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We study the general problem of mixing for ab initio quantum mechanical problems. Guided by general
mathematical principles and the underlying physics, we propose a multisecant form of Broyden’s second
method for solving the self-consistent field equations of Kohn-Sham density-functional theory. The algorithm
is robust, requires relatively little fine tuning, and appears to outperform the current state of the art, converging
for cases that defeat many other methods. We compare our technique to the conventional methods for problems
ranging from simple to nearly pathological.
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I. INTRODUCTION

We consider the problem of determining the electron den-
sity � that satisfies the self-consistent field equations accord-
ing to the Kohn-Sham density-functional theory:1,2

�H0 + V���i = �i�i �1.1a�

��x� = �
i

�1 + e���i−���−1��i�x��2. �1.1b�

Here H0 is the single-particle noninteracting Hamiltonian
and V� is an effective potential parameterized by the particle
density �. The constant � is 1 /kT where k is Boltzmann’s
constant and T is temperature. The term �1+e���i−���−1 is the
Fermi-Dirac occupation and the constant � is determined by
���x�dx=N for an N-body problem. Following3 we let H�

ªH0+�V� �Ref. 4� denote the Kohn-Sham Hamiltonian and
reformulate the above system of equations as a nonlinear
fixed-point problem: find � such that

F����x� ª �1 + e��H�−���−1�x,x� = ��x� , �1.2�

where � is the unique solution to N=trace��1+e��H�−���−1	.
We refer to the operator F above as the self-consistent field
�SCF� operator. We will not be concerned with the details of
the SCF operator or its approximations since these tend to be
specific to the application. Also, we will work with the dis-
cretized version of the SCF operator, which we will call the
SCF mapping since it is a real vector-valued mapping of the
discretized density. Throughout this work, however, we will
point to instances where the form of this mapping can cause
problems for numerical procedures for solving Eq. �1.2�.

Numerical algorithms for solving Eq. �1.2� abound the
representative examples we focus on here are in Refs. 5–12.
These are iterative procedures and the process of determining
the desired density � from previous estimates has come to be
known as “mixing” in the physical literature. For ab initio
methods there is frequently a user-provided mixing term
which, if it is improperly chosen, will lead to divergence of
the iterations. In many cases the user has to learn by failure
what is the correct value to use, expending a fair amount of
computer resources in the process. We will show that many
of the methods found in the physical literature have counter-
parts in the mathematical literature where systematic ap-

proaches to the choice of algorithm parameters are well es-
tablished. The goal of this work is the development of a
method that does not require expert user input, is fast, and
can handle many of the more complicated and poorly con-
vergent problems such as metallic surfaces or heterostruc-
tures that can defeat a novice and sometimes an expert.

In Secs. II and III we discuss the leading methods in an
analytical framework that clarifies similarities as well as fun-
damental differences. Our analysis sheds light on why the
algorithms can fail which suggests strategies for design of an
improved method. The classes of algorithms we study are
predicated upon mappings with a great deal of regularity—
properties that the SCF mapping is not guaranteed to satisfy
in all instances. Therefore, rather than viewing successive
iterates as deterministic steps in a path to a solution, we treat
the prior steps as random samples in a high-dimensional
space. This viewpoint leads to a natural interpretation of the
algorithm in terms of predicted and unpredicted components,
as well as the need for regularization and controls on the
relative magnitude of the unpredicted step. In Sec. VI we
present numerical results for both very easy problems as well
as semipathological cases. The new approach outperforms
existing algorithms in most cases and does significantly bet-
ter with poorly constructed Kohn-Sham mappings. The algo-
rithm is also relatively insensitive to user input. We conclude
with a discussion of some of the open issues.

II. ITERATIVE METHODS FOR SOLVING
NONLINEAR EQUATIONS

For fixed atom locations, we wish to determine the elec-
tron density ��, a real-valued vector with k elements. With an
estimated density �n at the nth step of an iterative procedure
for determining ��, we check whether our estimate satisfies
the ab initio self-consistent field equations given by Eq.
�1.2�. Evaluation of the SCF mapping returns a modified
density �n�ªF��n�, another real-valued vector with k ele-
ments. The density we seek is a fixed point of F, i.e., we
solve the system of nonlinear equations

F���� − �� = 0. �2.1�

This suggests the usual Newton algorithm as a possible nu-
merical solution strategy.
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A. Newton-like methods

Given a point �n, Newton’s method generates the next
approximate solution to Eq. �2.1�, �n+1, by

�n+1 = �n − �J��n� − I�−1�F��n� − �n� . �2.2�

Under standard assumptions, this iteration can be shown to
converge quadratically in a neighborhood of a local
solution.13 The computational cost of calculating the Jaco-
bian is prohibitive for high-dimensional problems such as
density-functional calculations. Instead one can approximate
the Jacobian via solutions to the matrix secant equation Bn

�J��n�− I� where

Bn��n − �n−1� = ��F��n� − �n� − �F��n−1� − �n−1�	 . �2.3�

Introducing new variables, this is represented as

Bnsn−1 = yn−1 �2.4�

or

Hnyn−1 = sn−1, �2.5�

where Hn=Bn
−1 and

sn−1 = �n − �n−1 and

yn−1 = �F��n� − �n� − �F��n−1� − �n−1� . �2.6�

The next density �n+1 is then generated either by the re-
cursion

�n+1 = �n − Bn
−1�F��n� − �n� , �2.7�

where Bn satisfies Eq. �2.4�, or by

�n+1 = �n − Hn�F��n� − �n� , �2.8�

where Hn satisfies Eq. �2.5�. The variables in Eqs. �2.4� and
�2.5� are the matrices Bn and Hn, respectively, and there are
infinitely many possible solutions, each leading to a different
numerical technique. Our focus in this study is on improve-
ments of the Broyden family discussed next.

B. Rank one updates

A new matrix Bn+1 is obtained by updating in some fash-
ion Bn using the new data pair �sn ,yn� combined with the
prior information �s0 ,y0� , �s1 ,y1� , . . . , �sn−1 ,yn−1� subject to
the constraint that Bn+1 satisfy Eq. �2.4�. Broyden14 looked at
two approaches, given here in a multistep recursion.

