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Abstract

The use of a classic phase retrieval algorithm has been previously used to determine the local critical current J.(x)
along the length of grain boundary Josephson junctions that can be characterized using a standard s-wave model. The
phase retrieval approach has been modified for use with d-wave dominated superconductors to allow for negative local
currents along the boundary. In general solutions to the 1-D phase problem are not unique, however in the present
work special constraints are employed experimentally to ensure uniqueness. The various current distribution solutions
and their possible uniqueness are explored. The solutions are consistent with most existing d-wave Josephson junction
boundary models and can be used to understand the basic current distribution along 45° YaBa,Cu;O;_, grain
boundary junctions as well as providing a means for mapping the location of self-generated flux cores. © 2001

Published by Elsevier Science B.V.
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1. Introduction

Understanding the current transport mecha-
nisms along the length of grain boundaries in
high temperature superconductor systems is of vital
interest for technological applications as well as
for basic scientific investigations of superconduc-
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tivity. The total critical current across a length of
grain boundary is suppressed relative to the adja-
cent grains, thus high current transport applica-
tions such as power transmission wires are limited
by the current density carrying capacity of the
grain boundary. Microelectronic devices such as
SQUIDS based on the Josephson effect of high
angle grain boundaries are also dependent on the
current transport properties across grain bound-
aries. The superconducting system of interest is
YaBa,Cu;0;_, (YBCO) due to its high supercon-
ducting transition temperature (~92 K) and the
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relative ease with which high quality epitaxial films
can been fabricated.

The transport properties of YBCO grain bound-
aries depend strongly on the orientation of the ad-
jacent grains. For example in a typical bicrystal
[00 1] tilt grain boundary, the total critical current
J. across the grain boundary decreases roughly
exponentially, by approximately three orders of
magnitude when the tilt angle is increased from
0° to 45° [1-3].

For this paper we have considered the situation
of a YBCO [001] 45° tilt boundary. The 45° tilt
orientation has been selected to highlight the im-
portant effect that the local boundary microstruc-
ture and the symmetry of the order parameter has
on the local variation of the current. The micro-
structure along [00 1] 45° tilt grain boundaries are
dominated by (100)(110) type facets along the
length of the boundary [4-10]. The symmetry of
the order parameter for YBCO has been shown to
be at least partly of d.._,» type and from simple
geometric arguments, assuming the symmetry of
the order parameter is locked into the crystal
structure of the superconductor, the d-wave com-
ponent of the YBCO order parameter becomes
increasingly important when the misorientation
angle approaches 45° [10-14]. Fig. 1 is a schematic
of the d,»_, order parameter symmetry and ori-

Fig. 1. Schematic of the d-wave order parameter interaction
along the (100)(110) facets of a [00 1] 45° tilt grain boundary.
Note the lobe node alignment across the boundary plane for
each facet resulting in little or no overlap of the wave function
for a pure d-wave superconductor with a misorientation angle
of 45°.

entation for an asymmetric [00 1] 45° tilt grain
boundary. When the tilt angle is 45°, the lobe of
the order parameter on one side of the boundary is
aligned with the node of the order parameter on
the other side of the boundary. The resulting lack
of overlap of the lobes across the boundary is
believed to be responsible for the reported near
zero critical currents at zero applied magnetic field
[10-14]. Thus, a grain boundary in a pure d-wave
superconductor that maintains a 45° orientation
along the length of the boundary in the form of
(100)(110) type facets may have zero critical
current when measured in a zero field environment
[10-14].

For a Josephson junction, the critical current
crossing the boundary is modulated as a function
of an applied magnetic field. Specifically, the crit-
ical current as a function of an applied magnetic
field can be written as the modulus of the Fourier
transform of the local current density,

o) = | [ty enp (A Y o

)

where J.(x) is the local current density along the
length of the boundary and H is the magnetic field
applied perpendicular to the current bias direction.
From Eq. (1) it is evident that measuring the
critical current as a function of an applied mag-
netic field can reveal information regarding the
variation of the local current distribution. For a
junction in the narrow limit (when the width W
is less than four times the Josephson penetra-
tion depth, W <4/J;), Eq. (1) is valid and can be
used to calculate the correlation function of I.(H)
which gives the spacing of the current variations
[15-20]. Also, it has been shown that with the use
of a phase retrieval algorithm, it is possible to re-
store the missing phase information and calculate
Jo(x) [21-24]. In general the solutions to the 1-D
phase problem are not mathematically unique,
however work by Greenaway, Crimmins and
Fienup showed that if the appropriate boundary
constraints are used that the solutions to the 1-D
phase retrieval problem are almost always unique
[25-27]. When multiple solutions exist, there are
typically very few solutions and most are physi-
cally similar and thus represent essentially the
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same current distribution [21-24]. With the help
of a minimization algorithm such as a genetic
algorithm it is possible to find the set of all pos-
sible solutions. This technique can effectively find
the local current deviations along the length of
s-wave superconductor Josephson junctions. In
this paper we address the issue of adapting this
type of analysis to d-wave dominated supercon-
ductors.

