' matrix

VP due to the screened potential takes the form

VP � Vÿ Vc; �V�nk � hnjVjki; �22�
where the repulsive potential Vc canceling part of the attrac-

tive crystal potential V is

Vc �
P

c

��c ÿ �k�h	cjkihnj	ci: �23�

The diagonal matrix C and column vector b are given by

�C�nk � �nk exp�ÿi�nz�; �b�n � bn: �24�
The solution of the matrix equation (18) takes the form

b�z� � S�z; 0�b�0�; �25�
where we have introduced the scattering matrix

S�z; 0� � �ÿ i
Rz
0

dt Mÿ1Cÿ1�t�VPC�t� ÿ Rz
0

dt Mÿ1Cÿ1�t�VPC�t�

� Rt
0

du Mÿ1Cÿ1�u�VPC�u�: �26�

The boundary condition for the electron wavefunction

	(R, z) at the entrance surface z � 0 dictates that the vector

b(0) contains only a single non-zero component �b�0��n � �n1.

The complete solution can then be written as

	�R; z� � 1�P
c

h	cj0i	c�x��exp�ÿi�cz� ÿ 1�

�P
n

'n�R� exp�ÿi�nz��S�z; 0�n1 ÿ �n1�: �27�

The important point is that to ®rst order the scattering matrix

scales as the pseudopotential. Since the pseudopotential is

much smaller than the real crystal potential, to ®rst order the

last term in (27) can be neglected. Hence, for a reasonably thin

crystal, we only need to consider the ®rst few Wannier-

(Bloch-) wave states. Note that for a thicker crystal or away

from a zone-axis orientation this need not be the case and it is

necessary to include extra terms via either a scattering-series

expansion or diagonalization to yield the higher-order

orthogonalized Bloch waves.
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