The first �B1� is based on updates to the approximate
Jacobian in Eq. �2.4� and is shown in Ref. 15 to be

Bn+1
−1 = B0

−1 − �B0
−1Yn − �nSn��Ln + Sn

TB0
−1Yn�−1Sn

TB0
−1,

�2.9�

where �n is a scaling,

Sn ª �s0,s1,s2, . . . ,sn�, Yn ª �y0,y1,y2, . . . ,yn�

„k-by-�n + 1� matrices… �2.10�

and �Ln�i,jª �−si−1
T sj−1 if i� j ;0 otherwise	.

The second of Broyden’s methods �B2� is based on up-
dates to the approximate inverse Jacobian in Eq. �2.5� and is
given by

Hn+1 = H0�
j=0

n

Wj + �
j=0

n �Zj �
i=j+1

n

Wi , �2.11�

where the products ascend from left to right with the empty
product defined as 1, and

Wn ª I −
ynyn

T

�yn�2 and Zn ª �n

snyn
T

�yn�2 �n = 1,2, . . .� .

Here and throughout this work the norm �y�=�yTy is the
Euclidean norm and a vector �understood to be a column
vector� or matrix raised to the powerT indicates the trans-
pose. Note that our sign convention is different to the sign in
Broyden’s paper where he takes Hn+1=−Bn+1

−1 . Our recursion
appears to be new, and for �n=1 can be shown to be equiva-
lent to a recursion proposed by Srivastava10 with the same
storage requirements.

Both Eqs. �2.9� and �2.11� can be performed without stor-
ing or forming the matrix explicitly. In the recursions Eqs.
�2.9� and �2.11� the initial matrices B0 and H0, respectively,
are crucial; we explore scalings in greater detail in Sec. III C.
Srivastava’s formulation was initially implemented for
LAPW code by Ref. 12 with H0 fixed, but a dynamic H0
yields substantially better performance.

Both of Broyden’s methods are shown in Ref. 16 to con-
verge locally superlinearly under the standard assumptions
that the Jacobian exists, is nonsingular, and Lipschitz con-
tinuous at the solution. Update Eq. �2.11�, however, was not
recommended by Broyden and subsequently became known
as Broyden’s “bad” method.

Broyden’s updates are the nearest matrices to the previous
matrix with respect to the Frobenious norm17 that satisfy the
current matrix secant equation Eq. �2.4� or Eq. �2.5�. The
main difference between B1 and B2 is the space in which the
“nearest” criterion is applied.18 For B1 the criterion is ap-
plied in the domain of the mapping, while B2 is applied in
the range, where the domain of the mapping is the space of
the density differences sn and the range is the space of the
residual differences yn. We see from Eq. �2.7� that an ill-
conditioned matrix update Bn will lead to a large and possi-
bly unstable estimation of the step sn. On the other hand,
from Eq. �2.8� it is clear that a least change criterion in the
space of the residual differences yn will lead to smaller steps
that could slow progress for well-conditioned problems; we
return to this issue below.

C. Multisecant methods

To generate the n+1th Jacobian approximation the meth-
ods described above satisfy the matrix secant equation Eq.
�2.4� or Eq. �2.5� for the current step sn and residual differ-
ence yn. Updating the Jacobian based only on the most recent
sample and ignoring the other sample points imposes a bias
toward the most recent step. Searching for the nearest matrix
that satisfies the matrix secant equation only for the most
recent sample point is a greedy strategy without recourse.
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Multisecant techniques put the previous data on more
equal footing with the most recent steps; that is, rather than
satisfying the matrix secant equation for only the most recent
step one satisfies all matrix secant equations simultaneously:

Yn = BnSn or Sn = HnYn, �2.12�

where Sn= �s1,n ,s2,n , . . . ,sm,n� and Yn= �y1,n ,y2,n , . . . ,ym,n� are
k-by-m �m	min�n ,k	� matrices whose columns are previous
steps and residual differences, respectively. Multisecant tech-
niques have been thoroughly studied in the mathematical
literature.15,19–27 Methods appearing independently in the
physical sciences literature6–9,11 are relaxations of more con-
ventional multisecant methods. A very recent study of mul-
tisecant methods brought to our attention by an anonymous
referee is in Ref. 28.

Many multisecant methods are easily understood by for-
mulating the underlying optimization problem each of the
approximate Jacobian �implicitly� solves. We consider first
the constrained optimization problem

minimize
X�C

1

2
�A − X�2, �2.13�

where, throughout, the norm of a matrix is the Frobenius
norm, A is a real k
k matrix, and the set Cª �X
�Rk
k such that XD=G	. For D, G real k
m matrices
such that C is nonempty. If the columns of D are linearly
independent, the solution X� to the optimization problem Eq.
�2.13� is the orthogonal projection of A onto C, written ex-
plicitly as

X� = A + �G − AD��DTD�−1DT. �2.14�

Specializing to multisecants, if A is an approximation to
the Jacobian, D=Sn�Rk
m, and G=Yn�Rk
m �1	m	n�,
the columns of which are denoted yj and sj, respectively �j
� �0,n��, then we arrive at the multisecant extension of the
Broyden’s first update �MSB1� as studied by20,21,23,25

Bn+1 = A + �Yn − ASn��Sn
TSn�−1Sn

T. �2.15�

Elementary calculations using the Sherman-Morrison-
Woodbury formula yield the multistep recursion for Bn+1

−1 ,
analogous to Eq. �2.9�:

Bn+1
−1 = A−1 + �Sn − A−1Yn���Sn

TSn�−1Sn
TA−1Yn�−1�Sn

TSn�−1Sn
TA−1.

�2.16�

Sequences based on update Eq. �2.15� are shown in Ref. 25
to be locally q-superlinearly convergent if, in addition to
other standard assumptions, the approximate Jacobians Bn
stay close to the behavior of the true Jacobian, and if the
columns of Sn are strongly linearly independent. Moreover,
storage requirements for this formulation are no greater than
those of Srivastava’s implementation of Broyden’s second
method.

An alternative specialization of Eq. �2.14� leads to a mul-
tisecant form of Broyden’s second method �MSB2� if we let
A be an approximation to the inverse of the Jacobian, D
=Yn, and G=Sn so that

Hn+1 = A + �Sn − AYn��Yn
TYn�−1Yn

T. �2.17�

To our knowledge, there are no published numerical com-
parisons of Eq. �2.17� to alternatives, neither is there any
published convergence theory, though we believe this is only
a minor modification of the theory for Eq. �2.15�. Again, the
storage requirements for this recursion are equivalent to
MSB1 and B2.