A model proposed by Mints and Kogan sug-
gests that the standard Fourier relation of Eq. (1)
is valid for a d-wave superconductor Josephson
junction [29]. The main difference that they point
out is that the local critical current J.(x) can be
either positive or negative with respect to the ap-
plied current bias due to the “0” and “zn” facets
along the boundary. Their model is consistent with
existing 45° grain boundary junction I.(H) data
where the I.(H) maximum is not at H = 0 and with
I.(H) data from 45° junctions (like the junctions
measured by Nicolett and Villegier) in which the
diffraction pattern is near Fraunhofer despite its
45° misorientation angle [10-14,22,28].

The phase restoration algorithm that has been
employed for extracting the local critical current
values for s-wave Josephson junctions assumes
that the local critical current is always positive.
However, assuming a d-wave model identical to
the one proposed by Kogan and Mints, the phase
restoration approach used by Carmody et al. for
restoring the local current distribution J(x) can be
modified for d-wave superconductors by allowing
for locally negative currents along the boundary
[23,24]. The phase restoration algorithm uses a
series of boundary constraints to force conver-
gence of the current distribution solutions. For an
s-wave superconductor the boundary constraints
are

J(x) =< J(x) for |x|<L (2)

where L is the length of the boundary. The only
difference when applying the algorithm to a d-
wave superconductor is that the requirement that
Je(x) = 0 at all times must be relaxed to allow for
negative local currents at the boundary.

2. Uniqueness of the 1-D phase retrieval problem

The lack of uniqueness of the 1-D phase re-
trieval problem has long been a source of ambi-
guity for physical applications of the restoration
from magnitude algorithms. The basic problem can
be stated as follows: Given the Fourier transform
relation between F(u) and f(x) which for the
continuous case can be written as

Fu - [ " f(x) explin) d 3)

is it possible to calculate a real space object f(x)
from the experimentally measured Fourier modu-
lus |F(u)|. Tt is well known that the 1-D phase
restoration problem can have multiple solutions
and thus ambiguities in interpreting physical sig-
nificance of particular solutions. Walther demon-
strated that when the modulus |F(u)| is given, it is
possible to multiply |F(u)| by a phase function
term,

|£(u)] exp(i0), (4)

then by reverse Fourier transforming to generate
a real space object f(x) [30]. However, Walther
pointed out that any phase function exp(if) of
modulus 1 arrived at randomly can be multiplied
by |F(u)| and transformed to generate a real space
object f(x) [30]. Thus when the only information
available is the Fourier modulus |F(u)|, there can
potentially exist an infinite number of solutions to
the 1-D phase retrieval problem. Thus when there
exists infinite ambiguity in the solutions f(x), no
relevant physical information is obtainable with-
out additional constraints on the problem.
Walther considered the case of finite (compact)
support where the function f(x) is known to be
band limited to an interval [a,b] on the real x-line
(Fig. 2) [30]. Fig. 3 shows a function that is band
limited to the interval [a,b] where f(x) = 0 every-
where outside the region [a,b]. Walther showed
that when |F(u)| is multiplied by a random phase
function as in Eq. (4), the resulting real space
object f(x) almost never conforms to the require-
ment that f(x) = 0 outside the interval [a,b]. Thus
requiring f'(x) to be zero outside a fixed interval
places a severe restriction on the possible phases
that can be used to generate a function f(x) that
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real space object f(x) is of
finite (compact) support

8 T T T T T

—f(x)

f(x) = 0 outside of the interval [a,b]

Fig. 2. Real space object f(x) of finite support (band limited) to
the interval [a,b]. The finite support greatly reduces the number
of possible solutions to the phase problem.

f(x) # 0 [a,b] and [c,d]

Fig. 3. Real space object f(x) with disconnected support where
the object is defined to be zero outside the interval [a,h] and
[c,d]. When the interval [b,c] is greater than [a,b] and [c,d] then
the object f(x) is said to be of “sufficiently disconnected sup-
port” and guarantees a unique solutions to the phase problem.

conforms to the band limit [a,h]. However, the
compact support requirement does not in general
guarantee a unique solution. Although the possi-

ble phases have been severely restricted by the
band-limit constraint, there can still exist many
different solutions f(x) that when Fourier trans-
formed have the same modulus |F(u)| [30].