Independent studies appearing in the physics literature
that parallel the mathematical literature have a different
variational form. The various approaches can all be shown to
be specializations of the optimization problem

minimize
X�Rk
k

1

2�
j=1

n

� jdistCj

2 �X� +
�0

2
�A − X�2, �2.18�

where each Cjª �X�Rk
k such that XDj =Gj	, A�Rk
k,
and distCj

�X� is the Euclidean distance of X to the set Cj. A
short calculation yields the solution X� to Eq. �2.18�

X� = �
j�J

� jA + �
j=1

n

� j��Gj − ADj��Dj
TDj�−1Dj

T�,

where � j ª
� j

� j=0

n
� j

. �2.19�

Specializing to multisecants, let A=Bn, Dj =sj, and Gj
=yj, where sj and yj are defined by Eq. �2.6�. Then the opti-
mization problem Eq. �2.18� corresponds to the variational
formulation of a method proposed by Vanderbilt and Louie.11

A local convergence analysis, together with numerical tests
are studied in Ref. 6. Our derivation and formulation of the
update, however, appears to be new and clarifies the connec-
tions between their method and Eq. �2.15� above:

Bn+1 = �
j=0

n

� jBn + �
j=1

n

� j��yj − Bnsj��sj
Tsj�−1sj

T� . �2.20�

If instead we let A=Hn, Dj =yj, and Gj =sj, we get the update
proposed by Johnson:7

Hn+1 = �
j=0

n

� jHn + �
j=1

n

� j��sj − Hnyj��yj
Tyj�−1yj

T� .

�2.21�

Again, our derivation is different and the new formulation
makes the connection with Eq. �2.17� more transparent.

The weighting scheme of Refs. 7 and 11 is similar to a
technique proposed by Pulay.9 A dynamic weighting scheme
that optimizes the weights � j simultaneously with the deter-
mination of the matrix Hn or Bn is possible via the extended
least-squares techniques outlined in Ref. 29. A variation of
Eq. �2.21� due to Kawata et al.8 combines the method of
Johnson with a construction of the columns of Sn and Yn
proposed by Pulay9 and given in Eq. �3.3�. We note that the
methods summarized by Eqs. �2.20� and �2.21� and their
relatives solve single matrix secant equations in parallel and
then average these solutions, while the methods summarized
by Eqs. �2.15�–�2.17� seek the single matrix that solves all
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the matrix secant equations simultaneously, which is more
restrictive.

In the above analysis we are not specific about how many
previous steps should be included in the matrices Sn and Yn.
Recall that these matrices are made up of m columns of
previous step information where m� �1,n�. If mn then one
is implicitly executing a limited-memory technique.15 If one
constructs Sn and Yn via Eq. �3.3�, as we do in the following
numerical experiments, then one would exclude points that
are most distant from the current point �n. This is a reason-
able strategy for highly nonlinear problems, where the linear
approximation that is at the heart of quasi-Newton methods
is only valid on a local neighborhood of the current point.
For extremely large problems such a strategy is also expedi-
ent since the matrix updates need not be explicitly stored as
they can be constructed from a few stored vectors.

III. SAFEGUARDED MULTISECANTS

Newton-like algorithms are not global techniques for
solving equations and can behave wildly, even chaotically,
far from a solution. For the practitioner who simply wants
her software to converge for a particular example, unfortu-
nately this means that the algorithms come only with ex-
tremely limited warranties that may not even be verifiable.
The extent to which algorithms behave, or misbehave, de-
pends on the functional properties of the SCF mapping. Con-
sider the following simple algorithm:

�n+1 = F��n� . �3.1�

If F is a contraction on some closed subset of the space of
densities �i.e., points move closer to one another under the
mapping F�, then the sequence �n converges to the unique
fixed point �� of F �Banach contraction theorem see, for
instance, Ref. 30�. If F is not a contraction, then Eq. �3.1�
could continue forever without ever approaching a fixed
point. Successive iterates might form a characteristic path, or
they might behave chaotically. Less restrictive than contrac-
tive mappings are nonexpansive mappings �i.e., points do not
move further apart under the mapping F�. If F is nonexpan-
sive on a closed convex symmetric subset of Euclidean space
X and has fixed points �as it would if X were bounded31,32�,
then for any �0�X the sequence of steps defined by the
iteration

�n = 0,1,2, . . .� �n+1 = F̃���n� ª �n + ��F��n� − �n�
�3.2�

converges to a fixed point of F �see Theorem 2.1 and Corol-
lary 2.3 of Ref. 33�.

Most readers will recognize iteration Eq. �3.2� as the
Pratt34 step. When F��n�−�n is an approximation to the gra-
dient of the Kohn-Sham energy functional, then the Pratt step
is simply an approximation to steepest descent with �fixed�
step length �. Though convergence is guaranteed for nonex-
pansive SCF mappings on compact convex regions it can be
extremely slow. If F is not nonexpansive, then the numerical
behavior of fixed-point iterations such as Eq. �3.2� and even
Broyden’s methods cannot be guaranteed.

Note that one can extend the above concepts to a subset of
the density variables. For instance, the sp-electron states
might converge quickly, while d-electron states might be
very difficult to converge. Indeed, a frequent observation is
that the density within the muffin tins often behaves very
differently to the density in the interstitial region.

The problematic part of the Kohn-Sham mapping is the
effective potential V�. In general, there is no closed form for

V�. For certain approximations, denoted as Ṽ, it is possible to
prove the correspondence between the fixed points of the
corresponding SCF mapping FṼ and solutions to the Kohn-
Sham equations3 and, moreover, that FṼ is a contraction.35

However, for exact V� at finite temperatures existence and
uniqueness of fixed points is an open question, further com-
plicated by the occurrence of systems with multiple coexist-
ing phases.3

With this in mind, and before we present the details of our
algorithm, we describe in physical terms some of the features
of ab initio calculations that are problematic, together with
common symptoms of poorly convergent problems.

�i� In many cases, for instance bulk MgO, the algorithms
reach an acceptable solution in a surprisingly small number
of iterations, e.g., 10–20 for 104 unknown density compo-
nents. This implies that, at least for a substantial subset of the
density parameters, the domain of attraction of the fixed
point is large and the SCF mapping has “good” functional
properties on this domain.

�ii� In some cases there can be issues with the scaling of
different parts of the density because they are represented in
quite different fashions. For instance, with LAPW methods
the plane-wave components outside the muffin tins are rep-
resented by the Fourier coefficients whereas the density in-
side the muffin tins is expanded in terms of spherical har-
monics.

�iii� The conventional wisdom for LAPW-based methods
is that the muffin tins should be as large as possible without
overlapping. This implies that the basis set used for the muf-
fin tins is better suited for the physics or for the geometry of
the atoms. This is manifested in more rapid convergence of
the coefficients corresponding to these basis elements and
indicates that the domain of attraction of the fixed point for
these coefficients is large relative to the domain of attraction
for the fixed point of the plane-wave elements.

�iv� The most physically interesting problems are often
harder to solve. A spin-unpolarized density-functional theory
�DFT� calculation of NiO, for example, may converge very
slowly. The slow convergence of the mixing cycle is in part
because the spin-unpolarized system is metallic, but is also
coincidental with an imperfect functional description of this
system, in which case the Hamiltonian in Eq. �1.2� can be ill
posed. It is not uncommon to compromise on the physical
model, particularly for large and complicated problems.

�v� In some cases, for instance when there are d or f
electrons, charge carriers are in a large unit cell and for sur-
faces, mixing converges poorly and can easily diverge. In the
literature this is called “charge sloshing” because one has
oscillations of charge density between different spatial re-
gions of the problem or between different local states such as
d electrons. Mathematically this sometimes corresponds to ill
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conditioning when a small change in the density � can lead
to large change in F���, with large eigenvalues of the matrix
H �or small eigenvalues of B�. Alternatively, it may be that
the higher-order terms in the Taylor-series expansion of the
Jacobian are large, so neglecting them is only appropriate for
a very small change in the density. A third possibility in the
case of charge sloshing is that the SCF mapping is not non-
expansive �and hence not contractive� along this trajectory.
None of these possibilities is mutually exclusive.

To illustrate these features a simple model is an O2 mol-
ecule starting from atomic densities where the two atoms are
deliberately treated differently, one starting with a spin of +2
the other with 0. Shown in Fig. 1 is the difference between
the spins �vertical axis� for the two atoms and the difference
between the total charges �horizontal axis� within the muffin
tins for iterates generated by the Pratt step �Eq. �3.2�� with
different fixed step-length parameters �. While the spins con-
verge relatively smoothly to the final solution, the total
charge oscillates or “sloshes.” The charge oscillations be-
come unstable for a relatively small change in the Pratt step
parameter.

A. Mathematical framework

There are two elements that distinguish our approach
from previous work on matrix secant methods: first is the
view of the matrix secant update as a Jacobian simplex of a
vector-valued mapping and second is the separation of the
matrix update into predicted and unpredicted components.

Both of these viewpoints are rooted in the observation that
the dimension of the underlying problem is on the order of
104 or higher while the information used to model the fixed-
point mapping is at most dimension 2n where n is the num-
ber of iterations �on the order of 100�. The conventional view
is that the n steps and residual differences generated in ma-
trix secant methods are deterministic points on a path to the
solution. Alternatively, we consider the n steps as random
samples of a high-dimensional mapping.

The origins of many matrix secant methods are closely
related to the conjugate gradient algorithm. According to this
interpretation the construction of the matrices Sn and Yn
given in Eq. �2.6� is consistent with the columns of Sn being
conjugate directions. Viewing the steps instead as samples
on a small neighborhood of the current iterate leads us to the
alternative centering

sj,n = � j − �n and yj,n = �F�� j� − � j� − �F��n� − �n�

�j = 0,1, . . . ,n − 1� . �3.3�

The matrix secant update built from these step and residual
differences is essentially a finite difference approximation to
the Jacobian centered at �n and, in the context of scalar-
valued functions, yields what is known as the gradient sim-
plex. The generalization in the present context is then appro-
priately called a Jacobian simplex. We therefore consider the
vectors sj and yj given by Eq. �3.3� merely as data samples
with no significance given to the order in which the samples
were collected. This is a fundamentally different approach
than the conventional matrix secant updates based on Eq.
�2.6�.

Independent of how one centers the step history is how
one treats the components of the new step generated by the
matrix secant update. Given the data samples, the algorithm
predicts the behavior of the SCF mapping Eq. �1.2� at �n.
The multisecant methods detailed in the previous sections
can all be rewritten as

�n+1 = �n − A0�I − Yn−1An�gn − Sn−1Angn, �3.4�

where gn=F��n�−�n, An is a matrix dependent on the
method, and A0 is an inverse Jacobian estimate. Let us write
this as

�n+1 − �n = un + pn, �3.5�

where, according to Eq. �3.4�, pn=−Sn−1Angn and un=−A0�I
−Yn−1An�gn. We interpret pn as the part of the vector gn that
can be explained by �is in the range of� the data at step n and
un is the component that is orthogonal to this information,
and hence unpredicted. Intuitively, taking too large a step
along the unpredicted component may be a bad idea and one
of the sources of instabilities in these methods. We propose a
strategy for controlling this step component in Sec. III C.
One of the main differences between �MS�B1 and �MS�B2 is
the size of the unpredicted component. We show below that
this component is inherently larger for �MS�B1 than for
�MS�B2. Therefore if instabilities are due to large steps in the
unpredicted direction it follows that B2 and MSB2 may per-
form better, which we will see later is the case for DFT
problems.