Several key papers by Greenaway, Crimmins
and Fienup attempted to understand the require-
ments for uniqueness in the 1-D phase retrieval
problem and to define conditions and constraints
on the real space object f(x) that would guarantee
uniqueness [25-27]. Starting with the Fourier
transform relationship

P = [0 expliun) ds (5)

where f(x) is the real space object of interest. F(u)
can be extended into the complex z-plane as

Fz) = / " £ (x) explizx) d (6)

where z = u + iv in the complex plane. F(z) is de-
fined as an entire function which means it is ana-
lytic over the entire z-plane. Entire functions
exhibit a unique property that they may only take
the value of zero (F(z) =0) at a set of isolated
points that are unique to that function and are
distributed throughout the z-plane in such a way
that they tend to lie close to the real u-axis. The
locations of the zero points (zeros) determine the
modulus |F(u)| on the real line [25-27].

It can be shown that if there exist two functions
F(z) and Fi(z) where |F(u)| = |Fi(u)|, then Fi(z)
can be thought of as being derived from F(z) by
the following relation

F(z) = F() ( ‘Z°> (7)

zZ—Z)

where z; is a zero of F(z) and Z, is the complex
conjugate of zy. Therefore, Fi(z) can be thought of
as being derived by removing a zero at location z
and then adding a zero at location z,. The zero at
zo was “flipped” or conjugated about the real line
to produce a new function F(z) that has the same
Fourier modulus |F(u)| along the real line [25-27].
Flipping any number of complex zeros about the
real line will result in a new function F(z) that has
the same Fourier modulus |F(u)|. Then it can be
shown that a function F(z) with M complex zeros
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can have 2¥ different unique combinations of zero
flips and thus 2¥ different solutions to the phase
problem [25-27]. Consequently, functions with no
complex zeros (M = 0) must generate only a single
unique real space function f(x) since there are
no complex zeros that can be flipped about the
real line to produce new functions with the same
modulus. Therefore, functions F(z) with only real
zeros must produce unique solutions to the phase
problem.

Greenaway attempted to show constraints that
could be placed on the real space object f(x) that
would guarantee only real zeros and thus pro-
duce a unique solution to the phase problem [25].
Greenaway argued that if a real space object f'(x)
had a region within the function that was equal to
zero (disconnected support) then the solutions
generated by phase retrieval should be unique [25].
Fig. 3 shows a function with disconnected support
where the function is defined to be non-zero over
the intervals [a,b] and [c,d] and defined to be zero
everywhere else. Crimmins and Fienup showed
that the disconnected support constraint used by
Greenaway was not always unique [26,27]. They
argued that the disconnected regions must be
sufficiently separated to guarantee uniqueness. To
ensure uniqueness, the region within the function
constrained to be zero must be greater in extent
than the non-zero regions. The object f(x) in Fig.
3 is a real space object with sufficiently discon-
nected support where region [b,c] is greater in
length than region [a,b] and [c,d]. Fig. 4 shows a
real space function with two zero regions within
the object f'(x). The separation condition requires
that region [b,c] and [d,e] to be longer than regions
[a,b] or [¢,d] to ensure uniqueness. Real space ob-

N

Interval [b,c] and [d,e] must be
greater than [a,b], [c,d] and [e,f]

Fig. 4. Object f(x) with multiple zero intervals [b,c] and [d,e]
defined to be zero each of sufficiently disconnected support
such that [b,c] and [d,e] are greater in extent than both [a,b], [¢,d]
and [e.f].

jects f(x) must be real and positive to guarantee
uniqueness in all cases, however functions con-
forming to the separation condition that are not
real or positive are “usually’ unique [26,27].

Previous phase retrieval work has attempted to
extract local current information from single grain
boundary junctions in symmetric 24° tilt bound-
aries where the constraint that the local current
must always be positive could be enforced to re-
duce the total number of solutions. Attempting to
expand this type of analysis to 45° tilt boundaries
is formidable since locally negative currents must
be allowed for thus reducing the possibility that a
unique solution to the phase problem exists. The
work by Greenaway, Crimmins and Fienup dem-
onstrated that if sufficiently disconnected support
(a zero region within the boundary) can be en-
forced experimentally, it may be possible to obtain
a unique solution to the phase problem for 45°
grain boundaries. This paper attempts to experi-
mentally enforce these boundary constraints along
the length of a Josephson junction and use phase
retrieval techniques to extract local current infor-
mation from 45° asymmetric tilt grain boundary
junctions.