(b)

(a)

FIG. 1. �Color online� Iterates for an O2 molecule with atomic
densities having a spin of +2 the other with 0. The figures show the
difference between the spins �vertical axis� for the two atoms and
the difference between the total charges �horizontal axis� within the
muffin tins for iterates generated by the Pratt step �Eq. �3.2�� with
different fixed step-length parameters �. In frame �a� the Pratt step
parameter is �=0.30, in frame �b� the Pratt step parameter is �
=0.40.
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This is made rigorous when we consider the multisecant
formulation of Broyden’s second method. Rewriting Eq.
�2.8� with Hn replaced by Eq. �2.17� and rearranging compo-
nents according to Eq. �3.4� yields

An ª �Yn−1
T Yn−1�−1Yn−1

T . �3.6�

Note that �Yn−1
T Yn−1�−1Yn−1

T gn is the solution to the least-
squares minimization problem

minimize
z�Rm

1

2
�Yn−1z − gn�2, �3.7�

where m� �1,n−1� is the number of previous data points
used in the update. Here, �Yn−1

T Yn−1�−1Yn−1
T gn is the element

in the domain of Yn−1 that comes closest �in the least-squares
sense� to “predicting” the vector gn. It follows, then, that

�I − Yn−1An�gn = �I − Yn−1�Yn−1
T Yn−1�−1Yn−1

T �gn �3.8�

is the orthogonal projection of gn onto the space orthogonal
to the residual differences yj defined by one of Eq. �2.6� or
Eq. �3.3�, our prior data.

The formalization for Broyden’s first method is not as
immediate. From Eq. �2.7� with Bn

−1 replaced by Eq. �2.16�,
the modification of Eq. �3.4� for MSB1 amounts to

An ª ��Sn−1
T Sn−1�−1Sn−1

T A0Yn−1�−1�Sn−1
T Sn−1�−1Sn−1

T A0,

�3.9�

where, again, A0 is an estimate of the inverse Jacobian.
Again, we note that �Sn−1

T Sn−1�−1Sn−1
T A0w is the solution to the

least-squares problem minimize
z�Rn−1

1
2 �Sn−1z−A0w�2. If, in addi-

tion, A0=�I, then an elementary calculation yields the sim-
plification to Eq. �3.9�

An = �Sn−1
T Yn−1�−1Sn−1

T . �3.10�

If �Sn−1
T Yn−1�−1 is well defined, then the mapping I−Yn−1An is

a nonorthogonal projection36 onto the null space of the col-
umns of Sn−1, or in other words, a projection onto the space
orthogonal to the range of the columns of Sn−1 our prior step
data. Unlike Eq. �3.6� the projection is not to a nearest ele-
ment in the range of Sn−1

� , hence, by definition, the resulting
step will be larger than the orthogonal projection.

B. Regularization and preconditioning: the matrix An

The discussion in Sec. III A of MSB2 assumes that Yn−1 is
full rank. If the columns of Yn−1 are nearly linearly depen-
dent, then the inverse �Yn−1

T Yn−1�−1 can be numerically un-
stable. More fundamentally, we are implicitly assuming that
the approximation to the Jacobian in Eq. �2.2� is, first of all,
valid on the neighborhood of �n defined by the other data
points and, second of all, that the Newton step is the right
step to take. If either one of these assumptions does not hold,
as would be the case when we are far from the solution and
our sample points are far apart, conventional optimization
strategies link local and global techniques by allowing steps
to rotate between the steepest-descent direction �in the
present setting, the direction of the vector gn� and a Newton-

like direction. One well-known strategy of this kind is the
Levenberg-Marquardt algorithm.37,38 We propose a different
technique that is an unusual use of a classical regularization
technique usually attributed to Tikhonov39,40 �see Ref. 41 for
more details� and rediscovered in the statistics community
under the name of ridge regression,42 though the more gen-
eral notion of proximal mappings due to Moreau43 predates
both of these. In particular we regularize Eq. �3.7� in the
usual way:

minimize
z�Rm

1

2
�Yn−1z − gn�2 +

�

2
�z�2, �� � 0� . �3.11�

The solution to Eq. �3.11� is

zn = �Yn−1
T Yn−1 + �I�−1Yn−1

T gn, �3.12�

which yields the following regularization of An given by Eq.
�3.6�:

An
�
ª �Yn−1

T Yn−1 + �I�−1Yn−1
T . �3.13�

Note that as �→�, An
�→0 and the step generated by Eq.

�3.4� rotates to the direction A0gn. We thus interpret the regu-
larization parameter in both the conventional way, stabilizing
�Yn−1

T Yn−1�−1 and as an estimation of the uncertainty of the
approximate Newton step. Given our understanding of the
previous step data as pseudorandom samples from an un-
known process, the latter interpretation has a very natural
explanation in terms of the Wiener filter for a signal with
normally distributed zero-mean white noise. The size of the
regularization parameter corresponds to the energy of the
noise or uncertainty in our model.

Similarly, the discussion of MSB1 in Sec. III A also as-
sumes that �Sn−1

T Yn−1�−1 is well defined, but this says nothing
of whether or not Sn−1

T Yn−1 is well conditioned. Regulariza-
tion of �Sn−1

T Yn−1�−1 in Eq. �3.10� gives

An
�
ª �Sn−1

T Yn−1 + �I�−1Sn−1
T , �3.14�

which shifts the eigenvalues to the right. Since Sn−1
T Yn−1

could have negative eigenvalues, unless � is chosen large
enough, this regularization could result in an even more ill-
conditioned matrix. We have found ��10−6 large enough.

Johnson7 proposes a normalization of the columns of the
matrices of Yn and Sn for numerical reasons, though this can
easily be shown to have no formal impact on the algorithm.
Such a normalization can, however, have a significant effect
on the choice of the regularization parameter. This is equiva-
lent to multiplication of the matrices Yn and Sn on the right
by the diagonal matrix �n. We show the formalism for
MSB2—MSB1 is handled similarly. The least-squares prob-
lem analogous to Eq. �3.11� under such a renormalization is

minimize
z�Rm

1

2
�Yn−1�nz − gn�2 +

�

2
�z�2, �� � 0� ,

�3.15�

with the solution ��nYn−1
T Yn−1�n+�I�−1�nYn−1

T . It follows
immediately from this that if we normalize the columns of
Yn−1,
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�n =�
1/�y1

�n−1�� 0 . . . 0

0 1/�y2
�n−1�� � ]

] � � ]

0 . . . 0 1/�ym
�n−1��

� ,

�3.16�

where yj
�n−1� is the jth column of Yn−1, then our regularization

parameter will be independent of multiple scales between the
columns of the matrix Yn−1. Viewing the regularization as a
Wiener filter applied to the approximate Newton step, the
normalization reduces the effect of outliers on the regulariza-
tion parameter in the least-squares estimation, these outliers
coming from steps that are relatively far away from the cur-
rent point. We denote the matrix corresponding to this renor-

malization, together with the regularization � by An
�,� where

An
�,�

ª ��n��nSn−1
T Yn−1�n + �I�−1�nSn−1

T �MSB1�, or

�n��nYn−1
T Yn−1�n + �I�−1�nYn−1

T �MSB2� .
�

�3.17�

We turn next to preconditioning. We propose rescaling
elements of the density �n to account for multiple scales
between the interstitial electrons and the muffin-tin electrons.
Such a preconditioning is generically represented by multi-
plying the density �n at each iteration n on the left by an
arbitrary invertible diagonal matrix �n. One need not change
any of the formalism above; specifically, one replaces Yn, Sn,

and An in Eq. �3.4� with Ŷnª�nYn, Ŝnª�nSn, and

An
�,�n,�n

ª��n��nŜn−1
T Ŷn−1�n + �I�−1�nŜn−1

T �n �MSB1�, or

�n��nŶn−1
T Ŷn−1�n + �I�−1�nŶn−1

T �n �MSB2� .
� �3.18�

The preconditioner used in the numerical experiments in
Sec. IV rescales the change in the interstitial electrons rela-
tive to that in the muffin-tin electrons. We represent the in-
terstitial and muffin-tin portions of the residual gn=F��n�
−�n by gn

�I� and gn
�M�, respectively, where gn= �gn

�I�T
,gn

�M�T
�T.

The averages of the residuals of these components separately
are

ḡn
�I� = �

j=0

n

�gj
�I��/�gj� and ḡn

�M� = �
j=0

n

�gj
�M��/�gj� .

�3.19�

Our preconditioner �n is defined by

�n = ��nI1 0

0 I2
, where �n =� ḡn

�M�

ḡn
�I� , �3.20�

and Ij is the lj 
 lj identity matrix where lj is the dimension
of the interstitial/muffin-tin electrons, respectively. We note
that the �n term enters the multisecant form squared, hence
our use of a square root. Removing this square root is also
reasonable, and in some cases is better in numerical tests, but
it can be less stable and lead to runaway behavior where the
interstitial regions converge too rapidly. More sophisticated
preconditioning are also plausible, for instance a dielectric
term for the plane waves,44,45 though we found this simple
form to be very effective.

Before concluding this section we note that, by construc-
tion, the vectors sn and yn conserve charge, as does the re-
sidual gn, and the preconditioners and normalizations do not
have any effect on the charge. The result will then conserve
charge automatically within numerical accuracy, so no ex-
plicit charge constraint is necessary.

C. Step control and the generating matrix A0

In Broyden’s original numerical experiments he con-
structed the initial matrix A0 from a finite difference approxi-
mation to the true Jacobian �see Ref. 14 �Sec. VII��. This is
not a practical approach for DFT calculations. The conven-
tion for the initial estimate is a scaling of the identity; that is,
at each iteration n we choose A0,n=�nI. From the previous
analysis, the magnitude of the unpredicted step depends upon
�n, increasing linearly for both B2 and MSB2 and in general
increasing for both B1 and MSB1 as well although in a more
complicated fashion. Therefore, by controlling �n we control
the size of the step in the unpredicted direction. The choice
of the scaling is critical—if it is poorly chosen iterations can
stagnate or diverge. A more technical discussion of strategies
for choosing �n is intimately connected to a convergence
analysis of the algorithms, which is the topic of subsequent
work.

For our purposes it suffices to give a number of effective
controls. Our strategy for implementing a dynamic step
length �n has three parts. First we constrain �n so that the
step in the direction of the unpredicted component has an
upper bound that is proportional to the size of the predicted
component:

�n 	 R�pn�/�gn� , �3.21�

where R is a fixed parameter. One has to take some step
along this component, as otherwise no new information is
generated; however if too large a step is taken the algorithm
can diverge. As a second level of control, we bound the total
variation between successive scalings:

�̃n = �n−1 � max�0.5,min�2.0,�gn−1�/�gn��� . �3.22�
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Note that we do not reject steps that yield a larger residual
gn, but rather reduce the size of the step in the unpredicted
direction. In almost all cases a large improvement is
achieved in the next step by retaining the bad step. As a third
level of control, we include an upper bound on the absolute
value of the scaling �̄.

Of these controls on �n our numerical experience is that
the parameter R is the most important. For hard problems we
have found that a value of R from 0.05 to 0.15 works well.
The upper bound on �n that we have found to be effective is
�̄
0.1–0.2. These values are problem specific, however,
and may fail for examples we have not considered. An auto-
matic dynamic choice for �n in conjunction with standard
trust region strategies is the subject of future research.

Before concluding we note that for the very first cycle we
take a small step with

�0 = �̄ � �0.1 + exp�− 2.0 � max�dQ,dPW/3.5,dRMT��	 ,

�3.23�

where dQ is the change in the charge within the muffin tins,
dPW is the change in the rescaled plane waves, and dRMT is
the change of the density within the muffin tins. This form is
based upon numerical experience with WIEN2K and is some-
what conservative.

D. Summary

Algorithm III.1 �Regularized, preconditioned, limited-
memory multisecant method�:

�0� Choose an initial �0, �0 according to Eq. �3.23�, gen-
erate �1=�0+��F��0�−�0� for ��0 some appropriately cho-
sen step length �this is the Pratt step Eq. �3.2��, set n=1 and
fix ��0 �10−6–10−4�.

�1� If the convergence criterion is met, terminate. Other-
wise, given Sn−1 and Yn−1 whose columns are steps sj and
residual differences yj, respectively, �j=n−m ,n− �m
−1� , . . . ,n−1 for some appropriate number of prior steps,
e.g., m=min�n ,8	� centered on the current point �n as in Eq.
�3.3�, calculate An

�,�n,�n via Eq. �3.18� for either MSB2 or
MSB1 with the scaling �n given by Eq. �3.16� and the pre-
conditioner �n given by Eqs. �3.19� and �3.20�. Determine
the value of �n according to

�n = min��̃n,R�pn�/�gn�,�̄	 , �3.24�

where �̃n is given by Eq. �3.22� and �̄ is some appropriately
chosen upper bound �0.1–0.2�. Calculate the next step �n+1
according to Eq. �3.4� with An replaced by An

�,�n,�n.
�2� Evaluate F��n+1�, set n=n+1, and repeat step 1.