3. Experimental techniques and results

Thin film YBCO [00 1] oriented asymmetric 45°
tilt grain boundaries were fabricated using the
sputter induced epitaxy technique on commercial
MgO substrates [9]. Photolithography was used to
pattern a microbridge across the boundary plane
to ensure that each junctions conformed to the
short junction limit (width < 44;). Starting with a
single junction the samples were cooled in a mag-
netically shielded cryostat and critical current vs.
applied magnetic flux measurements were per-
formed with the magnetic field oriented parallel to
the [00 1] direction of the film. The experimentally
measured /.(B) data for each 45° grain boundary
was used in concert with the phase retrieval algo-
rithm to calculate the local current distribution
J(x) along the boundary. The details of the algo-
rithm have been published previously, however the
constraint that the local current must always be
positive was relaxed to allow for locally negative
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currents along 45° boundaries. The phase retrieval
algorithm requires constraints on the local current
J(x) to converge to a solution. For a single junc-
tion the current is constrained to be zero outside
the junction length. That constraint is not sufficient
to guarantee a unique solution to the phase prob-
lem, therefore a Hitachi focused ion beam (FIB)
was used to etch channels along the boundary
plane. The FIB etched away the YBCO leaving
channels along the boundary plane that carry zero
current. These zero current channels were pat-
terned to ensure a sufficiently disconnected support
constraint and thus guarantee the uniqueness of the
1-D phase retrieval algorithm.

Fig. 5 shows a SEM micrograph of a photoli-
thographically patterned and FIB etched micro-
bridge across a 45° boundary. The FIB etched
channel is ~6 pm in width and conforms to the
sufficiently disconnected support criterion that is
required for uniqueness of the phase retrieval so-
lution. Cryogenic measurements were made of the
critical current as a function of an applied mag-
netic field. Fig. 6 shows the experimentally mea-
sured I.(B) behavior of the junction shown in Fig.
5. The diffraction pattern is typical of many 45°
grain boundary junctions where the maximum
critical current is located at B # 0. The absence of

Fig. 5. SEM micrograph showing microbridge and FIB pat-
terned region across the boundary plane. The FIB etched region
is larger in extent than the adjacent grain boundary on either
side of the channel and thus guarantees a sufficiently discon-
nected support for the phase retrieval algorithm.
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Fig. 6. Critical current vs. applied magnetic flux /.(B) mea-
surements for the grain boundary shown in Fig. 5 measured at
15 K. Note that the maximum current is not located at B = 0.

a large central peak is indicative of locally negative
currents along the boundary. The regions etched
by the FIB are evident in the photomicrograph can
be assumed to carry zero current and thus can be
used as a constraint in the phase retrieval algo-
rithm. Fig. 7 shows the local current distribution

10 T T T T T T T
J(x)
5t ]
Ix) o1
(nA/pm)
5| ]
-10 '1 L L L L L L

(X) pm

Fig. 7. Local current distribution solution J(x) along the
boundary plane determined from the data in Fig. 6. Note the
large local variations as well as the locally negative currents
along the boundary.
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J(x) determined from the I.(B) of Fig. 6. The FIB
etched regions within the junction satisfies the
sufficiently disconnected support constraint and
thus the current distribution in Fig. 7 should be
unique. Note the large variation in the local cur-
rent along the length of the boundary as well as the
current reversals (negative local currents) along
the boundary. The Fourier relation of Eq. (1) re-
quires locally negative currents along the bound-
ary when the maximum current across a Josephson
junction is not located at B = 0.

Fig. 8 is a SEM micrograph of a 45° grain
boundary junction where two channels across the
boundary plane have been etched with a FIB. The
etched channels cannot carry current and thus act
as the disconnected support for the phase retrieval
algorithm, however, this particular sample does not
conform to the stringent requirement of sufficiently
disconnected support as put forth by Crimmins and
Fienup. Fig. 9 shows the I.(B) pattern measured
from the sample in Fig. 8. Note again the large
oscillations of the current and that the maximum
critical current is not located at B =0. Fig. 10
shows the current distribution solution J(x) deter-
mined from the phase retrieval technique. Only one
solution was obtained to the phase retrieval prob-
lem, even though the possibility for more than one
solution existed because of the lack of sufficient
constraints to guarantee uniqueness.