IV. RESULTS

We test the performance of the algorithm on five ex-
amples of increasing physical difficulty, all run using the
WIEN2K code5 and the PBE functional;46 we provide the de-
tails below with technical information so they can be repro-
duced as well as reasons for their choice.

Model 1. Simple bulk MgO, spin-unpolarized with RMTs
of 1.8 a.u., an RKMAX of 7, a 5
5
5 k-point mesh, and a
Mermin functional2 �i.e., Fermi-Dirac distribution� with a

temperature of 0.0068 eV. This is a very easy to solve prob-
lem.

Model 2. Bulk Pd, spin-unpolarized with RMTs of 2.0
a.u., an RKMAX of 7.5, a 5
5
5 k-point mesh, and a
Mermin functional with a temperature of 0.0068 eV. This is
slightly harder because of the possibility of sloshing between
the d-electron states and the fact that one should use a larger
sampling of reciprocal space.

Model 3. A bulk silicon cell with an RMT of 2.16 a.u., an
RKMAX of 7.0, a 6
6
6 k-point mesh, and a Mermin
functional with a temperature of 0.0013 eV.

Model 4. A 2
2
2 Pd supercell with a vacancy at the
origin, RMTs of 2.5 a.u., an RKMAX of 6.5, a k-point mesh
of 3
3
3, and a Mermin functional with a temperature of
0.0068 eV. Here, in addition to sloshing between d-electron
states one can have longer-range dielectric sloshing. In addi-
tion, this is a poorly constructed problem because the RK-
MAX is too small as is the k-point mesh.

Model 5. A 4.757
4.757
34.957 a.u., spin-polarized
�111� fcc nickel surface with seven atoms in the range
−1 /3	z	1 /3. Technical parameters were RMTs of 2.13, an
RKMAX of 7, and a 11
11
1 k-point mesh, also with a
Mermin-function temperature of 0.0068 eV. It should be
noted that the two surfaces are sufficiently close together, so
there is real electron density in the vacuum. In this case one
can have spin sloshing, d-electron sloshing, as well as long-
range Coulomb sloshing of electrons in the vacuum.

In all cases we started from densities calculated as a sum
of independent atoms, and the calculations were run with
both forms of Broyden multisecants given by Eqs. �2.15� and
�2.17�, as well as the more conventional Broyden first Eq.
�2.9� and second Eq. �2.11� methods. Convergence criteria
were an energy change of 10−5 Rydbergs and an RMS con-
vergence of the charge within the muffin tins of 10−5 elec-
trons. For the multisecant implementations eight prior
memory steps were used. To simplify the results, unless
noted otherwise we used fixed values of the regularization
parameter � of 10−4 and R=0.1. In almost all cases, Fig. 2
shows that the convergence appears to be linear, although the
precision of the calculations does not allow one to observe
the final asymptotic behavior, including rates of conver-
gence, of the algorithms.

For the very simple model 1 all the methods converge
quickly and the parameter �̄ has no significant impact on
performance. The MSB1 method is slightly faster, but as the
latter results indicate this is an exception. If �̄ is too small
�below 0.025� convergence is slower. Interestingly, even for
this very simple case the multisecant methods are signifi-
cantly faster.

For the slightly more complicated model 2, both multise-
cant methods converge rapidly, whereas the B2 method con-
verges more slowly and the B1 method is worse by a signifi-
cant margin. The principal difference between models 1 and
2 is that in model 1 there are large changes during the itera-
tions both within the muffin tins, as well as for the plane
waves, whereas in model 2 almost all the changes are in the
plane waves. This supports the rule of thumb discussed ear-
lier that one should make the muffin tins as large as possible
without overlapping.

With model 3 the multisecant methods significantly out-
perform the classical secant methods. For bulk silicon much
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of the covalent bonding lies in the interstitial region. We
conjecture, therefore, that the improvement is due to the im-
proved step direction and size for the multisecant methods
that allow these methods to handle the greater variations of
the Kohn-Sham mapping for this basis set.

The same trend continues with both models 4 and 5 to the
extent that B2 and B1 only converge for “good” values of �̄
�which have to be found by trial and error� and in many cases
diverge. For the hardest problem we report here, model 5,
only the MSB2 method converged. If one added a line search
the other methods would probably converge albeit less rap-
idly and with many more SCF evaluations.

The � parameter in the MSB2 update gives one direct
control over the size of the steps, which is an important

feature for models with strong variations. The control of
steps is less immediate for the MSB1 update and involves a
more sensitive coupling of the regularization parameter �
and the step size parameter �. This is illustrated by the
greater variance in performance of the MSB1 update versus
MSB2 for models 1, 2, 4, and 5 shown in Table I.

V. DISCUSSION

To summarize the main points of this work:

�i� We argue that for DFT problems, where many physi-
cally interesting models result in noncontractive SCF map-
pings, one should consider the information from previous

(b)

(a) (c)

(d)

(e)

FIG. 2. �Color online� Plot of the convergence for models 1–5 �frames �a�–�e�, respectively� using the multisecant update based on
Broyden’s first method and second method, compared to Broyden’s second method and Broyden’s first method. In model 5 the only
algorithm to converge is MSB2.
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points of the SCF cycle more as samples of a higher-
dimensional space than as part of a deterministic path. As a
consequence multisecant methods are better than sequential
secant updates, as born out in the results.

�ii� There is a fundamental difference between methods
based upon Broyden’s first �B1� and second �B2� methods in
terms of the space they operate in. The second method is
more robust and handles poorly constructed, �nearly� ill-
posed problems better—in general these are the more inter-
esting physical problems.

�iii� Scaling, regularization, and preconditioning have a
significant impact on algorithm performance. Moreover,
regularization acts simultaneously to reduce instabilities due
both to linear dependencies as well as to deficiencies in the
model.

�iv� Controlling the step size �n along the direction about
which no information is available is critical. For difficult
problems, this step should in general be smaller than for easy
problems.

�v� The multisecant method based upon Broyden’s second
formulation �MSB2� with appropriate safeguards simply and
quickly solves problems which may defeat a novice, some-
times even an expert.

The method we have detailed MSB2 is robust and has been
part of the main WIEN2k distribution since August 2007
without any apparent problems. Even in the hands of an ex-
perienced user for complicated problems such as LDA+U
we have been told of cases where the MSB2 version is three
times faster than the earlier B2 code. The default values of
�=10−4 and R=0.1 will be approximately correct for a
pseudopotential code where preconditioning the variables is
not necessary though there are strong variations Kohn-Sham
mapping. We have not attempted to implement the MSB2
algorithm for a pseudopotential code but see no reason why
it should not work at least as well. One can of course adjust
these parameters to improve a single problem, but we rec-
ommend values that perhaps are slightly slower in a few
cases, but more robust for a wide variety of problems. There
may also be ways to stabilize MSB1 so that it could possibly
work better for pseudopotential codes where preconditioning
is easier.

We acknowledge that we have only considered relatively
small problems here, but experience indicates that the con-
vergence depends only very weakly �if at all� upon the size
of the problem either in terms of the size of the basis set or

the number of atoms. For instance, for a h-BN/Rh�111� na-
nomesh slab of 1108 atoms47 with the earlier Broyden mix-
ing algorithm it did not converge even after 200 iterations,
but did in 30–40 with the new algorithm. For other large
structures, for instance a Si �111� 7
7 surface with 498
atoms, starting from neutral atoms the convergence is only
slightly slower than it is for model 3. We emphasize once
again the link between convergence of the mixing process
and the functional properties of the underlying Kohn-Sham
mapping. A poorly constructed problem will in most cases
converge much more slowly than a well constructed one; a
single atom may converge slower than 104 atoms. This may
be a consequence of short cuts in the DFT calculation, e.g.,
too few k points or numerical errors in an iterative diagonal-
ization, or it can be due to a poorly constructed Hamiltonian
or perhaps density functional. For the general user poor con-
vergence should be taken as a suggestion that the model of
the physics may not have been properly constructed.

Some additional comments are appropriate about the role
of the term in the regularization. As mentioned earlier, we
are using this simultaneously in three ways: first as a stan-
dard regularization technique to avoid ill conditioning asso-
ciated with near linear dependence of the columns of Yn;
second as a Levenberg-Marquardt-type strategy to rotate the
step; and third in a standard Wiener filter sense to account for
model uncertainty. The regularization parameter can be con-
sidered to scale proportionally to the noise or uncertainty in
the secant equations. Far from the solution the quasi-Newton
step may not be appropriate, suggesting that one should use a
larger regularization. Similarly, near the solution if the quasi-
Newton step is accurate, it will yield faster rates of conver-
gence, in which case one would choose a smaller regulariza-
tion. While one could dynamically adjust the regularization
parameter, for our numerical experiments we choose a rela-
tively large fixed value of � �10−4�. This, in our experience,
yields adequate overall convergence and better convergence
in the “dangerous” early stages of the iterations.

The fact that we obtain improvement under the assump-
tion that most models of physical interest do not lead to
contractive, or more generally monotone SCF, mappings
raises some questions. It is well established that current-
density functionals are inexact descriptions of the physics,
but the exact analytic properties of many physical systems
are unknown. In particular, for many systems it is not known
whether the SCF operator is monotone, let alone that it has
fixed points, although it is hard to conceive of an experimen-

TABLE I. Iterations to convergence as a function of � for models 1–5 with fixed �=10−4 and R=0.1.
The mean and standard deviation are for �̄ between 0.05 and 0.8 for models 1–3 and 0.05–0.5 for models
4 and 5.

MSB2 MSB1 B2 B1

mean stdev mean stdev mean stdev mean stdev

Model 1 16.22 0.44 14.56 1.01 18.67 1.66 22.44 12.71

Model 2 12 0 12.89 0.33 20.11 0.78 39.78 9.58

Model 3 15.44 2.35 16.78 0.67 25.22 2.95 57.56 7.76

Model 4 24.17 2.04 29.17 4.92 – – – –

Model 5 54.60 3.51 – – – – – –
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tally observable equilibrium structure that does not have
fixed points. An interesting question to raise is whether the
SCF operator is monotonic with the “true” density functional
that correctly describes the physics. Since in many cases the
effective potential V� has no closed form, it is not known
whether many of these theoretical properties are verifiable. It
is tempting to infer analytic properties from numerical
experiments—and we have made numerical progress by do-
ing just this—but one cannot on numerical evidence alone
determine the extent to which numerical behavior is indica-
tive of the true nature of the physical system. As a final
speculation, we raise the question of whether the character of
the SCF mapping can be experimentally measured, or
whether this type of behavior is a mathematical anomaly
resulting from being much further away from equilibrium
than any feasible experimental system will ever be.

There are several directions of research with regard to
algorithms. First, the heuristics for adjusting the step size �n
need to be put on firm mathematical footing. This would
accompany a study of the asymptotic behavior of the algo-
rithm and is the subject of future research. While the analysis
of Eq. �3.6� has attractive interpretations in terms of nearest
points in the range and space orthogonal to the prior data, the
notion of “nearest” is with respect to the usual Euclidean
�L2� norm, which is biased toward outliers. One could con-
sider the development of algorithms based on weighted
norms, or even non-Euclidean prox mappings as opposed to
those detailed in Sec. III C. The �n considered by Refs. 6, 7,

and 11 is in the spirit of weighted norms. Other areas for
improvement could be found in the initialization of the itera-
tions. We used the Pratt step, however one could use infor-
mation from a previous SCF iteration.

Finally, while we have used some physics in helping to
design the algorithm, there may be more that could be ex-
ploited. We find particularly appealing the observation dis-
cussed at the beginning of Sec. III that the density appears to
be separable into distinct subsets. One might envision tailor-
ing algorithms to exploit this property. For instance, one
could iterate on the components of the density associated
with the muffin tins, while holding the interstitial electron
density fixed. Alternatively, one could iterate on the
sp-electron density holding the d-electron density fixed, or
one could iterate on other observables such as the spin asso-
ciated with a particular atom. Such an approach might allow
one to isolate irregular variables within the SCF mapping
and design algorithms accordingly. This general approach is
known as operator splitting about which there is a vast lit-
erature �see, for instance Ref. 48 and references therein�.
This would allow one to isolate the analytical properties of
the SCF operator and work more directly with specific physi-
cal quantities.
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