Fig. 8. SEM micrograph showing microbridge and FIB pat-
terned regions across the boundary plane. The FIB etched re-
gions are not larger in extent than the adjacent grain boundary
on either side of the channel and thus multiple solutions may
exist theoretically.

5t ]
4 L ]
[(B) sf ]
(nA) 4 ]
1f ]
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Fig. 9. Critical current vs. applied magnetic flux /.(B) mea-
surements for the grain boundary shown in Fig. 8 measured at
15 K. Note as in Fig. 6, the maximum critical current is not
located at B =0 and thus suggests locally negative currents
along the boundary plane.
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Fig. 10. Local current distribution J(x) along the boundary
shown in Fig. 8. Although multiple solutions were possible, the
phase retrieval algorithm in concert with a genetic algorithm
was not able to find any other solutions other than mirror so-
lutions, which are not considered “different” solutions.

Fig. 11 shows the I.(B) behavior of a single 45°
grain boundary junction where no channels were
etched with the FIB. The single junction shows the
typical 45° diffraction pattern with no large central
current peak located at B = 0. The /.(B) data from
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Fig. 11. Critical current vs. applied magnetic flux /.(B) for a
single 45° grain boundary Josephson junction. The lack of a
large central current peak is typical of 45° junctions.

Fig. 11 was used to determine local current dis-
tributions J(x) for the junction. The junction does
not have channels etched with the FIB that can be
set to zero and used as a constraint to guarantee
uniqueness of the solution. The constraints that
can be used are the finite support of the junction
(junction width is fixed and the current must be
zero outside of the junction), the local current
must always be less than a maximum, Jm. and
the total current must be positive even though
locally it can be negative. Using these constraints
the phase retrieval was used to calculate possible
current distributions for the junction. Fig. 12
shows the different current distributions deter-
mined using the known boundary constraints and
the phase retrieval algorithm. The phase retrieval
algorithm was able to find several different solu-
tions from the data in Fig. 11. The solutions are
non-unique in a strict mathematical sense, but
share many similar physical traits. All of the
solutions share common large peaks toward the
left-hand side of the solutions. Peaks largely
correspond to peaks and troughs correspond to
trough thus representing similar current distribu-
tions. Some of the smaller peaks toward the right
side of the distribution in Fig. 12 are out of phase
and thus represent ambiguities in the physical in-
terpretation of the current distributions. It may be

J(X)
(MA/Um)

(x)

Fig. 12. Current distributions J(x) calculated from the data in
Fig. 11. Multiple solutions to the phase problem exist for a
single junction without disconnected support. Note the simi-
larity between the large-scale features in the different solutions.

useful to average the various current distributions
since the large peaks have a strong correlation
between solutions. Fig. 13 shows the average of the
three different solutions found in Fig. 12. The
large-scale features common to all three solutions
remain intact because of the strong correlation
between solutions, however much of the fine scale

1.5 T T T T

05 |
N M
J(x) -0.5U
(HA/pm)

i

Zero line ]
—— Averaged Solution

0 1 2 3 4 5 um
(x)

Fig. 13. Averaged solution calculated from the solutions in Fig.
12. The large-scale features have been retained in the averaged
solutions because of the similarities between solutions. Some of
the small-scale features have been lost or averaged out due to
the various solutions being slightly out of phase.
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detail is lost due to variations in the individual
solutions.

4. Discussion

A striking feature of all of the 45° grain
boundary junction /.(B) measurements is the large
variations of the diffraction patterns and thus the
current distribution from junction to junction. Fig.
5 is a typical critical current vs. applied magnetic
field measurement on a 45° grain boundary junc-
tion. The maximum critical current value is not
at B =0 and the pattern is highly non-uniform.
Models have been proposed for 45° grain bound-
ary junction dominated by the d-wave symmetry
of the order parameter that model the boundary as
a series of 0 and =« junctions where each facet of the
boundary can experience a phase shift of = relative
to the adjacent facet [10,11,29]. A consequence of
this configuration is that adjacent facets can have
critical currents flowing in the opposite direction
of the applied current bias even at zero applied
field (H =0) [10,11,29]. These locally negative
currents are responsible for the suppressed critical
currents and the spontaneously generated flux at
zero applied magnetic field [12].

Numerous studies have focused on under-
standing the underlying causes for these variations
in current transport with increasing misorientation
of the boundary plane. Grain boundary models
involving a regular array of dislocations at the
grain boundary have been proposed that qualita-
tively describe the decrease in J. for low angles,
however, these basic models to not apply to the
high angle regime [31-35]. Variations in the oxy-
gen content at the grain boundary relative to the
adjacent grain and variations in the oxygen con-
tent along the length of a grain boundary also
suggests locally varying current transport capa-
bilities of the grain boundary [36-48]. Also, the
orientation of the grain boundary plane relative to
the adjacent crystals varies along the length of the
boundary. The macroscopic misorientation angle
of the superconducting grain boundary is con-
trolled by the misorientation angle of the bicrystal
substrate. However, the local orientation of the
superconducting grain boundary varies greatly due

to the meandering of the grain boundary. The
boundary meandering is accommodated by facets
that form along the length of the junction. For 45°
[00 1] tilt boundaries, the microstructure is domi-
nated by (100)(110) type facets along the length
of the boundary resulting in a stair case structure
(see Fig. 14). The local current can theoretically
vary at the same length scale of the facets (hun-
dreds of nanometers) due to variations in the car-
rier concentration along sections of the boundary.
Also, it is believed that changes in the facet ge-
ometry that result in a reversal of symmetry of
the order parameter manifest as a n phase shift
and thus are responsible for the areas along the
boundary with locally negative currents [11-
24,29]. The boundary schematic in Fig. 14 start-
ing from the left side shows a series of long
(110)(100) type facets separated by small 45°
steps along (100)(110) type planes. At location
(A) in Fig. 11 the orientation of the long straight
facets change from (110)(100) to (100)(110).
This reversal at location (A) is the type of reversal
believed to be responsible for a © phase shift that
can results in the reversal of the current direc-
tion at point (A). Consequently, not all adjacent
(100)(110) type facets have a = phase shift asso-
ciated with the interaction of the order parameter
across the grain boundary plane, rather only those
changes in boundary orientation that result in the

{[100]5

Fig. 14. Schematic of the (100)(110) type facets along the
length of the grain boundary for a YBCO 45° tilt grain
boundary. Note the symmetry reversal of the long facets at
location (A).



M. Carmody et al. | Physica C 370 (2002) 228-238 237

reversal of symmetry of the long facets such as at
location (A) in Fig. 11.

The local current distributions of the 45° grain
boundaries from Figs. 7 and 10 demonstrate the
variability from one junction to another fabricated
under identical processing parameters. The phase
retrieval method is capable of determining on the
submicron length scale variations of J(x) along the
boundary as well as the location of self-generated
flux cores at current reversal centers. Scanning
SQUID microscopy studies have been able to
locate and confirm the presence of these self-
generated flux fields for long 45° grain boundary
Josephson junctions, but the resolution of these
scanning techniques are not adequate for the
narrow junction regime length scales [12]. Theo-
retical predictions based on geometric arguments
for 45° grain boundaries suggest that the locally
alternating current between positive and negative
should vary at the same length scale as the facets.
Therefore, for a typical 2 um wide junction, there
should exist approximately 2-10 vortices of self-
generated flux due to current reversals. The nature,
size and distribution of these vortices for large
junctions has been considered, but it is not clear as
to the nature or distribution for the narrow junc-
tion limit. The phase retrieval method thus far has
the greatest potential for mapping the small-scale
(submicron) distribution of these currents and self-
generated flux.

The resolution of the phase retrieval technique
is limited by H, and the geometry of the micro-
bridge used to isolate the junction under consid-
eration due to possible flux-focusing effects. The
ultimate resolution of the phase retrieval tech-
nique is not clear because of the junction bridge
geometry, flux-focusing issues, self-generated flux
along the boundary and ringing effects due to the
discrete Fourier transform. However, it seems
clear that real space information in the range of
0.05-0.1 um is clearly demonstrated to be consis-
tent with existing d-wave models.

5. Conclusions

The phase retrieval technique used to analyze
standard s-wave superconductors can be modified

to accommodate alternating currents in d-wave
dominated superconductors. The uniqueness prob-
lem of the 1-D phase retrieval approach can
be eliminated by patterning regions within the
boundary plane that carry zero current and thus
can be used as additional constraints to the prob-
lem. Current distributions for [001] YBCO 45°
grain boundary junctions determined from critical
current vs. applied magnetic field measurements
show large-scale oscillations along the length of
the boundary with locally alternating currents
resulting in self-generated flux along the bound-
ary. The current distributions for the 45° grain
boundary junctions are consistent with existing d-
wave models as well as microfilamentary models
that suggest significant variations in the local
current.
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